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Abstract. We consider a cellular neural network (CNN) with a bias term z in the integer lattice
Z2 on the plane R2. We impose a symmetric coupling between nearest neighbors, and also between
next-nearest neighbors. Two parameters, a and ε, are used to describe the weights between such
interacting cells. We study patterns that can exist as stable equilibria. In particular, the relationship
between mosaic patterns and the parameter space (z, a; ε) can be completely characterized. This,
in turn, addresses the so-called learning problem in CNNs. The complexities of mosaic patterns are
also addressed.
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1. Introduction. Many systems have been studied as models for spatial pattern
formation in biology, chemistry, and physics. The types of systems we are interested
in are large arrays of locally coupled first-order nonlinear dynamical systems, namely,
cellular neural networks (CNNs). Such a class of information processing systems has
been proposed by Chua and Young [12, 13]. The CNNs without input terms are of
the form

dxi,j
dt

= −xi,j + z +
∑

|k|≤1,|`|≤1

ak,`f(xi+k,j+`), (i, j) ∈ Z2,(1.1a)

xi,j(0) = x0
i,j .(1.1b)

Here the nonlinearity f is a piecewise-linear function of the form

f(x) =
1

2
(|x+ 1| − |x− 1|).(1.2)

The numbers ak,`, |k| ≤ 1, |`| ≤ 1, k, ` ∈ Z, are arranged in a 3 × 3 matrix form,
which is called a space-invariant A-template

A =

 a−1,1 a01 a1,1

a−1,0 a0,0 a1,0

a−1,−1 a0,−1 a1,−1

 .(1.3)

A is called symmetric if a−k,−l = ak,l for all |k| ≤ 1 and |l| ≤ 1. The quantities xi,j
denote the state of a cell Ci,j . If xi,j > 1 (resp., xi,j < −1), then its corresponding
cell Ci,j is called a positively (resp., negatively) saturated cell. If |xi,j | < 1, then
its associated cell Ci,j is called a defect cell or a defect. The output of a cell Ci,j ,
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892 JONQ JUANG AND SONG-SUN LIN

defined as yi,j = f(xi,j), is thus always bounded by |yi,j | ≤ 1. The quantity z is an
independent voltage source. When z = 0, (1.1) is called unbiased; when z 6= 0, it is
called biased.

Like a neural network, it is a large-scale nonlinear analog circuit which processes
signals in real time. Like cellular automata, it is made of a massive aggregate of reg-
ularly spaced circuit clones called cells, which communicate with each other directly
only through their nearest neighbors. Each cell is made of a linear capacitor, a non-
linear voltage-controlled current source, and a few resistive linear circuit elements.
Such systems share the best features of neural networks and cellular automata; their
continuous-time feature allows the real-time signal processing found wanting in the
digital domain, and their local interconnection feature makes them ideal for very-
large-scale-integrated (VLSI) implementation. Due to their local connectivity, CNNs
can be realized as VLSI chips and can operate at a very high speed and complex-
ity. Applications to image processing and pattern recognition can be found in [13].
Recently, the applicability of CNNs to important PDEs—autowaves and spiral waves
in a reaction-diffusion-type system, Burger’s equation, and the Navier–Stokes equa-
tion for incompressible fluids—is investigated in [36]. Moreover, since its invention in
1988, while retaining the two basic concepts of local connections and analog circuit
dynamics, the CNN has evolved to cover a very broad class of problems and frame-
works. For instance, it was found [39] that the CNN can produce patterns similar to
those found in Ising spin glass systems, discrete bistable systems, and the reaction-
diffusion system. For additional background information, applications, and theory,
see [11, 12, 13, 16, 31, 34, 39] among others.

Lattices also play important, and in some cases essential, roles in many scientific
models, typically modeling underlying spatial structures. We mention, in particular,
models arising from chemical reactions [9, 29], biology [3, 4, 17, 18, 27, 30, 40], material
science [5, 14, 22], and image-processing and pattern-recognition [11, 12, 13, 20, 39].
Much theoretical work in lattice differential equations concerns one-dimensional lat-
tices. Some theoretical approaches to systems of higher dimensions have been made;
see, e.g., [8, 9, 31]. Recent results on traveling and propagating waves can be found
in [1, 2, 6, 7, 10, 19, 32, 33]. A special issue on nonlinear waves, patterns, and spatio-
temporal chaos in dynamic arrays is reported in [41].

Stationary solutions x̄ = (x̄i,j) of (1.1a) are very important in studying CNN
systems; their outputs ȳ = (f(x̄i,j)) are called patterns. Indeed, when people study
the long-time behavior of any dynamical system, the stationary solutions are the basic
and simplest objects that have to be considered. Usually, the existence of multiple
stationary solutions may induce complicated phenomena of the dynamical system.
In the case of CNNs, it was shown by Chua and Yang [12] that (1.1a) behavior is
like a gradient system when template A is symmetric and the lattice is finite. In
this case, every trajectory will tend to a stable stationary solution as time goes up.
In an infinite system as (1.1a) with symmetric template, it is conjectured that most
trajectories will end up at stable stationary solutions. However, a verification remains
demanded. In this paper we study only stationary solutions; other types of solutions
are studied elsewhere [24].

Two types of stationary solution are of interest: mosaic and defect. A mosaic
solution x̄ satisfies |x̄i,j | > 1 for all (i, j) ∈ Z2. A defect solution x̄ satisfies |x̄i,j | > 1
for (i, j) ∈ Z2\D and |x̄k,`| < 1 for (k, `) ∈ D, where D 6= φ and D 6= Z2. Their
corresponding pattern ȳ can thus be called a mosaic and a defect pattern, respectively.

One basic problem in CNN theory is the so-called learning problem, which can

D
ow

nl
oa

de
d 

04
/2

8/
14

 to
 1

40
.1

13
.3

8.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



CNN MOSAIC CHAOS 893

be stated as follows:
(1.4a) Given a set of stationary patterns U , determine a set of parameters P ⊂ P10 =

{z, ak,` : k, ` integer and |k|, |`| ≤ 1}, and a parameter space, such that any pat-
tern in U can be obtained and is stable for all parameters in P.
The “learning problem” is almost the inverse of the following problem.

(1.4b) Given any P ⊂ P10, determineM(P) (resp., D(P)), the set of all stable mosaic
(resp., defect) patterns of (1.1).
Furthermore, we also wish to address

(1.4c) the complexity of M(P) and D(P) for each subset P of P10.
To study these problems, we begin with a local solution yT of (1.1a) which is

defined on a certain subsets T of Z2. The associated output yT is called a local pattern;
for details see Definition 4.2. We find that the parameter space P10 can be partitioned
finitely into many regions {P(k)}k∈K . Only a few local patterns are stable in each
region P(k); these are called the feasible patterns of region P(k). In principle, we can
obtain all stable patterns by patching these feasible patterns together. However, to
construct all stable patterns of P(k) more efficiently, we introduce a set B(P(k)) of local
patterns, so-called “building blocks” for each region P(k); see Definition 4.6. Then,
using certain compatibility rules C(P(k)), we can patch these building blocks together
into a global pattern in Z2. These building blocks and compatibility conditions also
enable us to estimate the spatial entropy h(M(P(k))) and h(D(P(k))) ofM(P(k)) and
D(P(k)), the set of all mosaic patterns and defect patterns, respectively.

For simplicity, in this paper we emphasis the case in which template A is a square
cross, e.g.,

A =

 0 b 0
b a b
0 b 0

 .(1.5)

For this case, we completely solve the problems in (1.4) for the set of stable mosaic
patterns. The method is quite general and can be applied to more general templates
A [25] and to study the set of stable defect patterns [26].

We remark that there are many numerical computation results which have been
obtained, especially in papers published in the IEEE Transactions on Circuits and
Systems, since 1988 [11, 12, 13, 15, 16, 19, 33, 36, 39, 41]. Furthermore, people can now
do some numerical experiments through the World Wide Web; see [21]. One will find
some interesting phenomena on a 20×20 square lattice by changing various parameters
and using different initial data. It is clear that all numerical results are based on the
model on finite lattices [6, 7, 8, 9, 10, 23, 24, 25, 26, 27, 28, 32, 33, 37, 38, 39]. The
mathematical theory developed in this paper and many others is based on infinite
lattices. Therefore, it is important to know the relationships between infinite lattices
and large but finite lattices, especially the problem of influence of boundary conditions
on finite lattices. In the case of one-dimensional CNNs, there is an affirmative result
recently obtained by Shih [38]. Indeed, he proved that the limiting spatial entropies
are equal for periodic, Dirichlet, and Neumann boundary conditions as the size of
lattices tend to infinite, i.e., the impact of boundary conditions is very weak in a
one-dimensional case. As for two-dimensional CNNs the problem is still unsettled. In
general, the problem of lattice dynamical systems between infinite size and finite but
large size is still wide open and challenging.

We conclude this introductory section by summarizing the organization of this
paper. In section 2, we discuss the (linearized) stability of stationary solutions and
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894 JONQ JUANG AND SONG-SUN LIN

then review some basic results concerning spatial entropy. In section 3, we introduce
a geometrical method for partitioning the parameter space into finite many disjoint
regions. In section 4, we give a complete classification of the set of mosaic patterns in
each region. The lower spatial entropy bound of these sets of mosaic patterns is also
computed. The results concerning the mosaic patterns for a one-dimensional CNN
system is recorded in section 5.

2. Pattern and spatial entropy. Given template A and a biased term z, the
stationary (steady-state, equilibrium) equation for (1.1a) is

xi,j = z +
∑

|k|≤1,|`|≤1

ak,`f(xi+k,j+`), (i, j) ∈ Z2.(2.1)

Let x = (xi,j) be a solution of (2.1). The associated output y = (yi,j) = (f(xi,j)) is
called a (stationary) pattern. These stationary solutions can be classified into four
types.

Definition 2.1. A solution x = (xi,j) of (2.1) is called nontransitional if
|xi,j | 6= 1 for all (i, j) ∈ Z2. In particular, x is called a mosaic solution if |xi,j | > 1
for all (i, j) ∈ Z2. Its associated pattern is called a mosaic pattern. If |xi,j | < 1 for
all (i, j) ∈ Z2, then x and y = (f(xi,j)) are called, respectively, an interior solution
and an interior pattern. If |xi,j | 6= 1 for all (i, j) ∈ Z2 and there are (m,n) and (k, `)
such that |xm,n| < 1 and |xk,`| > 1, then x and y = (f(xi,j)) are called, respectively,
a defect solution and a defect pattern. If there exists an (i, j) such that |xij | = 1,
then x and y = (f(xi,j)) are called, respectively, a transition solution and a transition
pattern.

Given a nontransitional solution x = (xi,j) of (2.1), we denote Γ+,Γ−, and Γ× as

Γ+ = {(i, j) ∈ Z2 : xi,j > 1},(2.2a)

Γ− = {(i, j) ∈ Z2 : xi,j < −1},(2.2b)

and

Γ× = {(i, j) ∈ Z2 : |xi,j | < 1},(2.2c)

respectively. Stability is then studied using spectral theory. Let ξ = (ξi,j) ∈ `2. The
linearized operator L(x) of (2.1) at x is given by

(L(x)ξ)i,j =

{ −ξi,j + Li,j if (i, j) ∈ Γ+ ∪ Γ−,
(a0,0 − 1)ξi,j + Li,j if (i, j) ∈ Γ×.

(2.3a,b)

Here,

Li,j =
∑

(k,`)∈N+,(i,j)∩Γ×

ak−i,`−jξk,`(2.3c)

and

N+(i, j) = {(p, q) ∈ Z2 : |p− i|+ |q − j| = 1}.(2.3d)

Definition 2.2. Let x be a solution of (2.1) with |xi,j | 6= 1 for all (i, j) ∈ Z2.
x is then called (linearized) stable if all eigenvalues of L(x) have negative real parts.
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CNN MOSAIC CHAOS 895

The solution x is called unstable if there is an eigenvalue λ of L(x) such that λ has a
positive real part.

Definition 2.3. A solution x = (xi,j) of (2.1) is said to be feasible provided that
it is stable.

We then have the following stability result.
Theorem 2.4. Let x = (xi,j) be a solution of (2.1). The following holds.

(i) If x is a mosaic solution, then x is stable. Hence, for a mosaic solution,
existence implies feasibility.

(ii) If a0,0 > 1, and x is an interior or a defect solution, then x is unstable.
Proof. If x is a mosaic solution, then −L(x) is a self-adjoint and positive operator.

The first assertion of the theorem thus follows. Next, let x be an interior or a defect
solution. Let ˜̀2 = {ζ = (ζij) ∈ `2 : ζij = 0 for all (i, j) ∈ Γ+ ∪ Γ−.}. Then

L(x)|˜̀2 : ˜̀2 → ˜̀2 is also a self-adjoint operator. Moreover, if λ is an eigenvalue
of L(x)|˜̀2 , then λ is also an eigenvalue of L(x). Hence, in completing the proof, it
suffices to show that −L(x)|˜̀2 is not a positive operator when a0,0 > 1. To this end,
let (i0, j0) ∈ Γ× and let e = (ei,j) be such that

ei,j =

{
1 (i, j) = (i0, j0),
0 otherwise.

Then,

〈−L(x)e, e〉 = 1− a0,0 < 0.

This completes the proof of Theorem 2.4.
For completeness we review some definitions and results concerning spatial en-

tropy. For more details see [8, 35].
Let A be a finite set of D elements (an alphabet) and D ≥ 1 be an integer (the

lattice dimension). Denote by AZD the set of all y : ZD → A. In our case, D = 2
and A = {−1, 1} for the mosaic patterns.

Definition 2.5. Let U be a translation-invariant subset of AZD ; U is called
spatial chaos if the spatial entropy h(U) (see [10, 39]) is greater than zero. Otherwise,
U is called pattern formation.

3. Partitioning the parameter spaces. Let template A be square-crossed,
e.g.,

A = A+ ≡
 0 b 0
b a b
0 b 0

 or

 0 aε 0
aε a aε
0 aε 0

 ,(3.1)

where aε = b if a 6= 0. We then have three parameters, a, b, and z or a, ε, and z. In
this section, we shall partition the parameter spaces P3 = {(z, a, b) : a, b, z ∈ R} or
= {(z, a, ε) : a, ε, z ∈ R} into finitely many regions such that in each region, (2.1) has
the same mosaic patterns.

From now on, we shall assume that (3.1) holds. When a 6= 0 and x is a solution,
then for any (i, j) ∈ Z2, (xi,j , yi,j) will satisfy

y = f(x)(3.2)

and

y =
1

a
{x− (z + 2kb)},(3.3a)
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Fig. 3.1. a > 0, ε > 0, m = 3 = n. Here Li = Li,ε, i ∈ I[−2, 2].

or

y =
1

a
{x− (z + 2kaε)},(3.3b)

for k ∈ {−2,−1, 0, 1, 2}, i.e., (xi,j , f(xi,j)) lies on one of the five straight lines Lk,ε
defined in (3.3), where z, a, and b are fixed; see Figures 3.1 and 3.2. For a = 0, (3.3)
reduces to

x− z − 2kb = 0.(3.3c)

Note that when k = 2, this corresponds to an unknown cell Ci,j being surrounded
by four positively saturated cells. Similar interpretations can be applied to k =
1, 0,−1,−2. If the dependence of the solutions of (3.2) and (3.3) on k is emphasized,
we shall denote the solutions by x(k). Clearly, x(k) is strictly monotonous in k
provided that b 6= 0. Such monotonicity plays a crucial role in grouping the parameters
in P3 so that the questions in (1.4a) and (1.4b) can be completely answered.

To pursue this idea for partitioning P3 in more detail, we first need the following
notation.

Definition 3.1. For any two integers k < `, denote I[k, `] = {k, k + 1, . . . , `},
the set of integers that are no greater than ` and no smaller than k.

Definition 3.2. For m,n ∈ I[0, 5], denote [m,n] the (open) subset of P3 such
that the intersection of (3.2) and (3.3) consists of m positively saturated states; i.e.,
(x > 1) and there are n negatively saturated states (i.e., (x < −1)). Furthermore, for
any fixed b or ε, we may also use [m,n], or [m,n]b or [m,n]ε if necessary, to describe
such an open subset in P2 = {(z, a) : z, a ∈ R}.

To clarify Definition 3.2, we give Figure 3.1 with various m and n.

It is much easier to partition P2 into [m,n]ε by fixing and then varying ε ∈ R.
Indeed, for each ε and k ∈ I[−2, 2], let rk,ε and `k,ε be straight lines whose equations
are

rk,ε : z + (1 + 2kε)a = 1(3.4a)
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Fig. 3.2. a > 0, ε < 0, m = 5, n = 4.

and

`k,ε : −z + (1− 2kε)a = 1.(3.4b)

Note that rk,ε and `k,ε are projections of the planes rk and `k in P3 obtained by
defining

rk : a+ z + 2kb = 1(3.5)

and

`k : a− (z + 2kb) = 1,(3.6)

which, in turn, are obtained by respective substitutions of (x, y) = (1, 1) and (x, y) =
(−1,−1) into (3,4). We will see later that lines {rk,ε, `k,ε}k∈I[−2,2] cut P2 into disjoint
regions [m,n]ε,m, n ∈ I[0, 5], as do the planes {rk, `k}k∈I[−2,2] in P3.

Definition 3.3. Let ` be a straight line that does not pass through the origin in
P2. Denote by `(0) the open half-plane containing the origin, while `(×) denotes the
other open half-plane. Furthermore, for any ε and k ∈ I[−2, 2], denote

Pk,ε ≡ rk,ε(×) ∩ `k, ε(0),(3.7a)

Mk,ε ≡ rk,ε(×) ∩ `k,ε(×),(3.7b)

Nk,ε ≡ rk,ε(0) ∩ `k,ε(×),(3.7c)

Ik,ε ≡ rk,ε(0) ∩ `k,ε(0).(3.7d)

We then have the following result.
Proposition 3.4. Given k ∈ I[−2, 2] and ε 6= 0, if (z, a) ∈ Pk,ε, then the

straight line Lk,ε defined by (3.3) intersects the graph of (3.2) only in a positively
saturated state (e.g., x > 1). Similarly, if (z, a) is in Nk,ε,Mk,ε, and Ik,ε, resp., then
Lk,ε intersects (3.2) only in a negatively saturated state (e.g., x < −1), positively and
negatively saturated states (e.g., |x| > 1), or only in a defect state (e.g., |x| < 1).

The proof of this proposition is elementary but lengthy, so we omit it. An illus-
tration of regions for k = 2 and ε = 1

8 is given in Figure 3.3.
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Fig. 3.3. k = 2, ε = − 1
8

.

We now can state our main result concerning the partitioning of P2 by [m,n]ε.
Theorem 3.5. Let P+

2 and P−2 be the open upper half-plane and lower half-plane,
respectively. Then the following results hold:

(I) For 0 < |ε| < 1
4 , and any m,n ∈ I[0, 5], we have

[m,n]ε = r2−m,|ε|(0) ∩ r3−m,|ε|(×) ∩ `n−2,|ε|(0) ∩ `n−3,|ε|(×).(3.8)

Here, if |k| > 2, then rk,|ε|(·) is interpreted as P2. Furthermore, P+
2 is the union of

those mutually disjoint sets [m,n]ε and their boundaries, e.g.,

P+
2 =

⋃
m,n∈I[0,5]

[m,n]ε ∩ P+
2 .(3.9)

Here, S is the closure of set S in P2. Similarly, we have

P−2 =
⋃

m,n∈I[0,5]
m·n=0

[m,n]ε ∩ P−2 .(3.10)
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CNN MOSAIC CHAOS 899

Here, for m,n ∈ I[1, 5],

[m, 0]ε = rm−2,|ε|(0) ∩ rm−3,|ε|(×),(3.11)

[0, n]ε = `2−n,|ε|(0) ∩ `3−n,|ε|(×),(3.12)

and

[0, 0]ε = r−2,|ε|(0) ∩ `2,|ε|(0).(3.13)

A decomposition of P2 in terms of [m,n]ε is given in Figure 3.4.
(II) For 1

4 ≤ |ε| < 1
2 , similar conclusions as those in (I) hold except that

(i) [5, 5]ε = φ,
(ii) for 1

4 < |ε| < 1
2 ,

[1, 0]ε ∩ P−2 = r−1,|ε|(0) ∩ r−2,|ε|(×) ∩ `2,|ε|(0) ∩ P−2 ,
[0, 1]ε ∩ P−2 = r−2,|ε|(0) ∩ `−1,|ε|(0) ∩ `2,|ε|(×) ∩ P−2 ,
[0, 0]ε ∩ P−2 = r−2,|ε|(×) ∩ `2,ε(×) ∩ P−2 .

See Figure 3.5.
(III) For ε = 1

2 , we have

P+
2 =

⋃
m,n∈I[0,5]
m+n≤7

[m,n]ε ∩ P+
2

and P−2 ∩ [m,n] 6= φ, if and only if m,n ∈ I[0, 5] and m+ n < 4.
(IV) For 1

2 < |ε| < 1, we have P+
2 , as in (III), and

P−2 ∩ [m,n]ε 6= φ,

if and only if m,n ∈ I[0, 5] and m+ n < 5. See Figure 3.6.

(V) For |ε| = 1, we have

P+
2 =

⋃
m,n∈I[0,5]
m+n≤6

[m,n]ε ∩ P+
2

and P−2 is as in (IV).

(VI) For |ε| > 1, we have P+
2 as in (V) and

P−2 ∩ [m,n]ε 6= φ,

if and only if m,n ∈ I[0, 5] and m+ n < 6. See Figure 3.7.
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Fig. 3.4. B = 1
1+4|ε| , C = 1

1+2|ε| , D = 1, E = 1
1−2|ε| , F = 1

1−4|ε| , 0 < |ε| < 1
4
.
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Fig. 3.5.

To conserve the notation in Figures 3.3–3.6, we set `i,ε = `i, and ri,ε = ri, where
i ∈ I[1, 5].

Proof. To demonstrate the validity of the assertion in (3.8), we illustrate only
how to compute [3, 3]ε. The other cases are obtained in similar fashion. For a > 0
and ε > 0, to have the intersections of (3.2) and (3.3b) contain three positively
saturated states and three negatively saturated states, it is necessary and sufficient
(see Figure 3.3) to have the parameters (z, a) lie in

N−1,ε ∩M0,ε ∩ P1,ε.

Using Proposition 3.4, we conclude that [3, 3]ε should be as asserted. On the other
hand, for a > 0 and ε < 0, to have (z, a) ∈ [3, 3]ε, it must be that (z, a) lies in

N1,ε ∩M0,ε ∩ P−1,ε.

Since N1,ε = N−1,−ε,M0,ε = M0,−ε, and P−1,ε = P1,−ε, we see that

[3, 3]ε = [3, 3]−ε.

The results for [m,n]ε in P+ can be verified in a similar fashion.
Next we consider the region [m,n]ε contained in P−2 . Note that for a < 0, i.e.,

the slopes of the straight lines in (3.3b) are negative, it is impossible for the number
of intersection points of (3.2) and (3.3b) to be greater than 5. Therefore,

[m,n]ε ∩ P− = φ for all m+ n ≥ 6,m, n ∈ I[0, 5].

Considering the region P− ∩ [3, 1]ε, where ε > 0, we have

P− ∩ [3, 1]ε = P0,|ε| ∩M1,|ε| ∩N2,|ε|.
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Fig. 3.6.

Using Proposition 3.4, we get that

P− ∩ [3, 1]ε 6= φ if and only if |ε| > 1

2
.

Proof of the remaining parts of the theorem is omitted.

Remark 3.6.

(i) The regions [m,n]ε and [n,m]ε are symmetric with respect to the a-axis.
(ii) Dependence of [m,n]ε on ε makes perfect sense. As |ε| grows larger, the

distances between the x-intercepts of the straight lines in (3.3) become larger.
Consequently, for a fixed a 6= 0, as |ε| increases, the number of straight lines
in (3.3) that hit y = f(x) at two different states or more will decrease; see
Figures 3.1 and 3.2. Moreover, for a < 0, each of the straight lines in (3.3)
cannot hit y = f(x) more than once. Therefore, the region [m,n], in which
m,n ≥ 3, cannot appear in the lower half-plane of P2. Furthermore, for a > 0,
as |ε| becomes sufficiently large, only L0,ε can intersect y = f(x) more than
once. This explains why regions [m,n], in which m,n ≥ 3, and either m > 3 or
n > 3, will gradually disappear as |ε| grows.

Remark 3.7. Theorem 3.5 holds for the template

A =

 0 ±b 0
±b a ±b
0 ±b 0

 ,(3.14a)

D
ow

nl
oa

de
d 

04
/2

8/
14

 to
 1

40
.1

13
.3

8.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



CNN MOSAIC CHAOS 903

p -

6

z

a

@
@
@
@
@@

@
@
@@

A
A
A
A
A
A
A

A
A
A
A
AA

B
B
B
B
B
B
B
B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BB

¡
¡
¡
¡¡

¡
¡¡

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
��

¡
¡
¡
¡
¡¡

¡
¡¡

�
�
�
�
�
�
�

�
�
�
�
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

@
@
@
@
@@

@
@@

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
AA

r0r1

r2

r−2

r−1

`0
`−1

`−2

`2

`1

[3,3]

[0,0]

[2,2]

[3,2]�[3,2] -

D

F

Fig. 3.7.

as well as

A =

 ±b 0 ±b
0 a 0
±b 0 ±b

 ,(3.14b)

the diagonal-cross.

Remark 3.8. The idea of using (hyper-) planes to divide the parameter space into
disjoint regions can be applied to any general template; see [25].

4. Mosaic solutions. In this section, we try to construct all mosaic patterns
for each [m,n] and, consequently, show that [m,n] completely determines mosaic
patterns. For each [m,n], we begin with the study of feasible local patterns (see
Definition 4.2). Using these feasible patterns, we can form a set of building blocks
that can be glued together according to certain rules (compatibility conditions) to
construct all mosaic patterns.

Next we introduce notation that describes the set of nearest neighbors, and the
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set of next-nearest neighbors, to the point (i, j).

N+(i, j) = {(i+ k, j + `) ∈ Z2 : |k|+ |`| = 1},(4.1)

N×(i, j) = {(i+ k, j + `) ∈ Z2 : |k|+ |`| = 2}.(4.2)

Below, we consider cells coupled (attached) to each other if and only if they are
vertically or horizontally adjacent to each other. Since N+ and N× have symmetric
properties, e.g., (k, `) ∈ N+(i, j) (or N×(i, j)) if and only if (i, j) ∈ N+(k, `) (or
N×(k, `)), a cell Ck,` is coupled (attached) to a cell Ci,j if and only if (k, `) ∈ N+(i, j),
and vice versa. Accordingly, we say two states or two patterns (outputs) are coupled
to each other if their associated cells are coupled to each other. We have the basic
result for [m,n]ε as follows.

Lemma 4.1 (existence or feasibility lemma for [m,n]ε). Given parameters z, a,
and ε in [m,n]ε, and that aε > 0, x = (xij) is a (feasible) solution if and only if any
positively (resp., negatively) saturated cells must be coupled to at least 5−m positively
(resp., 5 − n negatively) saturated cells. On the other hand, if aε < 0, then any
positively (resp., negatively) saturated cell must be coupled to at least 5−m negatively
(resp., 5− n positively) saturated cells.

The proof of the lemma follows easily from Proposition 3.4, Theorems 3.5 and
2.4, and Definition 3.2, and so is omitted here.

Note that the constraints given in Lemma 4.1 are basic, and also that only these
constraints must be obeyed in obtaining a global pattern. Next we introduce the
following feasibility conditions for local patterns for which we need the following no-
tation.

Definition 4.2. Given any (proper) subset T ⊆ Z2, x(≡ xT ) is called a local
solution if xT is a restriction of some mosaic solution x of (2.1) on T . Similarly,
y(≡ yT ) : T → {−1, 1} is called a local pattern if it is an output of some (local)
solution x of (2.1) on T . When T = Z2, y is called a global pattern. A set T ⊆ Z2

is called basic with respect to the template A if T = Ti,j ≡ {(i, j)} ∪ N+(i, j) for
some (i, j) ∈ Z2. A basic pattern (BP) y is a feasible pattern defined on some basic
set. Denote by F([m,n]) the set of all feasible basic patterns that have parameters in
[m,n].

Since our template A is spatially-invariant, (2.1) is then translation-invariant over
Z2. Two sets T1 and T2 in Z2 are translation-invariant if T2 = T1 + (k, `) for some
(k, `). Therefore, two local patterns y

T1
and y

T2
are (translation) equivalent if T1 and

T2 are translation-invariant, and (y
T2

)i+k,j+` = (y
T1

)i,j for any (i, j) ∈ T1. We will
distinguish between equivalent patterns only to eliminate any possibility of confusion.

An easy consequence of Lemma 4.1 is the following assertion.
Proposition 4.3. For any [m,n],F([m,n]) is unique and finite.
We now give a partial list of possible F([m,n]).
Definition 4.4. Given a set of (local or global) patterns Y = {yα}, we denote by

R(Y ) the set of all patterns that are rotated by multiples of 90◦ from original patterns
in Y .

Example 4.5. Suppose aε > 0; let • be either + or −. Then

(i) F([5, 5]) =

 •
• + •
•

,
•

• − •
•

 ,

(ii) F([4, 4]) = R

 •
• + +
•

,
•

• − −
•

 ,
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CNN MOSAIC CHAOS 905

(iii) F([3, 3]) = R

 +
+ + •
•

,
+

• + •
+

,
−

− − •
•

,
−

• − •
−

 ,

(iv) F([3, 2]) = R

 +
+ + •
•

,
+

• + •
+

,
−

− − −
•

 ,

(v) F([2, 2]) = R

 +
+ + +
•

,
−

− − −
•

 ,

(vi) F([1, 1]) =

 +
+ + +

+
,

−
− − −
−

 ,

(vii) F([1, 0]) =

 +
+ + +

+

 ,

(viii) F([0, 0]) = φ.

Note that F([3, 2]) is not symmetric with respect to + and −. This is a general
phenomenon for [m,n] whenever m 6= n. From (viii), we see that no mosaic pattern
can be formed in region [0, 0].

We can glue two BP’s together if they follow the rule given in Lemma 4.1. How-
ever, to construct all global mosaic patterns for each [m,n], we need to find a more
efficient way to glue appropriate feasible patterns together than using BP alone. To
this end, we introduce the concept of building blocks and compatibility conditions for
patching them together.

Definition 4.6. Let P ⊂ P3 be a set of parameters in P3. B = B(P), a (finite
or infinite) set of feasible local patterns, is called a set of building blocks provided
that every global mosaic pattern in M(P) can be generated by patching these building
blocks together with respect to some compatibility condition C(P).

If P = [m,n], we write B(P) as B([m,n]), and C(P) as C([m,n]). Note that for
a given P, {B(P), C(P)} is not necessarily unique if it does exist. However, we would
like to have {B(P), C(P)} be such that as few elements as possible are in B(P), and
rule C(P) is as simple as possible, since they are related to the transition matrices used
to compute spatial entropy (see [39]) of M(P). Sometimes, a natural and obvious
way can be used to find {B(P), C(P)} for certain P. To find an efficient and effective
{B(P), C(P)} for computing the entropy h(M(P)) we need the following definition.

Definition 4.7. Let yj : Tj → {−1, 1}, j = 1, 2, be two feasible local patterns
with T1 ∩ T2 6= φ. y1 and y2 then are called compatible if

y1 = y2 on T1 ∩ T2.

We say two feasible local patterns yj : Tj → {−1, 1}, j = 1, 2, are adjacent to another
if T1 ∩ T2 = φ and at least one cell from each set Tj , j = 1, 2, is adjacent to another.

We give the following simple compatibility rules to generate larger local patterns:

C0: Put together any two feasible local patterns y1 and y2 in B(P) that are
adjacent to each other.

C1: Glue together any two feasible local patterns y1 and y2 in B(P) that are
compatible.
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906 JONQ JUANG AND SONG-SUN LIN

Note that the feasibility y1 ∪ y2 of both cases has to be verified. In practice, it is
easy to check this by using BP in F([m,n]). We begin with the study of symmetric
region [m,m] and then proceed with the asymmetric region [m,n] for which m 6= n.
We need to introduce additional notation.

Definition 4.8.
(i) H+

k (H−k ): a +(−) pattern on horizontal infinite stripe Hk of width k in Z2.
(ii) V ±k = R(H±k ) : a +(−) pattern on vertical infinite stripe Vk of width k in Z2.
(iii) H×k : a pattern having different signs in any adjacent cells on horizontal

infinite stripe of width k.
(iv) V ×k = R(H×k ).
Definition 4.9. An edge Ek of length k is a set consisting of k-many consecutive

cells arranged horizontally or vertically, e.g., {(1, 0), . . . , (k, 0)} or {(0, 1), . . . , (0, k)},
and their translations in Z2. A solid edge Ẽk in R2 of Ek is defined by Ẽk = {(x, 0) :
x ∈ R and 1 ≤ x ≤ k} when Ek = {(1, 0), . . . , (k, 0)}. Cells at both ends of Ek are
called vertices. A path T is a disjoint union of (finitely or infinitely many) edges. A

path T is called connected if its solid path T̃ is connected in R2. A nonempty subset
T of Z2 is called a simple closed loop (or simple loop for short) if T is connected and
satisfies

#(N+(i, j) ∩ T ) = 2

for each (i, j) ∈ T . A (simple) loop pattern y is a pattern defined on a simple loop
T in Z2. A simple loop pattern is called finite (resp., infinite) if #(T ) < ∞ (resp.,

#(T ) =∞). Let T be a finite simple closed loop, and T̃ be its solid path. The interior

of T is the vertices inside T̃ .
Remark 4.10.
(i) If T is a simple loop, then #(T ) could be either finite or infinite. If #(T ) <∞,

then T must be closed in the following sense: starting and ending at the same
vertex, every edge is traversed only once. If #(T ) = 0, we also say that T is
a simple loop.

(ii) Since our template A is a square cross, the edges being considered are always
horizontal or vertical. When A = A×, the diagonal cross, then the edges are
diagonals in Z2. In this case, everything must be worked in the N× sense.

We now give a list of building blocks for symmetric regions along with their
construction rules.

Theorem 4.11.
(I) For [5, 5], B([5, 5]) = {+,−} and C([5, 5]) = C0.
(II) For [4, 4],

(i) if aε > 0,B([4, 4]) = R{++,−−}, and C([4, 4]) = C0 ∪ C1.
(ii) if aε < 0,B([4, 4]) = R{+−}, and C([4, 4]) = C0 ∪ C1.

(III) For [3, 3],
(i) if aε > 0, then B([3, 3]) = {infinite simple patterns with the same signs}∪

{finite simple patterns with the same signs whose interiors are simple closed loops},
and C([3, 3]) = C0 ∪ C1.

(ii) if aε < 0, then B([3, 3]) is the same as above except that adjacent saturated
cells in simple patterns have different signs, and C([3, 3]) = C0 ∪ C1.

(IV) For [2, 2],
(i) if aε > 0, B([2, 2]) = R{H±2 } and C([2, 2]) = C0 ∪ C1.
(ii) if aε < 0, B([2, 2]) = {H×2 , V ×2 } and C([2, 2]) = C0 ∪ C1.

(V) For [1, 1],
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CNN MOSAIC CHAOS 907

(i) aε > 0, M([1, 1]) = {x = 1, x = −1},
(ii) aε < 0, M([1, 1]) = {checkerboard type}.

Proof. We only give the proof of (III (i)). The others are similar. Let B([3, 3])
and C([3, 3]) be as claimed in (III (i)). Denote by M(B([3, 3]), C([3, 3]) the set of all
patterns generated by the building blocks B([3, 3]) and compatibility rules C([3, 3]).
To complete the proof of (III (i)), it then suffices to show that

M(B([3, 3]), C([3, 3])) =M([3, 3]).

Clearly, M(B([3, 3]), C([3, 3])) ⊂ M([3, 3]). Given y = (yi,j) = (f(xi,j)) ∈ M([3, 3]),
let Γ+, and Γ− be as defined in (2.2). Then, for each (i, j) ∈ Γ•, • = + or −, define

T •(i,j) = {(p, q) ∈ Γ• : there is a path of edges from (i, j) to (p, q) for which the states

of all cells along the path have the same sign}.
Since y ∈ M([3, 3]), we have that #(N+(p, q) ∩ T •(i, j)) = 2 whenever (p, q) ∈
T •(i,j), • = + or −. Clearly, T •(i,j), • = + or −, is a simple closed loop. Moreover,
∪(i,j)∈Γ•T

•
(i,j) = Γ•, • = + or −. Note that the smallest positively sized finite simple

closed loop must be of the form

+ + − −
+ + , − −.

We shall call such a simple closed loop a rectangle of size 2× 2. Therefore, if T+
(i,j) is

a finite simple closed loop whose interior consists of T−(p,q), for some (p, q) ∈ Γ−, then

the interior of T+
(i,j) must be the union of rectangles of size m × n, where m,n ≥ 2.

Clearly, yΓ• , • = +, or −, is then formed by applying rules C0 and C1 to glue the
building blocks together as given in (III (i)).

Now, we come to the asymmetric regions. It is clear that [m,n] and [n,m] give
similar results if we just exchange the roles of + and −. It is also easy to see that the
patterns for [m, 1],m ≥ 2, are extremely simple. Indeed, the result of Theorem 4.11
(V) holds for these cases. Therefore, we need only study the cases of [m,n] in which
2 ≤ n < m ≤ 5. Comparing this with the result for [3, 3], we can easily obtain the
following result for [m,n] when n ≥ 3.

Theorem 4.12. For aε > 0, let C = C0 ∪ C1, and we have
(I) B([5, 4]) = R{+,−−}.
(II) B([5, 3]) = {+} ∪ {simple loop patterns with negative signs}.
(III) B([4, 3]) = {++,

+
+
} ∪ {simple loop patterns with negative signs defined

on a simple closed loop whose interior must consist of at least two cells}.
The proof is similar to that used in proving the case of [3, 3] and is therefore

omitted.
To generate mosaic patterns for [m, 2] and [2,m],m ∈ I[3, 5] and aε > 0, we first

note the following geometrical property of a feasible pattern.
Lemma 4.13. For the region [m, 2],m ≥ 3, and aε > 0, let T be a rectangle in

Z2 and T1 ⊂ T such that T1 ∩ ∂T = φ, where ∂T is the boundary of T . Assume that
y : T → {−1, 1} is a feasible pattern with respect to [m, 2] and satisfies

yi,j = 1 in T1,

and yi,j = −1 on ∂T.
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908 JONQ JUANG AND SONG-SUN LIN

Then T1 has to be a rectangle.

The idea behind the proof of Lemma 4.13 is that no negatively saturated cell
can be placed at any corner in Z2 that is adjacent to two positively saturated cells.
Therefore, T1 must be a rectangle. Details of the proof are omitted. With Lemma 4.13
in mind, we can induce more building blocks and define compatibility conditions for
[m, 2] and [2,m],m ∈ I[3, 5] and aε > 0.

Let t = (. . . s−1, s0, s1, s2, . . .) be a two-sided sequence. Here, si ∈ N∪{∞}−{1}.
Moreover, if si = ∞, and si−1 6= ∞, then t = (. . . , s−1, s0, s1, . . . si). If si = ∞, and
si+1 6= ∞, then t = (si, si+1, . . .). If si = sk = ∞, i < k, then t = (si, si+1, . . . , sk).
The set of all such sequences is denoted by Σ. We also denote by S+(t) the +
pattern on an alternative array of vertical upper- and lower-half infinite stripes whose
corresponding widths are prescribed by a (two-sided) sequence t. An example of S+(t)
in which t = (s−2, s−1, s0, s1, s2) = (∞, 3, 4, 5,∞) is given below.

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
· · ·+ + + + + + + + + + + + + + + + + · · ·
· · ·+ + + + + + + + + + + + + + + + + · · ·
· · ·+ + + + + + + + + + + + + + + + + · · ·
· · ·+ + + + + + + + + + + + + + + + + · · ·
· · ·+ + + + + + + + + + + + + + + + + · · ·

· · ·+ + + + + +︸ ︷︷ ︸
s−2=∞

s−1=3︷ ︸︸ ︷
+ + + + + ++︸ ︷︷ ︸

s0=4

s1=5︷ ︸︸ ︷
+ + + + + + + + + + + + · · · · · ·︸ ︷︷ ︸

s2=∞
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
...

...
...

...
...

...
...

...

We define S−(t) in similar fashion.

We also define the following compatibility condition.

Ck(−,m)(resp., Ck(+,m)), k = 0 or 1, and m ∈ I[3, 5]:

To generate a global mosaic pattern in [m, 2] (resp., [2,m]), the com-
patibility rule Ck(−,m) is first applied to feasible local patterns that
have negative (resp., positive) signs. Once the patching of these fea-
sible local patterns is done (after finitely or infinitely many times),
the unfilled space, which is to be filled with positive (resp., negative)
signs, must be a rectangle of at least size k×`, where k, ` ∈ N∪{∞},
and max{k, `} ≥ (5−m), for 4 or 5, and min{k, `} ≥ 2 for m = 3. We
then use Ck to fill in those unfilled spaces with feasible local patterns
that have positive (resp., negative) signs.

We are now ready to state the following results. The proof is similar to that used
in proving Theorem 4.11 and is omitted here.

Theorem 4.14. For aε > 0, we have

(I) B([5, 2]) = {+} ∪ {H−2 , V −2 } ∪R{S−(t) : t ∈ Σ}.
C([5, 2]) = C0(−, 5) ∪ C1(−, 5).
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CNN MOSAIC CHAOS 909

(II) B([4, 2]) = {++,
+
+
, H−2 , V

−
2 } ∪R{S−(t) : t ∈ Σ}.

C([4, 2]) = C0(−, 4) ∪ C(−, 4).

(III) B([3, 2]) = { + +
+ +

, H−2 , V
−
2 } ∪R{S−(t) : t ∈ Σ}.

C([3, 2]) = C0(−, 3) ∪ C1(−, 3).

(IV) Define − B([5, 2]) = {−} ∪ {H+
2 , V

+
2 } ∪R{S+(t) : t ∈ Σ}.

Here, we interchange “+” with “−”. Define −B([m, 2)] and −C([m, 2)], m ∈ I[3, 5],
similarly. Then, for m ∈ I[3, 5],

B([2,m]) = −B([m, 2)],

C([2,m)) = −C([m, 2)].

Based on the results from Theorems 4.11 and 4.14, we can compute the lower
bounds of the spatial entropy of M([m,n]), the set of all mosaic patterns of [m,n].
We first prove the following theorem.

Theorem 4.15. Let m,n ∈ I[0, 5], and let

α = max{m,n} and β = min{m,n}.(4.3)

Equation (2.1) then exhibits spatial chaos if and only if α ≥ 3 and β ≥ 2.
Proof. It is clear M([m,n]) is monotonous with respect to m and n, e.g., if

m1 ≤ m2 and n1 ≤ n2, then

M([m1, n1]) ⊆M([m2, n2]).

To prove the theorem, it suffices to show only that

h(M([2, 2])) = 0(4.4)

and

h(M([3, 2])) > 0.(4.5)

We first prove (4.4). Let N = (N1, 2) and N1 ≥ 2. We then have

ΓN (M([2, 2])) ≤ 4.

Hence, (4.4) holds. To prove (4.5), we may assume aε > 0, the case in which aε < 0
can be treated analogously. Consider a rectangle of size 4n1 × 4n2 in Z2. So, there
are n1 · n2 many squares of size 4× 4.

Consider the following choices of patterns for a 4× 4 square:

− − − −
− − − −
+ + − −
+ + − −

− − − −
− − − −
− − − −
− − − −

.(4.6)

They are feasible and compatible with each other in [3, 2]. Therefore, they can be
glued together at random. Hence, for N = (4n1, 4n2), we have

ΓN (M([3, 2])) ≥ 2n1n2 .(4.7)
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910 JONQ JUANG AND SONG-SUN LIN

From (4.7), it is not difficult to prove that

h(M([3, 2])) ≥ log 2

16
.(4.8)

The proof of the theorem is thus complete.
Furthermore, we can obtain some lower bounds for h(M([m,n])). When (4.3)

holds, some lower bounds for h(M([m,n])) can be obtained by the following.
Theorem 4.16.

h(M([m,n])) ≥



log 2 if β = 5,

log 10
4 if β = 4,

log 4
4 if β = 3,

log 4
9 if β = 2, α = 5,

log 4
12 if β = 2, α = 4,

log 2
16 if β = 2, α = 3.

(4.9)

Proof. We give only a proof for [5, 4]ε, aε > 0. The other cases can be treated
similarly.

Consider a rectangle of size 2n1 × 2n2. Then each of the 2× 2 squares can have
any of the following choices:

++ +− ++ −+ −− +− −+ −− −− −−
++, +−, −−, −+, ++, −−, −−, −+, +−, −− .

So,

ΓN (M(z, a; ε)) ≥ 10n1n2 .

Hence,

h(M(z, a; ε)) ≥ log10

4
.

Remark 4.17. All the results obtained here can be directly generalized to encom-
pass the case in which template A is diagonally crossed. Moreover, the techniques
used here are, in principle, applicable to the case in which template A is of the form
given in (3.14).

5. One-dimensional CNNs. In this section, by using the same method used
for two-dimensional CNNs, we briefly discuss the problems associated with one-
dimensional CNNs. We consider a one-dimensional CNN described by the space-
invariant symmetric A-template

A = [aε a aε].(5.1)

The equations describing this CNN are thus given by

dxi
dt

= −xi + z + aεf(xi−1) + af(xi) + aεf(xi+1), i ∈ Z.(5.2)
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Fig. 5.1.

The stable defect solutions for z = 0 and their spatial entropy complexities were
studied in [39]. We begin by stating the results for mosaic solutions.

Notation 5.1. Let m,n ∈ I[0, 3]. Given ε 6= 0, ε ∈ R, we denote as [m,n]ε the
region on the z − a plane in which the following restrictions hold:

(1) Any positively saturated cell is adjacent to at least 3 −m positively (resp.,
negatively) saturated cells, provided that aε > 0 (resp., aε < 0).

(2) Any negatively saturated cell is adjacent to at least 3 − n negatively (resp.,
positively) saturated cells, provided that aε > 0 (resp., aε < 0).

For m = 3, this means that any positively saturated cell can be adjacent to either
a positively or negatively saturated cell. For m = 0, this means that no positively
saturated cell ever exists in a pattern. For n = 3 or n = 0, the interpretations are
similar. We next give a complete classification for mosaic solutions in the (z, a; ε)
parameter space, which is decomposed in terms of [m,n]ε regions.

Theorem 5.2.

(i) For 0 < |ε| < 1
2 , the z − a plane is decomposed, in terms of [m,n]ε regions,

as follows:
Here `i = `i,ε and ri = ri,ε, i ∈ I[−1, 1], are given in (3.5) and (3.6). The
regions [m,n]ε, m,n ∈ I[0, 3], in Figure 5.1 are located similarly to those in
Figure 3.4.
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Fig. 5.2.

(ii) For |ε| ≥ 1
2 , the z − a plane is decomposed into [m,n]ε regions, as shown in

Figure 5.2.
Region [3, 3]ε no longer exists for |ε| ≥ 1

2 . For ε ≥ 1, regions [3, 2]ε and [2, 3]ε also
disappear. Moreover, for ε > 1, a new piece of each of the regions [2, 1]ε and [1, 2]ε
will appear on the lower half of the z − a plane.

Unlike a two-dimensional CNN, the complexity of the mosaic patterns can be
computed exactly using a transition matrix; the results are summarized as follows.

Theorem 5.3. Suppose (z, a) ∈ [m,n]ε, ε 6= 0. Then system (5.1) exhibits spatial
chaos if and only if min{m,n} ≥ 2. Moreover,

h(M(z, a; ε)) =


ln2 if m = n = 3,
lnλ if m = 2 and n = 3 or m = 3 and n = 2,

ln
1 +
√

5

2
if m = n = 2.

Here λ is the maximal root of λ3 − 2λ2 + λ− 1 = 0.
Proof. We give a proof only for the spatial entropy of regions [2, 2]ε and [3, 2]ε, aε >

0. Let (z, a) ∈ [2, 2]ε, aε > 0. Then, ++ and −− are building blocks. If 1 is iden-
tified as the positively saturated cell whose right-hand neighbor is also a positively
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CNN MOSAIC CHAOS 913

saturated cell, and 2 as the positively saturated cell whose right-hand neighbor is a
negatively saturated cell, in notation we have

⊕+↔ 1,

⊕− ↔ 2.

Similarly, we assign ª− and ª+ to 3 and 4. The transition matrix for this type of
patterns is then

A1 =


1 1 0 0
0 0 1 0
0 0 1 1
1 0 0 0

 .
Clearly, the maximal eigenvalue for A1 is 1+

√
5

2 . Suppose (z, a) ∈ [2, 3]ε, aε > 0. Then
++ and − are building blocks and we have the following identification:

⊕+↔ 1,

⊕− ↔ 2,

− ↔ 3,

and the corresponding matrix is

A2 =

 1 1 0
0 0 1
1 0 1

 .
The characteristic polynomial for A2 is

λ3 − 2λ2 + λ− 1 = 0.

For brevity, we skip the remainder of the proof.

Remark 5.4. (i) Note that 1+
√

5
2 < λ < 2. (ii) All mosaic solutions are stable as

in the two-dimensional case.

6. Conclusion. This paper investigated properties of mosaic pattern in cellular
neural networks with a bias term z, and a symmetric and square-crossed template A.

In the one- and two-dimensional cases, a complete characterization of the stable
mosaic patterns has been obtained, together with a measure of their number and
complexity. In particular, for given ε 6= 0, (z, a)-plane is decomposed into mutually
disjoint regions [m,n]ε, m,n ∈ I[0, 5]. Moreover, as numbers m and n increase, or
equivalently, the parameter a moves north, the complexity of the patterns increases.
We found that if max{m,n} ≥ 3 and min{m,n} ≥ 2, then the system exhibits chaos;
otherwise, it has pattern formation. All stationary patterns obtained by numerical
computations [11, 12, 13, 15, 16, 19, 33, 36, 39, 41] are consistent with our theoretical
results.
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