
Fuzzy Sets and Systems 110 (2000) 313–329
www.elsevier.com/locate/fss

Robot learning schemes that trade motion accuracy for command
simpli�cation1

Kuu-young Young∗, Jyh-Fu Lee, Hui-Jun Jou
Department of Electrical and Control Engineering, National Chiao-Tung University, Hsinchu, Taiwan

Received June 1997; received in revised form November 1997

Abstract

This study was inspired by the human motor control system in its ability to accommodate a wide variety of motions. By
contrast, the biologically inspired robot learning controller usually encounters huge learning space problems in many practical
applications. A hypothesis for the superiority of the human motor control system is that it may have simpli�ed the motion
command at the expense of motion accuracy. This tradeo� provides an insight into how fast and simple control can be achieved
when a robot task does not demand high accuracy. Two motion command simpli�cation schemes are proposed in this paper
based on the equilibrium-point hypothesis for human motion control. Investigation into the tradeo� between motion accuracy
and command simpli�cation reported in this paper was conducted using robot manipulators to generate signatures. Signature
generation involves fast handwriting, and handwriting is a human skill acquired via practice. Because humans learn how to
sign their names after they learn how to write, in the second learning process, they somehow learn to trade motion accuracy
for motion speed and command simplicity, since signatures are simpli�ed forms of original handwriting. Experiments are
reported that demonstrate the e�ectiveness of the proposed schemes. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Robotics; Learning control; Command simpli�cation; Human motor control; Fuzzy neural network

1. Introduction

Human limbs governed by the human motor con-
trol system perform far better in many respects than
those of robots, their industrial counterparts, a fact that
has stimulated research into human limb motions and
control strategies [4,5,9,15,17,20]. One appealing fea-
ture demonstrated by the human motor control system
is that it can accommodate a wide variety of motions
through e�ective memory management. By contrast,
robot learning controllers, which are biologically in-

∗ Corresponding author.
1 This work was supported in part by the National Science

Council, Taiwan, under grant NSC 84-2212-E-009-060.

spired and intended to emulate the human motor con-
trol system, usually encounter huge learning space
problems in many practical applications [16,18,21].
For example, using a learning controller, such as a neu-
ral controller or a fuzzy system, to govern the general
motion of a multi-joint robot manipulator demands
quite a number of training patterns, and thus the re-
sulting neural controller consists of a huge number of
neurons, or the resulting fuzzy system requires numer-
ous rules to govern motions [23]. This learning space
problem severely hinders the application of learning
control to robotics.
How the human motor control system resolves

the aforementioned learning space problem is of in-
terest. Intuition suggests that the superiority of the

0165-0114/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0165 -0114(98)00062 -1

314 K.-y. Young et al. / Fuzzy Sets and Systems 110 (2000) 313–329

human motor control system can be attributed to
its salient control strategies and exceptional ability
to make proper decisions using information from
abundant and versatile biological sensory feedback
sources. On the other hand, it has been observed that
human limb motions are not very accurate, leading to
the hypothesis that the human motor control system
may have simpli�ed its learning space at the expense
of motion accuracy [22]. Although there is still doubt
over whether the human motor control system actually
performs this tradeo�, the hypothesis is not based on
weak evidence. Results on the speed-accuracy tradeo�
in human movements and others have been reported in
several human motor control studies [17]. Inspired by
this hypothesis, according to the degree of accuracy
given up, motion control can be transitioned from ac-
curate motion tracking toward point-to-point motion
regulation via learning. Consequently, the original
complex motion commands capable of tracking the
motion accurately are simpli�ed. With motion com-
mands in simple forms, learning controllers can then
be designed that do not consume excessive memory
resources. In addition, simpli�ed motion commands
also lead to fast and simple command execution and
smooth motion control with fewer oscillations.
Investigation into the tradeo� between motion ac-

curacy and command simpli�cation reported in this
paper was conducted using robot manipulators to
generate signatures. Signatures are usually generated
rapidly and with little demand for motion accuracy,
yet handwriting is a skilled human action [14]. The
skills of handwriting and signature generation are
both acquired via learning; humans learn how to sign
their names after they learn how to write. In other
words, humans learn to achieve simplicity in writing
a signature by giving up certain degree of accuracy
after they have learned how to accurately approximate
the handwriting. With this appealing feature, signa-
ture generation stands as an excellent example that
suits our purpose. To implement a similar tradeo�,
two command simpli�cation schemes are proposed
based on the equilibrium-point hypothesis, discussed
in Section 2 [17]. The rest of the paper is organized as
follows. In Section 2, biological backgrounds related
to the human motor control system and equilibrium-
point hypothesis are presented. In Section 3,
handwriting generation processes and schemes are
described. The proposed command simpli�cation

schemes are discussed in Section 4. In Section 5, ex-
perimental results and analyses are reported. Finally,
conclusions are given in Section 6.

2. Human motor control system and
equilibrium-point hypothesis

Fig. 1 shows a simpli�ed block diagram of the hu-
man motor control system that governs limb motion.
In Fig. 1, we can see that human motion is governed
by a hierarchical structure [9,10,17]. In response to
various demands, the central nervous system (CNS)
makes motion plans. Appropriate motor commands
are then generated and sent to the peripheral neu-
romotor system, which may then modify the motor
commands according to sensory feedback. The periph-
eral neuromotor system behaves as a local controller
that adapts to di�erent motions, loads, and environ-
ments, in addition to accepting commands from the
CNS. Finally, the modi�ed commands are sent to the
muscular-skeletal system for motion execution. With
this hierarchical structure, the di�culty of perform-
ing complex motions can be shared by the CNS at the
higher level and the local controller at the lower level.
Among those hypotheses for human motion con-

trol, the equilibrium-point hypothesis suggests that
the CNS speci�es equilibrium points between agonist
and antagonist muscle groups that correctly posi-
tion limbs in relation to the target by indicating new
sets of length-tension curves for the muscle groups
[4,9,17]. In other words, motions are treated as tran-
sitions between postures. The CNS needs only select
new levels for the motor commands. The subsequent
result, mediated by autogenetic re
exes and the me-
chanical properties of the muscles, should be a smooth
transition from one posture to another. The simple
control-signal format makes the equilibrium-point
hypothesis very attractive for robot motion control,
although there are still debates and controversies in
this hypothesis. However, since only one equilibrium
point is selected, a control strategy based on this hy-
pothesis would not enable us even to vary the motion
speed between two given postures. To exploit the
simplicity of the equilibrium-point hypothesis and
enable it to deal with di�erent velocities and loads
in reaching various positions, motor commands may
consist of numbers of equilibrium points. Thus, slow

K.-y. Young et al. / Fuzzy Sets and Systems 110 (2000) 313–329 315

Fig. 1. A simpli�ed block diagram of the human motor control system.

motions can be produced by progressive shifts of
equilibrium points. Motions can be speeded up by
assigning an initial shift that is larger than necessary,
followed by a return to a proper static level [9]. In
light of both physiological and engineering consider-
ations, the number of equilibrium points in the motor
command should be kept fairly small [5,11,20].
The proposed motion command simpli�cation

schemes were developed according to the equilibrium-
point hypothesis. By applying the proposed schemes,
the original complex motion commands for motion
governance can be simpli�ed into series of square
pulses of various heights and widths [11,20,22]. With
the controlled parameters in the motion command
being the heights and widths of the square pulses, the
learning space for dealing with variations exhibited
by di�erent motions is dramatically reduced. This
motion command simpli�cation is, however, achieved
by sacri�cing motion accuracy, because continuous
control signals suitable for accurate tracking are ap-
proximated by signals consisting of square pulses.
Note that the controlled parameter in the equilibrium-
point hypothesis is muscle compliance instead of
the equilibrium point used in the proposed schemes.
Our purpose is not to propose a new biological hy-
pothesis, but to develop control strategies for robot
motion control inspired by the human motor control
system.

3. Handwriting generation

Before the proposed motion command simpli�ca-
tion schemes can be applied to robot manipulators for

signature generation, samples of the handwriting the
signature is derived from need to be provided �rst.
In Section 3.1, handwriting generation processes are
introduced along with a survey of previous hand-
writing generation schemes. A handwriting learning
scheme (HLS) is then discussed in Section 3.2 to
derive motion commands capable of tracking the
handwriting for the robot manipulator. With the hand-
writing and its corresponding continuous, complex
motion commands available, the tradeo� between
motion accuracy and command simpli�cation can
be demonstrated via teaching robot manipulators to
generate signatures.

3.1. Previous works

Fig. 2 shows a typical handwriting process, in-
cluding four stages: cognitive decision, trajectory
formation, motor command generation, and motion
execution [14]. In Fig. 2, the linguistic information
is �rst transformed into a stream of words. Because
the shapes of words are usually complex, they are
divided into letters and then strokes during trajectory
formation. The trajectory of each stroke is planned
according to various considerations, such as size,
shape, speed, and location. Various criteria have
been proposed for trajectory planning to accom-
modate di�erent design purposes, such as energy
conservation, maintenance of the bell-shaped veloc-
ity pro�le, and trajectory smoothness [3,7]. In the
next stage, the CNS generates motor commands to
realize the planned trajectories by using proper con-
trol parameters. Finally, the muscular system accepts

316 K.-y. Young et al. / Fuzzy Sets and Systems 110 (2000) 313–329

Fig. 2. The handwriting process.

commands from the CNS to execute handwriting mo-
tions. Note that the cognitive aspect of handwriting
will not be dealt with in this paper, since the study
is not intended for how various handwriting to be
generated.
Various handwriting generation models have been

proposed and can be divided into two major classes:
the muscle-oriented model and the space-oriented
model [13]. In the muscle-oriented model, trajectory
generation is directly related to the con�gurations of
the muscles and their mechanical properties. Most of
the models reduce the complexity of the biomechan-
ical system for handwriting by factoring it into two
orthogonal functional degrees of freedom. It is gener-
ally assumed that horizontal movements are produced
by rotation of the hand about the wrist, and vertical
movements by oscillations of the thumb, index �nger,
and middle �nger. Mathematical equations describing
muscle dynamics are then used to generate hand-

writing according to di�erent types of input stimuli.
Hollerbach proposed an oscillation model for control-
ling the shape, height, and slant of handwriting [7].
Two orthogonal pairs of springs were used to generate
the required oscillations for handwriting. Plamondon
and Maarse proposed a more general model to de-
scribe and analyze biomechanical handwriting [14].
In their model, a second-order sub-system was used to
represent the hand-pen-paper system and a �rst-order
one used as a nerve-muscle interface.
In the space-oriented model, trajectory generation

is based on an ability to express and control the
trajectory of the hand in space, independent of the
actual joint and muscle system. The model is sup-
ported by the fact that humans can write in the same
way on a sheet of paper and on a blackboard, using
the hand or even other parts of the body. Morasso
and Ivaldi proposed a trajectory formation model for
handwriting [13]. In their model, handwriting was
produced by a mechanism of composition of discrete
strokes represented by a weighted sum of B-splines.
The mechanism was also able to generate smooth tra-
jectories by means of timed overlapping of di�erent
strokes. Edelman and Flash proposed a handwrit-
ing generation model based on the kinematics from
shape principle and on dynamic optimization [3].
Symbolic descriptions of strokes were used in their
model.

3.2. Handwriting learning scheme (HLS)

Fig. 3 shows a block diagram of the proposed hand-
writing learning scheme based on using the two-joint
planar robot manipulator shown in Fig. 4(a). Because
the cognitive aspect of handwriting is beyond the
scope of this paper, the process of transforming mes-
sages into chains of strokes is ignored in our scheme.
In Fig. 3, human subjects �rst input samples of their
handwriting by writing on a digital tablet. Input hand-
writing samples are then transformed into Cartesian
trajectories (Pd(t); Vd(t)) in the robot workspace ac-
cording to the coordinate system of the human hand
(as determined through the digital tablet) via a tra-
jectory mapping process. The Cartesian trajectory
(Pd(t); Vd(t)) is further mapped into a joint trajectory
(qd(t); q̇d(t)) via an inverse-kinematic transforma-
tion. According to the joint trajectory (qd(t); q̇d(t)), a
fuzzy neural network (FNN), that emulates the CNS in

K.-y. Young et al. / Fuzzy Sets and Systems 110 (2000) 313–329 317

Fig. 3. The handwriting learning scheme (HLS).

Fig. 4. (a) A two-joint planar robot manipulator. (b) Robot
workspace partition.

Fig. 2, generates motion commands EP(t) for tra-
jectory tracking. Note that motion commands gen-
erated by the FNN consist of equilibrium points
in continuous form. In turn, a local controller, that

emulates the peripheral neuromotor system in the
muscular system shown in Fig. 2, modulates the
motion commands via sensory feedback and uses
the resultant torque �(t) to move the robot and pen
system.
According to some biological evidence, the CNS

may provide only the desired equilibrium points for
motion control [15]. Therefore, to simplify the design
of our scheme, only the desired equilibrium points
and no desired velocities are speci�ed in the motion
commands. A simple position control law with linear
damping is then used for the local controller [19]:

�=Kp(EP − q)− Kd q̇; (1)

where EP stands for the equilibrium point vector,
q and q̇ are the actual position and velocity vectors
obtained via sensory feedback, and Kp and Kd are
symmetric-positive-de�nite matrices for stability con-
siderations [2].
In the proposed scheme, trajectory mapping is per-

formed from the human hand coordinate system to that
of the two-joint planar robot manipulator, because the
human hand and the two-joint robot manipulator are
di�erent mechanisms with di�erent kinematic and dy-
namic features, and thus they choose di�erent optimal
locations in their own workspaces and use di�erent
con�gurations to better handwriting generation.Mean-
while, when the handwriting is placed at di�erent lo-
cations in the workspace for the robot manipulator to
track, di�erent learning results, consequently di�erent
equilibrium points, are obtained. To �nd optimal loca-
tions at which to place the handwriting, we performed
a series of simulations using the proposed HLS and
adopted the minimum-equilibrium-point-change crite-
rion proposed in [6] for performance evaluation. This

318 K.-y. Young et al. / Fuzzy Sets and Systems 110 (2000) 313–329

Fig. 5. The structure of the FNN.

criterion aims for a smooth transition between pos-
tures. Fig. 4(b) shows the robot workspace in the �rst
quadrant partitioned into nine regions; several loca-
tions in each region were chosen for evaluation. Sim-
ulation results showed that when the handwriting was
placed at locations chosen from the gray region in the
middle portion, shown in Fig. 4(b), the derived equi-
librium points for trajectory tracking most satis�ed the
criterion, and this region in the robot workspace was
then used as the handwriting location.
The FNN for motion command generation is basi-

cally a fuzzy system implemented in the form of a

neural network, as shown in Fig. 5 [1,12]. The rep-
resentation of a fuzzy system using a fuzzy neural
network enables us to take advantage of the learning
ability of the neural network for automatic tuning of
the parameters in the fuzzy system. The fuzzy reason-
ing parameters are thus expressed in the connection
weights or node functions of the neural network. In
the proposed HLS, we chose an FNN with a structure
similar to that in [1]; of course, other types of FNN can
also be used. As Fig. 5 shows, the inputs to the FNN
are the joint position and velocity trajectories of the
input motions, (qd(t); q̇d(t)), and the outputs are the

K.-y. Young et al. / Fuzzy Sets and Systems 110 (2000) 313–329 319

equilibrium point trajectories EP(t). We assume that
stability and convergence of the FNN in learning to
track continuous trajectories are guaranteed, and these
issues are well dealt with in previous studies [1,12].
Our previous results have demonstrated that the FNN
is capable of governing continuous robot trajectories
[23], and the results in this paper also show that the
handwriting generated by the HLS approximated the
originals quite well. Detailed discussions of the struc-
ture and learning process of this FNN can be found in
the appendix.

4. Proposed command simpli�cation schemes

Two schemes are proposed to implement the
tradeo� between motion accuracy and command
simpli�cation. Fig. 6 shows the gradual learning sim-
pli�cation scheme (GLSS) and the command shape
simpli�cation scheme (CSSS). These two schemes
are applied to simplify motion commands for hand-
writing generation into those for signature generation.
Correspondingly, the continuous equilibrium point
trajectories derived by the HLS in Section 3.2 are
simpli�ed into trajectories consisting of series of
square pulses of various heights and widths. During
the simpli�cation process, the schemes gradually give
up accuracy in approximating the handwriting tra-
jectory, and the resulting handwriting becomes more
and more like actual signatures.

4.1. Gradual learning simpli�cation scheme (GLSS)

Fig. 6(a) shows a block diagram of the gradual
learning simpli�cation scheme (GLSS). In the GLSS,
tradeo� between motion accuracy and command sim-
pli�cation is achieved via a simpli�cation process in-
volving the error evaluator, the updating gate, and the
FNN, as shown in the blocks surrounded by the dot-
ted lines in Fig. 6(a). The FNN used in the GLSS is
the same as that used in the HLS in Section 3.2 with
the learning process for handwriting tracking in the
HLS completed. Therefore, before the simpli�cation
process in the GLSS is executed, the input joint tra-
jectory (qd(t); q̇d(t)) will elicit from the FNN contin-
uous equilibrium point trajectories EP(t) able to track
the handwriting accurately. In the GLSS simpli�cation
process, an error bound is �rst set in the error evalua-

tor. This error bound indicates the amount of accuracy
to be traded for command simpli�cation for a portion
of the EP(t). The design will make the tradeo� be per-
formed in each local portion, leading to a more homo-
geneous tradeo� over the entire trajectory. When the
cumulative error in tracking the handwriting does not
exceed the error bound, the updating gate is closed,
preventing the FNN from continuing to update mo-
tion commands. Thus, the motion commands remain
at �xed values during that period. Consequently, the
resulting EP(t) will be in the form of series of square
pulses. By contrast, a general learning mechanism, in
some sense, has the error bound set to zero, and thus
updates itself at every sampling time, resulting in con-
tinuous motion commands.
The number of square pulses in EP(t) after com-

mand simpli�cation depends on the value of the
error bound: when the error bound is large (small),
EP(t) will have a small (large) number of square
pulses. We use the joint velocity error for the er-
ror bound, because variations in joint velocities are
more evident than those in joint positions. The er-
ror bound is de�ned as the sum of the joint one
and two velocity errors, since the scales of velocity
error variations of joints one and two are similar ac-
cording to our observations. The motion commands
for both joints will then be updated simultaneously
each time the error bound is exceeded. We set the
error bound to a small value at the beginning of
the simpli�cation process and increase it gradually.
Intuition suggests that the �nal value of the error
bound can be determined according to the preset
similarity criterion between the original handwriting
and the resulting signature. However, the resem-
blance between these two is quite subjective and
qualitative. In order to quantitatively describe the
similarity between the handwriting and the signa-
ture, we propose the concept of similarity bounding.
The similarity bound Es is de�ned as several times
the total Cartesian error Ec between the input hand-
writing after trajectory mapping in the HLS, Ti(t),
and handwriting learning by the HLS, Th(t), as
follows:

Es = kEc; (2)

where k¿1 is an empirical value, standing for the
degree of similarity and referred to as a similarity

320 K.-y. Young et al. / Fuzzy Sets and Systems 110 (2000) 313–329

Fig. 6. (a) The gradual learning simpli�cation scheme (GLSS). (b) The command shape simpli�cation scheme (CSSS).

index. A proper selection of k should make the orig-
inal handwriting still recognizable from the resulting
signature. The total Cartesian error Ec can be com-
puted using the following equation:

Ec =
n∑
i=1

[(xd(i)− xh(i))2 + (yd(i)− yh(i))2]1=2; (3)

where (xd; yd) and (xh; yh) are the coordinates of the
samples of Ti(t) and Th(t), respectively, and n is the
number of samples.
Based on the discussions above, the command sim-

pli�cation in the GLSS will begin with a small initial
error bound. The joint velocity error will be evaluated
at each sampling time. The FNN will update motion
commands only when the cumulative error exceeds
the error bound. After all handwriting command sim-
pli�cation has been completed, the total Cartesian er-
ror E between Ti(t) and the resulting trajectory Tl(t)
is computed. When E is smaller than the similar-
ity bound Es, the error bound will be increased and
command simpli�cation resumed. The simpli�cation

process will proceed until E is greater than Es. To
summarize, the algorithm for the operation in the
GLSS is:

Gradual Learning Simpli�cation Algorithm: Sim-
plify continuous equilibrium point trajectories into
trajectories consisting of series of square pulses via
a simpli�cation process with feedback for evalua-
tion using pre-speci�ed degrees of similarity between
originals and derived trajectories.
Step 1: Input Ti(t), Th(t), the velocity trajectory

Vh(t), and the equilibrium point trajectory EPh(t) cor-
responding to Th(t).
Step 2: Compute the total Cartesian error Ec be-

tween Ti(t) and Th(t). Determine the similarity bound
Es by selecting an empirical similarity index k.
Step 3: Initialize the error bound with a small value.
Step 4: Evaluate the joint velocity error between the

current joint velocity and the reference joint velocity
corresponding to Vh(t) at each sampling time. Allow
the FNN update motion commands only when the cu-
mulative joint velocity error exceeds the error bound.

K.-y. Young et al. / Fuzzy Sets and Systems 110 (2000) 313–329 321

Step 5: Compute the total Cartesian error E be-
tween Ti(t) and Tl(t) after all handwriting command
simpli�cation.
Step 6: Check whether E is smaller than Es; if yes,

increase the error bound and go to Step 4; otherwise,
the simpli�cation process is completed and output the
simpli�ed equilibrium point trajectory EPs(t) as series
of square pulses.

4.1.1. Command scaling
The GLSS can also be used to trade motion ac-

curacy for simpli�ed motion commands that generate
motions similar to the original motion, but di�erent
in movement distance and velocity. By performing
motion command simpli�cation and scaling simulta-
neously, the GLSS is able to achieve motion command
scaling without system dynamics recalculation [8].
Possible industrial applications for this feature of the
GLSS can be providing simpli�ed motion commands
for industrial tasks that involve a number of similar
robot motions with di�erent movement distances and
velocities.
In the application of signature generation, the equi-

librium point trajectory EPh(t) corresponding to the
handwriting Th(t) is simpli�ed and scaled by the
GLSS to generate signatures of di�erent sizes with
di�erent velocities. This function of the GLSS can be
achieved following the Gradual Learning Simpli�ca-
tion algorithm above with modi�cation of the error
evaluation process in Steps 4 and 5. In the new eval-
uation process, Th(t) and its velocity trajectory Vh(t)
are scaled and used for reference. The error evaluator
will then compare the trajectories generated by the
algorithm with the reference trajectories after scaling,
simplifying and scaling EPh(t) simultaneously. The
error bound may also need to be increased (decreased)
according to di�erent size and velocity requirements.
To generate signatures of di�erent sizes, Th(t) and
Vh(t) can be scaled by varying the sampling time, as
follows:

r= ct; (4)

q̂h(r)= (1− c)× qh0 + c× qh(t); (5)

˙̂qh(r)= q̇h(t); (6)

where c is a scaling constant, (qh(t); q̇h(t)) are the
joint position and velocity trajectories corresponding

to Th(t) and Vh(t), respectively, qh0 is the initial joint
position of qh(t), and (q̂h(r); ˙̂qh(r)) are the scaled joint
position and velocity trajectories, respectively. When
c¿ 1, it is ampli�cation, and vice versa. To gener-
ate signatures with di�erent velocities, scaling is im-
posed upon both the sampling time and the velocity, as
follows:

r= ct; (7)

q̂h(r) = qh(t); (8)

˙̂qh(r) =
q̇h(t)
c
: (9)

When c¡1, it is a speed-up, and vice versa.

4.2. Command shape simpli�cation scheme (CSSS)

Fig. 6(b) shows a block diagram of the command
shape simpli�cation scheme (CSSS). In the CSSS,
the tradeo� between motion accuracy and command
simpli�cation is performed according to the charac-
teristics of the command shapes. Local extreme val-
ues on the equilibrium point trajectories EPh(t) are
�rst located and EPh(t) are then approximated using
a series of zero-order polynomials, which replace the
curves (or lines) between local extreme points with
square pulses. When the di�erence between two ad-
jacent pulses in the approximated EPh(t) is smaller
than some pre-speci�ed threshold in either amplitude
or duration, the pulses will be combined via process-
ing in command amplitude or duration, as shown in
the blocks surrounded by the dotted lines in Fig. 6(b).
Note that the amplitude and duration thresholds for
the two joints of the robot manipulator may be cho-
sen di�erently according to variations in the command
shapes for each joint. The �nal similarity between the
original handwriting and the resulting signature in the
CSSS is also speci�ed using the similarity bound, as
in the GLSS. The amplitude and duration thresholds
will be initialized with small values and be increased
gradually when the total Cartesian error E between
Ti(t) and the resulting trajectory Tl(t) after command
simpli�cation does not exceed the similarity bound.
To summarize, the algorithm for the operation in the
CSSS is:

322 K.-y. Young et al. / Fuzzy Sets and Systems 110 (2000) 313–329

Command Shape Simpli�cation Algorithm: Simplify
continuous equilibrium point trajectories into trajecto-
ries consisting of series of square pulses according to
the command shape characteristics using pre-speci�ed
degrees of similarity between originals and derived
trajectories.
Step 1: Input Ti(t), Th(t), and the equilibrium point

trajectory EPh(t) corresponding to Th(t).
Step 2: Compute the total Cartesian error Ec be-

tween Ti(t) and Th(t). Determine the similarity bound
Es by selecting an empirical similarity index k.
Step 3: Initialize the amplitude and duration thresh-

olds with small values.
Step 4: Locate local extreme values on EPh(t). Use

zero-order polynomials to approximate EPh(t) by re-
placing the curves (or lines) between local extreme
points with square pulses.
Step 5: Perform command amplitude and duration

processing to combine motion commands for the ap-
proximated EPh(t).
Step 6: Compute the total Cartesian error E between

Ti(t) and Tl(t) after command combination for the
entire approximated EPh(t) is completed.
Step 7: Check whether E is smaller than Es; if yes,

increase the amplitude and duration thresholds and
go to Step 5; otherwise, the simpli�cation process is
completed and output the simpli�ed equilibrium point
trajectory EPs(t) as series of square pulses.

By applying this algorithm, the �nal simpli�ed equi-
librium point trajectories EPs(t) will be a series of
square pulses. To smooth the EPs(t), we can include
a command smoothing process that approximates the
square pulses of theEPs(t) using second-order polyno-
mials. Obviously, other kinds of functions, e.g., spline
functions, can also be used for approximation.

5. Result and analysis

To demonstrate the e�ectiveness of the two pro-
posed command simpli�cation schemes, the GLSS
and the CSSS, they were applied to simplify the equi-
librium point trajectories for handwriting generation
into those for signature generation for the two-joint
planar robot manipulator, shown in Fig. 4(a). Three
adult subjects, two male and one female, were asked
to provide handwriting samples. They practiced writ-

ing on the digital tablet for a while, and their sam-
ples were recorded after they were con�dent about
using the digital tablet. The subjects were told to write
quickly to generate more natural handwriting, and
to select satisfactory samples from what they wrote
according to their own standards. The selected sam-
ples were then mapped into Cartesian trajectories
Ti(t) in the robot workspace using the HLS described
in Section 3.2. Via a learning process in the HLS, the
equilibrium point trajectories EPh(t) were derived,
which in turn generated trajectories Th(t) approxi-
mating Ti(t).
The two-joint planar robot manipulator was used to

simulate the hand and pen system, and its dynamic
equations are expressed as follows:

[
�1
�2

]
=
[
H11 H12
H21 H22

] [��1
��2

]

+

[
−c�̇22 − 2c�̇1�̇2

c�̇
2
1

]
; (10)

where

H11 =m1l2c1 + m2l
2
1 + m2l

2
c2

+2m2l1lc2 cos (�2) + I1 + I2; (11)

H12 =m2l2c2 + m2l1lc2 cos (�2) + I2; (12)

H21 =H12; (13)

H22 =m2l2c2 + I2; (14)

c=m2l1lc2 sin (�2) ; (15)

with �1 and �2 standing for the torques, �1 and
�2 the joint variables, m1 = 2:815 kg, m2 = 1:64 kg,
l1 = 0:3m, l2 = 0:32m, lc1 = 0:15m, lc2 = 0:16m,
and I1 = I2 = 0:0234 kgm

2. The e�ects of load and
gravity were ignored in the formulation, and the
sampling time in the simulation was 2ms. For all
schemes, the HLS, the GLSS, and the CSSS, each
joint of the robot manipulator was equipped with an
FNN and a local controller. In each FNN, there were
two nodes in Layer 1, ten nodes in Layer 2, 25 nodes
in Layers 3 and 4, and one node in Layer 5. The local
controller gains were set to Kp = 15 and 10Nm=rad
and Kd = 3 and 1Nm=(rad=s) for joints one and two,
respectively.

K.-y. Young et al. / Fuzzy Sets and Systems 110 (2000) 313–329 323

Fig. 7. Motion command simpli�cation for the character ‘a’: (a) the HLS, (b) the GLSS, and (c) the CSSS.

324 K.-y. Young et al. / Fuzzy Sets and Systems 110 (2000) 313–329

Fig. 8. Motion command simpli�cation for the name ‘Chen’: (a) the HLS, (b) the GLSS, (c) the CSSS, and (d) the CSSS plus smoothing.

Fig. 7 shows the resulting position trajectories and
the corresponding equilibrium point trajectories for
an input handwritten character ‘a’ from (a) the HLS,
(b) the GLSS, and (c) the CSSS. In Fig. 7(a), the
total Cartesian error Ec between the input handwrit-
ten ‘a’ trajectory used for reference (dotted line) and
the trajectory generated by the HLS (solid line) was
computed to be about 0.1m. The equilibrium point
trajectories EPh(t) derived by the HLS were con-
tinuous, and were sent to the GLSS and the CSSS
for command simpli�cation. Figs. 7(b) and (c) show
the EPh(t) from Fig. 7(a) simpli�ed into series of
square-pulse trajectories. For both the GLSS and the

CSSS, the similarity index k was set to 5, making the
similarity bound equal to 0.5m. The total Cartesian
errors E between the reference and generated trajec-
tories after command simpli�cation were about 0.53
and 0.59m for the GLSS and the CSSS, respectively.
From the results, both the GLSS and the CSSS can
generate simpli�ed motion commands that result in
pre-speci�ed degrees of similarity between the origi-
nal and the derived trajectories. In general, the GLSS
can generate more accurate trajectories using the
same similarity bound, but consumes more computa-
tion time, as compared to the CSSS. This is because
in command simpli�cation, the GLSS uses a simpli-

K.-y. Young et al. / Fuzzy Sets and Systems 110 (2000) 313–329 325

Fig. 8. Continued.

�cation process with feedback for evaluation, while
the CSSS performs command combination directly
on the command shapes.
In the second case study, we used a more compli-

cated sample, the name ‘Chen’, and also evaluated
the e�ect of the CSSS when the command smoothing
process described in Section 4.2 was included. Fig.
8 shows the resulting position trajectories and the
corresponding equilibrium point trajectories for the
input handwritten sample of the name ‘Chen’ from
(a) the HLS, (b) the GLSS, (c) the CSSS, and (d) the
CSSS plus smoothing. In Fig. 8(a), Ec after learning
was computed to be about 0.1m. For both the GLSS
and the CSSS, the similarity index k was set to 5. In
Figs. 8(b) and (c), the EPh(t) in Fig. 8(a) derived by
the HLS were simpli�ed into series of square-pulse

trajectories. The number of square pulses for the
handwritten ‘Chen’ was greater than that for ‘a’ as
expected. The total Cartesian errors E after command
simpli�cation were about 0.53 and 0.57m for the
GLSS and the CSSS, respectively. Fig. 8(d) shows
the result when the command smoothing process was
included in the CSSS. Second-order polynomials were
used to approximate the motion command trajectories
in Fig. 8(c). In Fig. 8(d), the resulting motion com-
mand trajectories were smooth and the total Carte-
sian error E after command smoothing was about
0.55m, demonstrating the feasibility of the proposed
command smoothing technique.
Finally, in the third case study, we evaluated

the performance of applying the GLSS with com-
mand scaling, as described in Section 4.1.1, to

326 K.-y. Young et al. / Fuzzy Sets and Systems 110 (2000) 313–329

Fig. 9. Generation of the character ‘h’ under di�erent size and velocity requirements using the GLSS: (a) the reference ‘h’, (b) a larger
‘h’, and (c) a faster ‘h’.

K.-y. Young et al. / Fuzzy Sets and Systems 110 (2000) 313–329 327

generate signatures of di�erent sizes and velocities.
Fig. 9(a) shows the character ‘h’ used for refer-
ence, generated by the HLS with Ec after learn-
ing about 0.1m, and the corresponding continuous
equilibrium point trajectories EPh(t). Command
scaling was applied to generate a larger ‘h’ and a
normal ‘h’ written more rapidly. The reference tra-
jectories for error evaluation during command scaling
were generated using Eqs. (4)–(9), with the scaling
constants c=1:5 and 1.25 for the larger ‘h’ and the
faster ‘h’, respectively. Due to the increases in size
and writing velocity, the similarity indices were in-
creased accordingly and set to 26 and 8 for the larger
‘h’ and the faster ‘h’, respectively. In Figs. 9(b) and
(c), the EPh(t) in Fig. 9(a) were simpli�ed and scaled
into series of square-pulse trajectories, which were
able to generate larger and faster ‘h’s with errors
within the similarity bounds. This demonstrates the
feasibility of the proposed command scaling.

6. Conclusion

In this paper, we have developed motion command
simpli�cation schemes that can trade motion accuracy
for command simpli�cation in robot motion control.
The proposed command simpli�cation is taken as a
second learning process after accurate motion track-
ing that demands complicated motion commands has
been accomplished. Thus, the proposed schemes pro-
vide e�ective frameworks for achieving fast, simple
control when a task does not demand high accuracy,
and to transition between motion tracking and regula-
tion according to the degree of motion accuracy given
up. The results of applying the proposed schemes to
simplify motion commands for handwriting genera-
tion into those for signature generation demonstrate
the e�ectiveness of the proposed schemes. In future
works, the proposed schemes will be applied to gen-
eral industrial robot tasks, and to the search for sim-
ple, basic motion commands that capture fundamental
motion features.

Appendix. Description of the FNN

The structure of the FNN used in the proposed
schemes consists of �ve layers of nodes, all of which

are of the same types within the same layer, as
shown in Fig. 5. Each of the �ve layers performs
one stage of the fuzzy inference process, as described
below:
Layer 1.The input layer: It transmits inputs directly

to the next layer without performing any computation.
As Fig. 5 shows, there are two nodes for two inputs qd
and q̇d for motions with a single degree-of-freedom.
Layer 2. The input membership function layer: It

transforms input data into fuzzy data. Each node i in
this layer has the node function

O 2
i = �(x); (A.1)

where � :X → [0; 1] a membership function and x is
the input to node i. The triangular membership func-
tion adopted is described below:

�(x)=




1− (x − b)
c

; x ∈ [b; b+ c];

1 +
(x − b)
a

; x ∈ [b− a; b];
0 otherwise:

(A.2)

Di�erent membership grades at the same crisp point
can be obtained by adjusting the parameter set (a; b; c).
Layer 3. The rule layer: It implements fuzzy rules.

Each node in this layer corresponds to a rule, de�ned
as a fuzzy conditional statement of the form

Rule: IF X is A and Y is B THEN Z is C; (A.3)

where X and Y are fuzzy sets representing the inputs,
Z represents the output, and A, B, and C represent lin-
guistic variables, such as small, medium, and large.
The number of rules involved in the input–output rela-
tionship is pre-speci�ed. In this layer, each node also
outputs the �ring strength of the rule, O 3

i , by perform-
ing the di�erentiable softmin operation [1]:

O 3
i =

∑
j O

2
j exp(−rO 2

j)∑
j exp(−rO 2

j)
; (A.4)

where O 2
j is the output of the jth node in Layer 2 con-

nected to the ith node in Layer 3 and r is a constant.
When r approaches in�nity, the softmin operator be-
comes a min operator; for �nite r, O 3

i is di�erentiable,
which is required during the learning process.
Layer 4. The output membership function layer:

Each node i in this layer performs an inversion of

328 K.-y. Young et al. / Fuzzy Sets and Systems 110 (2000) 313–329

�i to locate the X -coordinate of the centroid of the
membership function, O 4

i , using the local mean-of-
maximum method (LMOM) [1]:

O 4
i = �

−1
i (O

3
i): (A.5)

Layer 5. The output layer: It has as many nodes as
there are output action variables. Fig. 5 shows only one
node is needed for the single motion command EP.
The defuzzi�cation approach adopted is the weighted
averaging method:

O5 =
∑

i O
3
i O

4
i∑

i O
3
i
: (A.6)

Because the number of rules in Layer 3 is pre-
speci�ed and weights for the input and output layers
(Layers 1 and 5) are �xed, the parameters to be
learned in this FNN are the modi�able weights present
at the input links to Layers 2 and 4, which correspond
to the input and output membership functions. When
the FNN learns the input and output membership
function parameters required to generate the motion
command EP corresponding to a sampled motion, an
error rate, related to the motion command EP and the
resultant motion, is initially speci�ed in the last layer
(Layer 5). This error rate is then back-propagated to
adjust the parameters from layer to layer sequentially.
Because a concise form of the inverse dynamic model
of the robot manipulator is not available, the error rate
cannot be obtained directly by di�erentiating the er-
ror between the desired motion and the actual motion
relative to the motion command. Instead, we use the
combined feedback error of position (e) and velocity
(ė) between the desired and actual motions, denoted
as E=Gpe + Gdė, to derive the error rate @E=@EP
[10]:

@E
@EP

=
@E
@O5

= �(Gpe + Gdė); (A.7)

where � is a learning rate and Gp and Gd are gains.
The error rate @E=@EP in Eq. (A.7) is estimated, but
not exact, for describing the di�erential relationship
between the motion command EP and the resultant
motion. Nevertheless, the results in [10] and also ours
show that the use of this error rate is appropriate for
the learning. Using the error rate @E=@EP and some

straightforward manipulation, we are able to derive
updates for the parameters in Layers 2 and 4.

References

[1] H.R. Berenji, P. Khedkar, Learning and tuning fuzzy logic
controllers through reinforcements, IEEE Trans. Neural
Networks 3(5) (1992) 724–740.

[2] J.J. Craig, Introduction to Robotics, Addison-Wesley,
Reading, MA, 1989.

[3] S. Edelman, T. Flash, A model of handwriting, Biol. Cybernet.
57 (1987) 25–36.

[4] T. Flash, The control of hand equilibrium trajectories in multi-
joint arm movements, Biol. Cybernet. 57 (1987) 257–274.

[5] G.L. Gottlieb, D.M. Corcos, G.C. Agarwal, Organizing
principles for single-joint movements I. A speed-insensitive
strategy, J. Neurophysiol. 62(2) (1989) 342–357.

[6] Z. Hasan, Optimized movement trajectories and joint sti�ness
in unperturbed, initially loaded movements, Biol. Cybernet.
53 (1986) 373–382.

[7] J.M. Hollerbach, An oscillation theory of handwriting, Biol.
Cybernet. 39 (1981) 139–156.

[8] J.M. Hollerbach, Dynamic scaling of manipulator trajectories,
ASME J. Dyn. Systems Measurement Control 106 (1984)
102–106.

[9] J.C. Houk, W.Z. Rymer, Neural control of muscle length and
tension, in: Handbook of Physiology – The Nervous System
II, Section 1, Vol. II, Ch. 8, Bethesda, MD, American Physiol.
Soc., 1981, pp. 257–323.

[10] M. Kawato, K. Furukawa, R. Suzuki, A hierarchical neural-
network model for control and learning of voluntary
movement, Biol. Cybernet. 57 (1987) 169–185.

[11] S.L. Lehman, Input identi�cation depends on model
complexity, in: Winters and Woo (Eds.), Multiple Muscle
Systems, Springer, New York, 1990, pp. 94–100.

[12] C.-T. Lin, C.S.G. Lee, Reinforcement structure=parameter
learning for neural-network-based fuzzy logic control
systems, IEEE Trans. Fuzzy Systems 2(1) (1994) 46–63.

[13] P. Morasso, M. Ivaldi, Trajectory formation and handwriting:
a computational model, Biol. Cybernet. 45 (1982) 131–142.

[14] R. Plamondon, F. Maarse, An evaluation of motor models
of handwriting, IEEE Trans. Systems Man Cybernet. 19(5)
(1989) 1060–1072.

[15] A. Polit, E. Bizzi, Characteristics of motor programs under-
lying arm movements in monkeys, J. Neurophysiol. 42(1)
(1979) 183–194.

[16] T.D. Sanger, Neural network learning control of robot
manipulators using gradually increasing task di�culty, IEEE
Trans. Robotics Automat. 10(3) (1994) 323–333.

[17] R.A. Schmidt, Motor control and learning: a behavioral
emphasis, 2nd ed., Human Kinetics Publishers, Champaign,
IL, 1988.

[18] T. Shibata, T. Fukuda, Hierarchical intelligent control for
robotic motion, IEEE Trans. Neural Networks 5(5) (1994)
823–832.

K.-y. Young et al. / Fuzzy Sets and Systems 110 (2000) 313–329 329

[19] M. Takegaki, S. Arimoto, A new feedback method for
dynamic control of manipulators, ASME J. Dyn. Systems
Measurement Control 103(2) (1981) 119–125.

[20] C.H. Wu, K.Y. Young, K.S. Hwang, S. Lehman, Voluntary
movements for robotic control, IEEE Control Systems
Magazine 12(1) (1992) 8–14.

[21] B.-H. Yang, H. Asada, Progressive learning and its application
to robot impedance learning, IEEE Trans. Neural Networks
7(4) (1996) 941–952.

[22] K.Y. Young, C.C. Fan, An approach to simplify the learning
space for robot learning control, Fuzzy Sets and Systems
95(1) (1998) 23–38.

[23] K.Y. Young, S.J. Shiah, An approach to enlarge learning
space coverage for robot learning control, IEEE Trans. Fuzzy
Systems 5(4) (1997) 511–522.

