
Fuzzy Sets and Systems 110 (2000) 331–340
www.elsevier.com/locate/fss

Heuristic fuzzy-neuro network and its application to reactive
navigation of a mobile robot
Kai-Tai Song∗ ;1, Liang-Hwang Sheen2

Department of Electrical and Control Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan, ROC

Received July 1996; received in revised form November 1997

Abstract

A novel pattern recognition approach to reactive navigation of a mobile robot is presented in this paper. A heuristic fuzzy-
neuro network is developed for pattern-mapping between quantized ultrasonic sensory data and velocity commands to the
robot. The design goal was to enable an autonomous mobile robot to navigate safely and e�ciently to a target position in a
previously unknown environment. Useful heuristic rules were combined with the fuzzy Kohonen clustering network (FKCN)
to build the desired mapping between perception and motion. This method provides much faster response to unexpected
events and is less sensitive to sensor misreading than conventional approaches. It allows continuous, fast motion of the
mobile robot without any need to stop for obstacles. The e�ectiveness of the proposed method is demonstrated in a series
of practical tests on our experimental mobile robot. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Reactive obstacle avoidance is one of the most de-
sirable characteristics of an autonomous mobile robot.
It is the ability to free-range in an unknown envi-
ronment relying only on sensory information. Fig. 1
shows a block diagram of such a motion planning
and control system. In the robot navigation system, a
local motion-planning module is responsible for gen-
erating steering commands in response to onboard
sensory data. It is important for the robot to respond
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promptly to its surroundings, for instance, to avoid
unexpected obstacles and continue traveling toward
the target. However, available sensors are not good
enough to provide accurate recognition of the envi-
ronment. Very often, the measured data contain un-
certainties that cause motion errors. It is therefore dif-
�cult for the mobile robot to navigate in an unknown
and dynamically changing environment.
One reactive navigation approach employs the po-

tential �eld or vector force �eld concepts [1, 4], in
which a two-dimensional Cartesian grid is utilized for
obstacle representation. The target exerts a virtual at-
tractive force on the mobile robot, and the obstacles
exert repulsive force. The robot-motion reaction is
determined by the resultant virtual force. The short-
coming of these methods is that they require a lot
of calculation. Recently, considerable work has been
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Fig. 1. System block diagram of sensor-based navigation.

reported concerning the application of arti�cial neural
networks (ANN) and fuzzy logic for reactive control.
An incremental supervised learning scheme has been
proposed for reactive navigation of a mobile robot
[12]. In [10], a reinforcement learning scheme was
employed to train a neural network for obstacle avoid-
ance. The advantage of this approach is the learn-
ing capacity of the neural network, however, learning
convergence is very slow and generalization is not
always satisfactory. On the other hand, fuzzy logic
concepts was employed to handle the uncertainty prob-
lems in environmental map-building [11]. The con-
structed fuzzy maps from ultrasonic sensors were then
used to plan a collision-free path. Several methods
exploiting fuzzy control schemes have been proposed
for avoiding unexpected obstacles [6, 8, 9, 14]. A rule
table was established in these methods according to
heuristic experience. In [8], 155 rules were employed
for avoiding static and moving obstacles along a pre-
planned path. In [14], a fuzzy navigation controller
was combined with virtual concepts for a mobile robot
to navigate in an unknown environment. There were
81 rules for each right-fuzzy-logic controller and left-
fuzzy-logic controller. It is noticed that there are a
great many rules and some of them might not be acti-
vated during navigation. The redundant rules will in-
crease the complexity of fuzzy inference.
In this paper, we present a novel design approach

to building a rule table for reactive navigation ex-
ploiting fuzzy-neuro control. Satisfactory navigation
performance can be achieved using reduced numbers
of rules. The basic idea is to let the IF-part of a rule be
the obstacle-con�guration class and the THEN-part

be the reference velocity values. A resultant velocity
command to each wheel motion controller is generated
through fuzzy Kohonen clustering network (FKCN)
instead of by conventional fuzzy inference. FKCN
is a fuzzy neural network normally used for pat-
tern clustering. In this study this pattern-recognition
structure is extended to local motion planning and
control. The developed method is fast, e�cient and
free of the problems mentioned above. Moreover,
in order to make the system robust and 
exible, we
adopted a behavior-based architecture for the mobile
robot [5]. Consequently, the mobile robot has several
ways of producing steering commands using di�erent
behavior modules. The rest of this paper is organized
as follows: Section 2 describes the development of
the reactive navigation algorithm based on the FKCN
structure. In Section 3, we introduce a design for
obstacle avoidance of an experimental mobile robot.
Relevant simulation results are presented in Section 4.
Section 5 illustrates practical experiments in an indoor
environment. We conclude the paper in Section 6.

2. Prototype pattern assignment

To achieve real-time reactive navigation, a good
strategy would be to construct a perfect mapping
between input sensor data and appropriate control
actions. The relation, however, is very complicated
and highly nonlinear. In the �rst place, di�erent types
of sensors have di�erent measurement characteristics.
It would be di�cult to estimate the spatial param-
eters using onboard sensors in order to determine the
con�guration relationships between the mobile robot
and its immediate surroundings. On the other hand,
it is well recognized that arti�cial neural networks
have impressive capacity for nonlinear mapping and
pattern-recognition applications [2]. In this paper
useful heuristics are combined into a fuzzy neural
network to achieve the desired pattern-recognition
results. The structure of the proposed reactive nav-
igation system is illustrated in Fig. 2. It consists of
two major parts: the lower is a fuzzy neural network
and the upper is responsible for velocity calculation.
The FKCN structure [7] was adopted for the desired
pattern-recognition function. FKCN is a three-layered,
pattern-clustering network. Once it is trained, there
is a prototype pattern associated with each cluster.
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Fig. 2. The proposed heuristic FKCN for reactive navigation.

Consequently, every prototype pattern characterizes
a cluster. In the neural network, all these prototype
patterns are set to the weights in the distance layer.
However, we do not apply the unsupervised learning
algorithm of the original FKCN. The weights in the
distance layer are assigned instead of being trained.
There are two reasons for doing it this way. One is
for simplicity and consequently a reduction in com-
putation time. The other reason is that the clusters are
known in advance in our application. The prototype
patterns learned by the unsupervised learning algo-
rithm might not be better than the assigned patterns
derived from actual experimental data and human
experience.
In the following, we describe the method for deter-

mining the distance and similarity between an input
pattern and the prototype patterns. As shown in Fig. 2,
the distance layer is responsible for comparing an in-
put pattern with the prototype patterns. Output dij of
node j in the distance layer equals 0 when the in-
put pattern Xi perfectly matches the prototype pattern
Wj. The output of the distance layer is computed as
follows:

dij = ‖Xi −Wj‖2 = (Xi −Wj)T(Xi −Wj); (1)

where Wj is the jth prototype pattern.
Formula (1) is a 2-norm equation. The larger the

di�erence between Xi and Wj is, the faster dij will
increase by powers of 2. The membership layer is
provided to map the distance dij to membership values
uij. If an input pattern does not match any prototype
pattern, then the similarity between the input pattern
and each individual prototype pattern is represented
by a membership value from 0 to 1. The determination

of the membership value is given in [3] and can be
summarized by the following equations:

uij =
{
1 if dij = 0,
0 if dik = 0; (k 6= j; k¿0; j6c − 1), (2)

where c denotes the number of prototype patterns,
otherwise

uij =

(
c−1∑
l=0

(
dij
dil

))−1

: (3)

The larger the uij is the more input pattern Xi is similar
to some prototype pattern Wj. Since each prototype
pattern is associated with a rule, the membership value
represents the degree of activation of a rule. The sum
of the outputs of the membership layer equals 1.
In this study, ultrasonic range sensors are employed

for obstacle detection. This type of sensor is simple
and e�cient for measuring distances to obstacles.
Sixteen ultrasonic transducers were �xed in a ring
on our experimental mobile robot. A detailed discus-
sion on the system will be found later. In practice,
we can get sonar vectors from these sensor readings
corresponding to each di�erent obstacle-con�guration
class. For example, the vector Wj = {w1; w2; : : : ; wp}
is the sonar vector for the jth obstacle-con�guration
class; where wi is the ith sensor reading, and p
transducers are used to construct the sonar map.
Using the concept of pattern recognition, we view
each sonar vector as a pattern. Hence, we can deter-
mine several prototype patterns corresponding to var-
ious obstacle-con�guration classes. These prototype
patterns are then assigned to be the weights of the
neural network. After the network weights have been
assigned, they can be recalled on-line when the sen-
sory input data are provided during navigation. The
recall procedure is described brie
y below.
Step 1: A quantized sonar vector (input pattern)

constructed from current ultrasonic sensor readings is
presented to the neural network input.
Step 2: The distances between the input pattern and

every prototype pattern are computed using (1).
Step 3: The similarities between the input pattern

and every prototype pattern are calculated using (2)
and (3). The similarities are represented by member-
ship values from 0 to 1, according to their distance
values.
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Fig. 3. Grouping of ultrasonic sensors.

Our experimental mobile robot is equipped with
two independent drive wheels. Its course is determined
by the relative velocities of the left and right wheels.
Therefore, in this design, each prototype pattern is as-
sociated with a pair of reference wheel velocities. This
association is determined in a preset manner. In other
words, we have to provide a rule table for this map-
ping (see Fig. 2). The number of rules equals that of
prototype patterns. Notably, it will be shown that sat-
isfactory reactive navigation results can be obtained
employing a considerable reduced number of rules
compared with using a conventional fuzzy logic con-
troller. In this manner, the mobile robot can perform
on-line obstacle avoidance using onboard ultrasonic
sensors. The complete navigation design is presented
in the next section.

3. Design for obstacle avoidance

The proposed navigation scheme was developed for
an experimental mobile robot. Sixteen ultrasonic sen-
sors are mounted in a circle on the robot 22:5◦ apart,
alternating in height at 30 cm or 75 cm to cover more
detection space. It takes 150 ms to complete an updat-
ing cycle of all sixteen sensors [15]. Only eight sen-
sors mounted on the front of the mobile robot were
used in this study. Those on the back side were not
included because backward motion commands were
beyond the scope of the current experiments. These
eight sensors were divided into �ve groups, as shown
in Fig. 3. Only one sensor in group 1 and another in
group 5 were used to detect obstacles at the left or
right side of the mobile robot, leaving two sensors in

each of the other three groups. In these three groups,
the smaller of the two transducer readings was used
in each sampling instant. These �ve sensor-group val-
ues were quantized before sending into the neural net-
work. The quantization formula for groups 1, 2, 4 and
5 is as follows:

xi =



1 for 0¡di6100 cm,
2 for 100 cm¡di6150 cm,
3 for 150 cm¡di6200 cm,
4 for di¿200 cm,

(4)

where di is the sensor value of the ith group.
The two sensors in group 3 were responsible for

detecting head-on obstacles. The quantization of this
group sensor data must take into account the response
time for preventing from collision:

xi =



1 for 0¡d36150 cm,
2 for 150 cm¡d36200 cm,
3 for 200 cm¡d36250 cm,
4 for d3¿250 cm,

(5)

where d3 is the sensor value of the 3rd group.
Too many grades of quantization would have

resulted in a complicated rule table, but too few
grades would have led to unclear representation of
the obstacle-con�guration classes. Quantized sensory
data are used in the FKCN and uij; j = 0 ∼ c − 1 is
calculated according to (1)–(3). The mobile robot is
always trying to reach the assigned target. Therefore,
the target direction is also taken into account during
the reactive navigation (see Fig. 2). The target direc-
tion is de�ned relative to the heading of the mobile
robot. It is divided into 5 levels as shown in Fig. 4.
The details of this division are as follows:

t =




1 for 180◦¡�6270◦;
2 for 120◦¡�6180◦;
3 for 60◦¡�6120◦;
4 for 0◦¡�660◦;
5 otherwise,

(6)

where� is the direction of the target with respect to the
current heading of the mobile robot. In (6), the range in
each level a�ects the stability of navigation in avoiding
an obstacle in a long corridor. This phenomenon has
been examined in experiments.
Nine typical obstacle-con�guration classes were

considered in this study as depicted in Fig. 5. Through
fuzzifying and combining these nine classes in the
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Fig. 4. Quantization of target direction.

Fig. 5. Obstacle-con�guration classi�cation used in this design.

heuristic FKCN, we practically had no need to con-
sider other obstacle con�guration. This is the main
purpose of the membership layer. Consequently, the
number of the prototype patterns can be kept few.
This resulted in considerable fewer control rules than
otherwise employed in conventional fuzzy control
methods. We take the �rst obstacle-con�guration
class in Fig. 5 as an example to illustrate the idea of
forming control rules. In this case, there is an obstacle
in front of the mobile robot and the corresponding
prototype pattern is

Wj = {4 4 1 4 4}:
The corresponding rule can be set in the following
manner:

For t=1; IF Wj = {4 4 1 4 4};
THEN vlj = 2:0 cm=s; vrj = 10:0 cm=s;

or

For t = 2; 3; IF Wj = {4 4 1 4 4};
THEN vlj = 3:0 cm=s; vrj = 10 cm=s;

or

For t = 4; 5; IF Wj = {4 4 1 4 4};
THEN vlj = 10:0 cm=s; vrj = 3:0 cm=s;

where vlj and vrj are the output (reference) left and
right wheel velocities, respectively. The rule table was
constructed exploiting the representative prototype
patterns and heading levels. We employed altogether
16 rules in the present study as shown in Table 1.
Notably, the elements of prototype patterns Wj are
mostly of quantized value 1 or 4. This is because
it would be bene�cial if the obstacle-con�guration
classes could be represented as sharply as possible.
The quantized values 2 and 3 are only used to repre-
sent special con�guration classes.
The algorithm for generating velocity commands is

described below. First of all, if an input pattern is iden-
tical to one of the prototype patterns (dij∗ = 0), then
the �ring of the corresponding rule to this input pat-
tern is equal to one. The generated velocity command
will be equal to the reference velocities of the ex-
cited rule. However, in most situations, the calculated
smallest distance dij∗ is only less than a pre-de�ned
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Table 1
Implemented rule table

Rule IF-part THEN-part reference velocity

prototype pattern t = 1 t = 2 t = 3 t = 4 t = 5

No. vl vr vl vr vl vr vl vr vl vr

1 4 4 1 4 4 2.0 10.0 3.0 10.0 3.0 10.0 10.0 3.0 10.0 3.0
2 3 4 1 4 3 2.0 10.0 3.0 10.0 3.0 10.0 10.0 3.0 10.0 3.0
3 4 4 4 1 4 3.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0
4 4 1 4 4 4 10.0 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 3.0
5 1 1 1 4 4 10.0 3.0 10.0 3.0 10.0 3.0 10.0 3.0 10.0 3.0
6 4 4 1 1 1 3.0 10.0 3.0 10.0 3.0 10.0 3.0 10.0 3.0 10.0
7 1 4 4 4 1 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
8 1 4 4 1 1 8.0 10.0 8.0 10.0 8.0 10.0 8.0 10.0 8.0 10.0
9 1 1 4 4 1 10.0 8.0 10.0 8.0 10.0 8.0 10.0 8.0 10.0 8.0
10 4 4 4 4 4 3.0 10.0 5.0 10.0 10.0 10.0 10.0 5.0 10.0 3.0
11 4 1 1 4 4 10.0 3.0 10.0 3.0 10.0 3.0 10.0 3.0 10.0 1.0
12 4 4 1 1 4 1.0 10.0 3.0 10.0 3.0 10.0 3.0 10.0 3.0 10.0
13 1 1 4 4 4 10.0 8.0 10.0 8.0 10.0 8.0 10.0 5.0 10.0 3.0
14 4 4 4 1 1 3.0 10.0 5.0 10.0 8.0 10.0 8.0 10.0 8.0 10.0
15 4 4 4 4 1 3.0 10.0 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
16 1 4 4 4 4 10.0 10.0 10.0 10.0 10.0 10.0 10.0 5.0 10.0 3.0

value mindist for the current obstacle con�guration.
This means the input pattern is similar to one or more
prototype patterns. Consequently, if dij∗6mindist for
an input pattern Xi, then only those neurons with dis-
tances dis’s not larger than maxdist are fuzzi�ed us-
ing (3). In this case, the sum of the �ring of rules
will still equal one. The velocity command is calcu-
lated by the weighted sum of all �ring rules. Here,
the parameter maxdist is employed to reduce the in-

uence of less important prototype patterns. For a dij
greater than maxdist, the input pattern is recognized
as quite di�erent from the prototype pattern. On the
other hand, when an input pattern does not match or
similar to any prototype pattern, i.e., dij∗ (the small-
est dij) ¿ mindist, then it is treated as a special pat-
tern that cannot be recognized. The velocities will not
change in this situation. The threshold values mindist
and maxdist are determined by experimental observa-
tion. The algorithm is summarized in Table 2.
In the present study, we implemented two behaviors

for local navigation, namely obstacle avoidance be-
havior and danger behavior. Obstacle avoidance be-
havior was designed using the fuzzy-neuro network
described above. Danger behavior is activated when
the mobile robot is either trapped in a cul-de-sac, or
the mobile robot is navigating in a special obstacle
con�guration that temporarily cannot be resolved by
the ultrasonic sensors. A rule was designed to deal

with such circumstances [13]. It instructs the mobile
robot to spin around until it �nds a direction in which
to escape from the unfavorable situation. The direc-
tion of spin is determined according to the onboard
sensory data. However, when obstacle avoidance
behavior and danger behavior are triggered simulta-
neously, the latter has priority.

4. Simulation results

In order to verify the e�ectiveness of the proposed
method, we set up a simulation program on a per-
sonal computer. The ultrasonic sensors were modeled
by taking into consideration the characteristics of wide
beam-angle and specular re
ections [13]. The sam-
pling period for ultrasonic sensor data updating was
0.5 s in the simulation. The velocity commands to the
motor controller were assumed to be perfectly exe-
cuted. Motion errors due to wheel slippage, surface
irregularities, etc., were not considered.
Figs. 6–9 present several simulation results of the

proposed fuzzy-neuro navigation algorithm. In these
�gures, the label ‘S’ denotes the start point and the la-
bel ‘T’ denotes the target position. The mobile robot
is represented by a circle in proper proportion to the
environment. The executed navigation route is de-
picted with a sequence of circles, where the positions
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Table 2
The navigation algorithm

De�ne:

mindist = 5; maxdist = 12

dij∗ = min (di0; di1; : : : ; di(c−1)); c = 16
IF dij∗ = 0
THEN

uij∗ = 1

uij = 0; j 6= j∗; ( j = 0 ∼ 15)

vl = vlj∗ ; vr = vrj∗

where vl: left wheel velocity command
vr : right wheel velocity command
vlj∗ : the left reference velocity of the j∗th rule
vrj∗ : the right reference velocity of the j∗th rule

ELSE IF 0¡dij∗6mindist
THEN

uij =

(∑
s⊂ �S

(
dij
dis

))−1

; j⊂ �S

dij∗6dis6maxdist (7)

�S: the set of neurons satisfying (7)

vl =
∑
s⊂ �S

vlsuis (8)

vr =
∑
s⊂ �S

vrsuis (9)

ELSE
vl = v

∗
l ; vr = v

∗
r ;

where v∗l the left velocity command of previous sample instant
v∗r the right velocity command of previous sample instant

of the mobile robot was plotted for every four sam-
pling periods. A darker-colored circle was plotted for
every 40 sampling periods to enable easier determi-
nation of velocity pro�les. The darker line-segment in
each circle denotes the heading of the mobile robot.
The size of the outside rectangle area shown in Figs.
6–8 is 12m×12m. Fig. 6 presents the robot’s ability to
avoid obstacles directly in front of it. Fig. 7 illustrates
a situation where a local minimum would be faced
using the potential �eld method, thus trapping the
robot. As shown in the �gure, the current design can
handle this situation if the rectangles are not so wide.
The robot will not move into the concave region and
therefore navigate successfully to the target. However,
for deeper traps or a closer target position to the obsta-
cle as shown in Fig. 8, the mobile robot will move into

Fig. 6. Simulation result of avoiding head-on obstacles.

Fig. 7. Simulation result of navigating in an environment where
a local minimum exists.

the concave region and be trapped. In such situations,
the danger behavior will come into action and bring
the robot out of the trap (see Fig. 8). A wall-following
behavior can be added to the navigation system, allow-
ing the mobile robot to travel along obstacle’s contour
for escaping from the trap [9]. Fig. 9 presents the sim-
ulation result of navigating in a long corridor. In this
case, the surrounding area was 40m× 40m, an ex-
ample of our laboratory environment. This simulation
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Fig. 8. Simulation result of encountering a trap.

Fig. 9. Simulation result of navigation in a long corridor.

depicts that the mobile robot can explore an unknown
environment exploiting onboard sensory information.

5. Experimental results

Practical navigation experiments were conducted
employing a self-constructed mobile robot. It is of

Fig. 10. Experimental result of obstacle avoidance.

cylindrical shape with a diameter about 60 cm. Two
drive wheels are placed at the ends of its central
axis, and there are two free casters at the front and
rear for balance. Motion control is accomplished by
di�erential-velocity steering using the independent
drive wheels. This motion control method has two
advantages. One is that the robot can spin 360◦ in
place; the other is that we can control the robot simply
by velocity commands to the two drive wheels. The
robot has a maximum travel speed of Vmax = 43 cm=s.
An industrial personal computer AT-486 is carried
onboard for navigation control. Two HCTL-1100 mo-
tion control chips from Hewlett-Packard are used for
motor servo control. The merit of employing these
chips is that they accept velocity commands, decreas-
ing the computation burden of the onboard computer.
The speci�ed traveling speed in these experiments
was 20 cm/s and the sampling time was 250ms. It
takes less than 1ms for obstacle avoidance behav-
ior calculation in the current implementation. In the
experiments, only the start and target positions were
speci�ed. The mobile robot had to �nd a collision-
free path to the target employing onboard sensory
information.
Fig. 10 presents an experimental result in which the

navigation path depicts two occasions of turning away
from walls and avoidance of a rectangular carton. The
recorded trajectory reveals that the robot can avoid
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Fig. 11. Recorded wheel velocities of the experiment of Fig. 10.

obstacles safely and in an e�cient manner. Fig. 11
presents the recorded velocity pro�les of both wheels
in this run. They can be used to check the maneuvering
of the robot navigation as it encounters obstacles. We
see that the danger behavior was not activated in this
case. Consequently, a smooth trajectory was executed
in obstacle avoidance and traveling to the target.
Fig. 12 presents the experimental result of explo-

ration in a long corridor. As in the simulation, only
the target position was speci�ed in this experiment;
the mobile robot had to explore in an unknown en-
vironment employing its onboard sensors. We see in
the �gure that the recorded route deviates from the
actual locations in the corridor. This discrepancy is
mainly due to wheel slippage which causes accumu-
lated errors in the onboard odometer. Notably, the
mobile robot explored the environment safely in this
long journey without any collision. The experimen-
tal result in Fig. 12 reveals more velocity variations
than the simulation result shown in Fig. 9. This is
because that there are doors and extinguisher-boxes
along the corridor wall, which are concave and con-
vex regions for the ultrasonic sensors. Moreover,

Fig. 12. Experimental result of exploration in a long corridor.

actual ultrasonic sensor data contain measurement
errors caused by specular re
ections and wide beam-
opening angle; this also causes velocity variation
during navigation. It should be mentioned that this
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method is good for local reactive navigation, the mo-
bile robot is controlled by perceptual sensors. For
practical applications, a global path planner should
be provided for optimal performance.

6. Conclusion

A pattern-recognition approach to reactive navi-
gation based on real-time sensory information has
been developed and successfully implemented on
an autonomous mobile robot. Through the process
of prototype-pattern assignment, the proposed fuzzy
neural network can be adapted for reactive motion
control. By employing a small number of rules, satis-
factory performance has been achieved. The amount
of computation is therefore reduced a great deal and
this enhances the real-time performance of reactive
control. Furthermore, this method o�ers a straightfor-
ward mapping between control rules and human-like
heuristics. The mobile robot can therefore demon-
strate human-like tendencies for continuous motion
without stopping for obstacles. Many aspects of this
method are worth further investigation in the future.
On the one hand, other sensors such as CCD cam-
eras can be used for better detection of obstacles.
Although the present design can cope with moving as
well as stationary obstacles, more accurate perception
sensors are required for more complex environmental
con�gurations. On the other hand, optimization of
the prototype-mapping can be made to play a more
important role in the algorithm.
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