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ables as well as actuator inputs and outputs directly undergo the 
(usually disastrous) effects of the generated bang-bang type of 
discontinuities. This fact makes possible the application of slid- 
ing mode control techniques to areas where they were not 
traditionally feasible, such as, chemical process control, bilogical 
systems control, and the regulation of mechanical and elec- 
tromechanical systems (see also [7]). 

In this article a nonlinear DC-motor example, dealing with 
smooth controlled transitions of nominal angular velocities to 
new constant operating values was presented along with encour- 
aging simulation results. As topics for further research, the 
dynamical variable structure feedback controller here proposed 
could be implemented in an actual DC-motor using nonlinear 
analog electronics. Also, a robust controller that effectively 
handles the uncertainty of system parameters could be devel- 
oped. Profitable connections could also be established with the 
work of Charlet et al. [251. 
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Stabilization, Parameterization, and Decoupling 
Controller Design for Linear 

Multivariable Systems 

Ching-An Lin and Tung-Fu Hsieh 

Abstmct-We study linear multivariable systems under the unity- 
feedback configuration. For nonsquare plants with no coincidences of 
unstable poles and zeros, we prove a simplified condition for closed-loop 
stability. The simplification leads to a simple description of the set of all 
achievable I / 0 maps and a simple parameterization of all controllers 
achieving the same I / 0 map. The results are used to describe the set of 
all achievable decoupled I / 0 maps and prove a necessary and suffi- 
cient condition for the existence of stubk decoupling controllers. 

I. INTRODUCTION 

We study linear time-invariant MIMO plants under the unity- 
feedback configuration. For plants with no coincidences of 
unstable poles and zeros, we prove a simplified condition for 
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closed-loop stability. The simplification leads to a simple charac- 
terization of all achievable I/O maps and a simple parameteri- 
zation of all stabilizing controllers which achieve the same I/O 
map. For plants with more inputs than outputs, there are 
infinitely many controllers achieving an I/O map or a sensitivity 
map. We give an example to show how the parameterization can 
be used to quantitatively study the benefits that can be achieved 
by this extra degree of freedom in controller selection. 

The results are used to study decoupling controller design for 
nonsquare plants. We give a simple description of the set of all 

Fig. 1. 

achievable -decoupled r / O  maps and prove a necessary and 
sufficient condition for the existence of stable decoupling con- 
trollers. We note that descriptions of achievable decoupled 1/0 
maps and decoupling controllers, based on coprime factoriza- 
tions, for general nonsquare plants can be found in [9] and [6]. 
The descriptions that we obtain is simpler in that they only 
involve scalar polynomials satisfying certain interpolation condi- 
tions. Similar descriptions for square plants can be found in [7]. 

This note is organized as follows. Section I1 describes the 
feedback system and basic properties. In Section I11 we prove 
the simplified stability condition and propose the parameteriza- 
tion results. In Section IV we characterize the set of all achiev- 
able decoupled 1/0 maps, and prove a necessary and sufficient 
condition for the existence of a stable decoupling controller. 
Section V is a brief conclusion. 

A. Notations and Dejinitions 

The expression a := b means a denotes b. R := the field 
of real numbers; C := the field of complex numbers. 
E-:= {s E CIRe(s) < 0); @+:= {s E CIRe(s) 2 0); @ + e  := 

C+U{m}. R[s] := the set of polynomials in s with real 
coefficients; R(s) := the set of rational functions in s with 
real coefficients; Rp(s)(Rpo(s), respectively) := the set of proper 
(strictly proper, respectively) rational functions in s with real 
coefficients; S := { h  E R,(s)lh has no pole in @+}. A rational 
matrix H E R ( S ) ~ ~ "  is said to be stable if and only if H E S m X " .  
We say that H E S"'" is S-unimodular or a unit in Sax" if and 
only if H-' E S"'". Forp, q E R[s], Z [ p ]  := {s E C l p ( s )  = 01, 
deg(p) := degree of p ,  and q1p means that q divides p ,  or 
equivalently, p = qr for some r E R[s]. 

11. PRELIMINARY 

Consider the unity-feedback system S( P,  C) shown in Fig. 1, 
where P E R p o ( s ) " o x n ~  is the plant, C E R p ( s ) " ~ x " o  the con- 
troller, (U', U,) the input, and (yl, y2) the output. It is assumed 
that the dynamical systems described by P and C contain no 
unstable hidden modes. Since P is strictly proper, S ( P ,  C )  is well 
posed [2, p. 2221. Let U := [uTu:]' and y := [yTy;lT. The 
closed-loop transfer matrix Hyu E R p ( s ) ( n ~ + n ~ ) x ( n ~ + n ~ )  and is 
given by 

. (2.1) 1 C ( I  + P c ) - '  -CP(Z + c P ) - '  

P(I + c P ) - '  = [  PC(Z + P c ) - '  

Throughout this note, we refer to Hy,u, as the 1 / 0  map of the 
system S ( P ,  C). 

is stable, 
that is, HYu E S ( n i + " o ) X ( n l + n ~ ) .  We say that C stabilizes P or C 
is a stabilizing controller for P if S( P,  C) is stable. 0 

Definition 2.1: The system S( P,  C) is stable if H r' 

I U2 2 + e2 

The unity-feedback system S ( P ,  C). 

Definition 2.2: The system S(P,  C) is decoupled if C stabilizes 
P and the resulting 1/0 map HYzu, is nonsingular and diagonal. 
We say that C is a decoupling controller for P if S ( P , C )  is 

Definition 2.3: A stable rational matrix M E SnoXno is an 
achievable I/O map if there exists a controller C such that 
S(P,C) is stable and HyzuI = M ;  An achievable 1/0 map M is 
strongly achievable if it can be achieved by a stable controller. 

0 
Since P is strictly proper, there is a one-to-one correspondence 

between the controller C and the transfer matrix HyIu ,  =: Q. 
More precisely, Q = C(Z + PC)-' E R p ( ~ ) n ~ x n ~  if and only if 
C = Q(Z - PQ>-' E R p ( ~ ) n ~ X n ~  [2, ch. 81. In terms of Q, the 
closed-loop transfer matrix HYu in (2.1) becomes 

decoupled. 0 

Thus we have the following result. 
Proposition 2.4 [2, ch. 81 Let P E R p o ( s ) n ~ x n ~ .  

i) If C E R p ( ~ ) n * X n ~  stabilizes P,  then, with Q := C(Z + 
ii) Conversely, if Hyu in (2.2) is stable for some Q E 

0 

Let ( D ,  N )  be a left coprime factorization (1.c.f.') over S of 
P,  that is, D E S " o x " o  and N E  S " o X n ~  are left coprime and 
D-'N = P. We shall need the following assumptions: 

PC)- ' ,  the transfer matrix Hyu in (2.2) is stable; 

R p ( ~ ) " l X n o ,  then C := Q(Z - PQ)-' stabilizes P. 

P1) The plant P has full normal rank and n,  I n, ,  and 
P2) D ( s )  and N ( s )  do not lose rank at the same point in 

@+, that is, for all so E C+, rank D(s,) < no implies 
rank N(s,)  = no and rank N(s,)  < n ,  implies rank 
&,) = n,. 

Comment: i) Assumption P1) is necessary for decoupling [5, p. 
641, and assumption P2) means that the C+-poles and C+-zeros 
of P do not coincide. ii) Such assumptions were originally used 
in [3, theorem 3.2,4.2] to establish simplified stability conditions 
for simple unstableplants, and also appeared in [9] as sufficient 
conditions for the existence of decoupling controllers for P. 

We shall need the following lemma. 
Lemma 2.5 (11, lemma 7.5.51: Suppose that H E Smx"o, P E 

Rp(s ) "ox "~ ,  and ( D ,  N )  is an 1.c.f. of P. Under these conditions, 
0 

111. STABILITY CONDITIONS AND PARAMETERIZATIONS 

A general stability condition for S ( P ,  C) is given in [l], which 
is a set of conditions on Q := Hylul to ensure the stability of the 
four submatrices in (2.2). Under the assumptions P1) and P2), 
we prove a simplified stability condition (Theorem 3.1). Based on 
such a simplified stability condition, we describe the set of all 

HP E Smx"l if and only if HD-' E SmX"o. 

'Throughout, 1.c.f. denotes left coprime factorization over S. 
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achievable 1 / 0  maps and the set of all strongly achievable 1/0 
maps, and parameterize the set of all controllers which achieve 
the same 1/0 map. An example is given to show how the 
controller parameterization can be used to improve controller 
designs involving linear plants which have more inputs than 
outputs. 

A. Stability Conditions 

S-unimodular matrix such that 
Let ( D , N )  be an 1.c.f. of P and U E S " ~ x " ~  be any 

NU = [i 01 with i E S n o X n o .  (3.1) 
Such a U exists and can be obtained by performing elementary 
column operations on N (8, ch. 31. We now state the simplified 
stability condition. 

Theorem 3.1: Let P E [ W p o ( s ) " o X n ~ .  Suppose that P1) and P2) 
are satisfied and let U be as defined in (3.1). Under these 
conditions, we have the following: 

i) If C E R p ( ~ ) " l X n ~  stabilizes P,  then Q := C(Z + PC)-' 
satisfies that 

Q1) Q = U[:;] for some Q ,  E S n o X n o  and Q ,  E 

Q2) ( I  - PQ)D-l  E S"ox"o.  

ii) If Q E R p ( ~ ) " ~ X n o  satisfies Q1) and Q2), then C := Q(Z - 
PQ1-l stabilizes P. 

Comment: i) Note that Q2) is exactly the same as the condi- 
tion iv') in [l]. ii) It follows from Theorem 3.1 and the one-to-one 
correspondence between C and Q that the set of all stabilizing 
controllers for P is given by 

C = { Q ( I  - PQ)-' lQ satisfies Q l )  and Q2)). (3.2) 
iii) Since, by Lemma 2.5, Q2) holds if and only if Hyzuz = ( I  

- PQ)P E S n ~ X n ~ ,  it is easy to see that, for no = n,  case, 
S ( P , C )  is stable if and only if HY,+ E S " L ~ " O  and Hy,u, E 
S"ox"l. iv) Note that for every Q which satisfies Q1) and Q2), 
the resulting 1/0 map Hyzul = PQ = D-'NQ, is independent 

Pro05 By Proposition 2.4, it suffices to show that HyC in 
(2.2) is stable if and only if Q1) and Q2) hold. Note that N is 
nonsingular since P,  and hence N ,  has full normal rank. 
(e) Suppose that Q1) and Q2) hold, then Q E S"ix"o and 

( I  - PQ)P E S " ~ X n ~  by Lemma 2.5. It remains to show that a) 
PQ E S"ox"o  and b) QP E S " ~ x n ~ .  

S ( n , - n , ) x n  0, and 

of Q2. 

To establish a), let 

G := ( I  - PQ)P (3.3) 

(3.4) 

then G E S n o X n i  and 

G = ( I  - P Q ) D - ~ [ ~  OIU-' .  

Postmultiply (3.4) by U N-' D to get 
1-0 1 

( I  - P Q )  = GU[ ' ; ' ] D .  (3.5) 

Since P = D-lN ,  N E S"ox"~, and Q E S"~x"o, I - PQ is ana- 
lytic in C + - 9 ,  where 

9 := {s E C+ldet D ( s )  = 0) = (s E C+lrank D ( s )  < n o } .  

(3.6) 

(3.7) 

From (3.9, it follows that Z - PQ is analytic in C+-N, where 

N:= {s E @+Idet i ( s )  = 0). 

Thus I - PQ is analytic in (C+-8)  U ( C + - d  = C+-(8 n 
N). It is easy to see from (3.1) that JV= {s E C+lrank N ( s )  < no> 
since U is S-unimodular. Since 9 n N =  0 by P2), it follows 
that Z - PQ is analytic in @+ and hence P 

To establish b), note that since QP = U iiG , we only have 

to show that Q I P  E S"oxnl. By (3.3) we have 

E S " o x " o .  

e 1  

Premultiply (3.8) ny N-'D to get 
- 
N- lDG [ I  O]U-' - Q I P .  (3.9) 

Similar arguments as those following (3.5) show that Q I P  E 
S".X",. 

(-) Since ( I  - PQ)P E S " ~ x " ~ ,  Q2) follows from Lemma 
2.5. Since U is S-unimodular and QP E S " J ~ " ~ ,  we have 
U-'QD-'  E S n i X n o  by Lemma 2.5. Let := U-lQD- ' ,  

where 8, ~ S " ~ x " ~  and Q, E S ( n ~ - " ~ ) x n ~ .  Then Q1) follows 
0 

Under the condition that S ( P ,  C) is stable, the following 
proposition is a necessary and sufficient condition for the stabil- 
ity of the controller C. 

Proposition 3.2: Suppose that P E R p o ( ~ ) " ~ X n ~  and that C E 

Rp(s)" lXn~ stabilizes P. Let Q := C(Z + PC)-' and ( D ,  N )  be 
an 1.c.f. of P. Under these conditions, C is stable if and only if 

Comment: i) The proposition is useful in the characterization 
of all strongly achievable 1/0 maps (Corollary 3.4), which will 
be used to establish a necessary and sufficient condition for the 
existence of a stable decoupling controller for P (Theorem 4.2). 
ii) By Theorem 3.1 and Proposition 3.2, the set of all stable 
controllers which stabilize P is given by 

C, = {Q(Z - PQ)-' lQ satisfies 0 1 )  and 

LI 
with Q ,  := Q,D E S n o X n o .  

QS) D ( I  - PQ)-l E SnoXn'.  

( I  - PQ)D-'  is a unit). (3.10) 

iii) It is shown in [12, p. 1191 that the stabilizing controller C is 
stable if and only if Hyzuz contains exactly the same C+,-zeros 
as P does. Since Hy2u2 = ( I  - PQ)D-'N,  and QS) holds if and 
only if ( I  - PQ)D-' has no C+,-zeros, the assertion also follows 
from Proposition 3.2. 

Proofi 
(e) Since C stabilizes P and Q = C ( I  + PC)- ' ,  we have 

QP E S"I'"& by Proposition 2.4 and thus Q 0 - l  E S"~x"o by 
Lemma 2.5. Since C = Q(Z - PQ)- ' ,  it follows from QS) that 

c = ( Q D - ' ) ( D ( z  - p e l - ' )  E s n l X n o .  (3.11) 

(a) Since D E S n ~ X n ~ ,  N E S n o X n ~ ,  and C E S"~x"o, it follows 
that 

D ( I  - PQ)- '  = D ( I  - P C ( I  + P C ) - ' ) - '  = D ( I  + P C )  

= D + NC E S n o X n o .  (3.12) 

B. Parameterizations 

In this subsection, we describe the set of all achievable 1 / 0  
maps and all strongly achievable 1/0 maps, and then parameter- 
ize the set of all stabilizing controllers which achieve the same 
1 / 0  map. 

Proposition 3.3: Let P E Rpo(s) "~x"~ .  Suppose that P1) and 
P2) are satisfied and M E S"ox"o.  Let i be as defined in (3.1). 
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Under these conditions, M is an achievable 1 / 0  map if and 
only if 

M1) N-'DM E S n o X n o ,  and 

Comment: i) The condition M2) also appeared in [9, remark 
M2) ( I  - M ) D - '  E S " o x " o .  

21. ii) The set of all achievable 1 / 0  maps is then given by 

M = { M  E s" .x~.IN- I D M  E s n 0 x " .  

and ( I  - M ) D - '  E S n ~ ~ X n ~ } .  (3.13) 

The description in (3.13) is useful in the parameterization of all 
controllers which achieve the same 1 /0  map (Theorem 3.5). 

Proof: 
(e=) k t  Q, E S ( ' C - ~ O ) ~ "  0 and define 

(3.14) 

By M1) and (3.141, the condition Q1) in Theorem 3.1 is satisfied. 
Also by (3.141, we have PQ = M and thus ( I  - PQ)D-  I = ( I  - 
MID- '  E S"ox"" by M2). It then follows from Theorem 3.1 that 
C := Q(I - PQ)-l stabilizes P and HYZu, = PQ = M .  

Suppose that C stabilizes P and HYZu, = M .  Then, with 
Q := C(I + PC)- ' ,  the four submatrices in (2.2) are all stable 
by Proposition 2.4 and PQ = M .  It follows from (31) that 

M = PQ = D - ' [  E O]U-'Q. (3.15) 

Premultiply (3.15) by N - ' D  to get %-'DM = [I O]U-'Q E 

S " ~ x " ~ ,  and thus M1) is satisfied. Since ( I  - M ) P  = ( I  - 
PQIP E S n o X n t ,  it follows from Lemma 2.5 that M2) is satisfied. 

U 

Now suppose that M is achieved by C and let Q := C(I + 
PC)-' .  Then PQ = M and it follows from Proposition 3.2 that 
C E S"ix"o if and only if 

MS) D ( I  - M ) - '  E S " ~ x n ~ .  
Thus, we have the following characterization. 
Corollary 3.4: Let E R p o ( ~ ) " ~ x n ~ .  Suppose that P1) and P2) 

are satisfied and let N be as defined in (3.1). Then the set of all 
strongly achievable 1/0 maps is given by 

M, = { M E  s ~ . x ~ . I N - ~ D M  E s n . x n o  

a n d ( I - M ) D - '  isaunit}.  (3.16) 
0 

We now parameterize the set of all stabilizing controllers 
which achieve the same 1/0 map. 

Theorem 3.5: Let P E Rpo($,~Xnl. Suppose that P1) and P2) 
are satisfied, and let U and N be as defined in (3.1). Under 
these conditions, for each achievable 1 / 0  map M ,  the set of all 
stabilizing controllers which achieve M is given by 

Proofi 
a) Suppose that C E C,, that is, C = U [  ( I  - M 1- ' 

for some Qz E S ( n ~ - n ~ ' ) x n ~ , .  Let Q := U [  ",ly], then PQ = M 

and C = Q(Z - PQ)- ' .  Since M is achievable, we have E-' 
DM E S " o x " ~  
Proposition 3.3. It follows from Theorem 3.1 that C stabilizes P. 
Also, Hy,,, = PC(Z + PC)-'  = PQ = M. 

b) Suppose that C achieves M and let Q := C(I + PC)- ' .  
Then, by Theorem 3.1, Q = U [  for some Q ,  E S n ~ x n ~  and 

and ( I  - PQ)D-'  = ( I  - M ) D - '  E S"ox"~'  by 

If the plant hasLmore inputs than outputs, then there is an 
extra degree of freedom in controller selection in addition to 
achieving a desirable 1 / 0  map or sensitivity map. The parame- 
terization in (3.17) makes it easier to quantitatively answer the 
question: what can be achieved by such an extra degree of 
freedom? For example, suppose that the design objective is to 
achieve a prespecified (achievable) decoupled 1 / 0  map M while 
maintaining the optimal robustness with respect to additive 
plant uncertainty. Based on (3.171, the problem can be formu- 
lated as follows [4, p. 191: find Q ,  E S ( n ~ - n ~ ) x n ~  such that the 

H,-norm of Q := Hvll,l = U [  ",izM] is minimized. Write U = 

[U, U,], where U, E S " ~ x " ~ ~  and U, E S " ~ x ( " ~ - " ~ ) ,  then the prob- 
lem becomes 

min llQllx = min IIU,N-'DM + UzQ2Dllm. (3.18) 
SZ S2 

Note that (3.18) is a standard model-matchingproblem. Since U 
is S-unimodular, we have rank U,(jw) = n, - no for all 0 I 
o I CO, and it follows that if P has no poles on the j w  a$, then 
(3.18) has an optimal solution [4, p. 621. Suppose that Q ,  solves 
(3.18), then C := U N:'DM ( I  - M ) - '  solves the design 

problem. 
[ -w ] 

IV. DECOUPLING CONTROLLER DESIGN 
In this section, we first describe the set of all achievable 

decoupled 1 / 0  maps. Then we establish a necessary and suffi- 
cient condition for the existence of a stable decoupling con- 
troller for P,  and characterize the set of all strongly achievable 
decoupled 1 / 0  maps. 

A. Achievable Decoupled I / 0 Maps 

Every achievable diagonal 1 / 0  map has the form 
Consider the system S ( P , C )  where P satisfies P1) and P2). 

where q,  pi E R[s] with a, monic and Hunvitz, for i = l;.., no. 
In the foilowing we derive necessary and sufficient conditions on 
aL and p, so that M1) and M2) in Proposition 3.3 are satisfied 
and hencgthe M in (4.1) is achievable. 

Write N - * D  as 

where N,,, Dll-,  D1,+€ R[S] are mutually coprime, Z [ D , , - ]  c 
@-, and D,,, is monic with Z [ D , , + ]  c C,. It follows that M1) 
holds if and only if 

To check M2), we note that, by Lemma 2.5, M2) holds if and 
only if ( I  - M ) P  E S"ox"c.  Write P as 

(4.4) 



624 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 4, APRIL 1993 

where Z i j , P i j - ,  P i j + ~  R[s] are mutually coprime, Z [ P i j - ]  C 

@-, and plj+ is monic with Z[P i j+ ]  c C+. Thus, M2) holds if 
and only if 

Let D,+ be the monk least common multiple (1.c.m.) of {D,,+},'zl, 
and P,+ the monk 1.c.m. of {Pl,+},'zl, it then follows from [7] 
that (4.3) and (4.5) hold if and only if, for i = l;.., no 

Mdl) a, is Hunvitz and b, = D,+P, for some p, E R[sl, 
Md2) deg(a,)  - deg(P,) 2 max,[deg(N,,) - deg(D,,-) - 

Md3) PI + I( a, - D, + P, ). 
deg(D,,+)I + deg(D,+), and 

We thus have the following theorem. 
Theorem 4.1: Let P E Rpo(s)"oXn' .  Suppose that P1) and P2) 

are satisfied. Then the set of all achievable decoupled 1 / 0  maps 
is given by 

0 

p,, 
ano 

Comment: Since all decou 

Pro05 The assertion follows immediately from the rank test 
0 

Lemma 4.4: Let P E R p o ( ~ ) n ~ X n ~  and suppose that P1) and 
P2) are satisfied. Let M, be as defined in (4.6). Under these 
conditions, Sd2) in Theorem 4.2 holds if and only if there exist 
a, and P, E R[s], for i = l;.., n o ,  such that M .= 

[5, lemma 2.6.11 and [5, lemma 2.3.41. 

diag[(D,+P,/a,>I E M, and 

a, = D,+p, + P,+h, for some Hunvitz h, E R[s]. (4.11) 

Root  
(e) Multiply (4.11) by (l/(s + y)"ih,) to get 

D,+ (s + y ) f 6 - s 8 + w i  P I  e+ +- - - a, 
(s + y)'%, ( s  + y)r ,+wt h ,  ( s  + y)s" 

(4.12) 

Since P E R,,, (S)"~~"~, we have w; 2 1 for i = 1;-., n,. Then by 
(4.11) and M>2), deg(P,+h,) = deg(a,  - D,+P,) = deg(a,)  and 
hence each term ((D,+/(s + y ) t ~ + W ~ ) r  etc.) in (4.12) is an ele- 
ment in S and (a , / ( s  + y)'lh,) is a unit. It follows from (4.12) 
that (s + y)f i -St+W~Pl/hl  E S is a stabilizing controller for g, := 

(D,+/(s + y ) f t + w l ) / ( P l + / ( s  + y ) '~ ) ,  and thus g, has the p.i.p. 

(a) Suppose that g, := (D,+/P,+(s + y ) t ~ - ' ~ + w ~ )  has the p.i.p. 
Since ((Dz+/(s + y ) f ~ + W ~ ) / ( P i + / ( s  + 7)")) is a coprime factor- 

Mdl),  Md2), and Md3) ' (4'6) corollary 5.3.21 
a,  and 6, satisfy 

ling controllers which achieve a 
given decoupled 1/0 map are parameterized in (3.17), the 
construction of a decoupling controller is straightforward after 
an achievable decoupled 1 / 0  map is chosen. A design algorithm 
to construct achievable decoupled 1/0 maps can be found in [7]. 

B. Decoupling by Stable Controllers 

IV-A. For i = l;.., no ,  define 
Let PI,, D,+, I$,, D,,-, and D,,+ be as defined in Section 

s, := deg(P,+) (4.7) 

t ,  := deg(D,+),  and (4-8) 

w, := max [deg(N,,) - deg(D,,-) - deg D,,,)]. (4.9) 
I 

Let 0 < y E R and define the diagonal matrix 

P,+:= diag [ ~ (s :.;,..I E snoxn0  (4.10) 

The following theorem gives a necessary and sufficient condition 
for the existence of a stable decoupling controller for P. 

Theorem 4.2: Let P E R p o ( s ) " ~ x " ~ .  Suppose that P1) and P2) 
are satisfied, and let s,, t,, w,, and P,+ be as defined in 
(4.7)-(4.10). Under these conditions, there exists a stable decou- 
pling controller for P if and only if 

Sdl) rank[P,,+(s) P,+(s)P(s)l = no for all C+-poles s of P ,  

Sd2) (D,+/P,+(s + y)'l-'t+"'~) has the parity interlacing 

The following lemmas will be used in the proof of Theorem 
4.2. 

Lemma 4.3: Let P E R p o ( ~ ) " ~ x " ~  and (D, N )  be an 1.c.f. of P. 
Let Py+ be as defined in (4.10). Under these conditions, Sdl) in 
Theorem 4.2 holds if and only if P,+D-' is a unit in S " o x " o .  

and 

property [12, p. 541, for i = l;.., no. 

ization of gi, there exists an (xi/yi> E S with yi E R[s] and 
xi E R[s] coprime, and a unit (u i /u i )  in S with ui E R[s] and 
vi E R[s] coprime, such that [ l l ,  lemma 3.1.41 

(4.13) 
Di+ xi p, + v, - + - = -  

(s + y ) " + W '  yj (s + y)'i uj . 

= (S + y ) S z f f L C W 8 y l u , .  (4.14) . - 
= a, 

It can then be easily checked that M := diag[D,+P,/a,] E M, 
and h ,  is Hurwitz. 0 

Proof of Theorem 4.2: 
( e) By Sd2) and Lemma 4.4, there exist a, and p, E R[s] 

such that M := diag[(D,+~, /a , ) ]  E M, and (4.11) is satisfied. 
Then a, - D,+p, = P,+h, and thus 

(I - M ) D - '  = diag [ - pi::i] D-  1 

s + y)s 'h i  
= diag [ ( ai ]P,,+D-' (4.15) 

is a unit since diag[((s + y)slh,/a,)] is a unit and PY+D-' is 
also a unit by Sdl) and Lemma 4.3. Thus M is strongly achiev- 
able by Corollary 3.4 and the assertion follows. 

(-) Suppose that a, and p, E R[s] are such that M := 

diag[(D,+P,/a,)] E M, and can be achieved by a stable con- 
troller. Then (I - M)D- '  is a unit by Corollary 3.4. Denote 
h ,  := ( (a ,  - D,+~,)/P,+), then h ,  E R[s] by Theorem 4.1. Sim- 
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- 

- 

ple manipulations lead to 

\ 

ai and bi satisfy Mdl),  Md2), 

and ai = bi + Pi+hi 
for some Hurwitz hi E R[ s ]  

) .  

I 

( I  - M ) D - '  = diag [ (' P,+D-'.  (4.16) 

=: U: 
Since ( I  - M)D- '  is a unit and U: E S n o X n o ,  it follows from 
(4.16) that DP,;' = D(Z - M ) - ' y  E S " o x " o .  Also, since 
Py+P E S n ~ X n ~ ,  we have P,+D-' E S n o X " e  by Lemma 2.5. Thus 
P,+D-' is a unit in S " o x " o  and Sdl) follows from Lemma 4.3. 
Since ( I  - M ) D - '  and Py+D-' are both units, U: is also a unit 
by (4.16). Hence, h, is Hunvitz since a, is Hunvitz, and (4.11) is 
then satisfied. It follows from Lemma 4.4 that Sd2) holds. 0 

Corollary 4.5: Let P E Rpo(s)"oX"~ and suppose that P1) is 
satisfied. Then there exists a stable decoupling controller for P 
if either 

a) P E S " O ~ " ~ ,  or 
b) P satisfies Sdl) and has no C+-zeros. 0 

By the proof of Theorem 4.2, we see that an achievable 
decoupled 1/0 map M := diag [ D, + PJa,] can be achieved by a 
stable controller if and only if (4.11) holds. Thus we now have 
the following characterization. 

Corollary 4.6: Let P E Rpo(s)"ox"~. Suppose that Pl), P2), 
Sdl), and Sd2) are satisfied. Then the set of all strongly achiev- 
able decoupled 1 / 0  maps is given by 

0 

p,, 
a"o 

V. CONCLUDING REMARKS 

We have shown that under a very mild assumption, that is, the 
plant has full normal rank and has no coincidences of unstable 
poles and zeros, the condition for closed-loop stability can be 
simplified. The simplification makes the description of all achiev- 
able 1/0 maps and the parameterization of all controller achiev- 
ing the salhe 1/0 map direct and simple. It also makes the 
construction of achievable decoupled 1/0 maps straightforward. 

Although only continuous-time systems with stability region 
designated as the open left-half plane are considered, the results 
remain true (with obvious modifications) if the stability region is 
changed to any subset of C symmetric with respect to the real 
axis, in particular, the open-unit-disk. 
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Algebraic Versus Analytic Design Limitations 
Imposed by Ill-Conditioned Plants 

J. S. Freudenberg 

Abstract-A long-standing conjecture has been that ill-conditioned 
multivariable plants pose inherent design difficulty in that they limit the 
class of achievable robust performance specifications. The elusiveness of 
a proof of this coqjecture has motivated study of an alternate design 
problem, involving only the nominal plant, in the hope that an inherent 
difficulty due to plant conditioning might emerge for this alternate 
problem. In this note we show, under mild assumptions, that such a 
difficulty, if it indeed exists, must take the form of a design tradeoff 
between system properties at diflereent frequencies, rather than between 
properties at the same frequency. (The terminology "analytic" and 
"algebraic" is motivated by the type of mathematics used to describe 
each class of tradeoff.) This analysis is also interpreted as implying the 
same conclusion for the original robust performance problem. 

I. INTRODUCXION AND MOTIVATION 

Consider a linear time-invariant feedback system whose plant 
and compensator have transfer functions denoted P ,  and C ,  
respectively. We shall assume that the plant is square and 
invertible. Associated with this feedback system are several 
important transfer functions; namely, the open-loop transfer 
function, sensitivity function, and complementary sensitivity 
function defined at the plant output, Lo = PC, So = ( I  + 
Lo)- ' ,  and To = Lo(Z + Lo)- ' ,  and their analogs defined at 
the plant input L, = CP, S, = ( I  + L,)-', and TI = L,(I + 
LI)- ' .  It is well known (e.g., [l], [2]) that many design specifica- 
tions may be stated in the form of frequency-dependent bounds 
upon the closed-loop transfer functions So, SI, To, TI ,  SOP, and 
P-'T0. In particular, each of these six transfer functions 
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