
Fuzzy Sets and Systems 110 (2000) 365–377
www.elsevier.com/locate/fss

Tracking a near-�eld moving target using fuzzy neural networks
Ching-Wen Ma∗, Ching-Cheng Teng

Department of Electrical and Control Engineering, National Chiao-Tung University, Hsinchu, Taiwan

Received July 1996; received in revised form October 1997

Abstract

In this paper we explore the problem of tracking a near-�eld moving target using fuzzy neural networks (FNNs).
The moving target radiates narrow band waves that impinge on an array of passive sensors. At a particular time in-
stance, the location of the target is estimated by several judiciously constructed FNN-based angle and distance estimators.
When the target is moving, its trajectory can be on-line estimated due to the parallel and real-time computational capability
of the FNNs. Computer simulation results illustrate the performance of the FNN-based angle estimator, distance estimator,
and the near-�eld moving target tracker. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Fuzzy logic; Neural network; Fuzzy neural network; Array signal processing

1. Introduction

The applications of combining fuzzy inference
systems and arti�cial neural networks to engineer-
ing problems have drawn a lot of attention recently
[1,2,9,10,13,17]. In [9], Lin and Lee applied a neural-
network-based fuzzy logic system to control and
decision systems. After a slight modi�cation of the
network, Chen and Teng [4] used a four-layer fuzzy
neural network (FNN) to establish a model refer-
ence control structure. In [17,13], the neural network
has been also successfully applied to estimate the
direction-of-arrival (DOA) of narrow-band signals,
which are emitted by a far-�eld target and impinge
on an array of passive sensors. In this paper, we
will use the FNNs to establish a method to track a
near-�eld moving target. By near-�eld we mean that

∗ Corresponding author. Fax: 886-35-715998.
E-mail address: u8112810@cc.nctu.edu.tw (C.-W. Ma)

the distance from array center to the target is not far
enough, so that the wavefronts emitted by the target
are spherical rather than planar.
Recently, in the area of array signal processing,

there has been considerable interest in developing ef-
�cient algorithms for tracking moving targets [6,11].
These algorithms generally assume that the moving
target is in the far �eld, i.e., the signal received by
the array has planar wavefront. In this case, only the
direction-of-arrival (DOA) of the moving target is es-
timated. As a result, determining the location of a far-
�eld moving target requires two arrays separated in a
su�cient distance. When the source is not far away
from the array and the wavefronts are spherical, the lo-
cation of the near-�eld moving target can be estimated
using only one array. In [7], Huang and Barkat pro-
vided a modi�ed version of 2-D MUSIC and a max-
imum likelihood estimator for the near-�eld source
(target) localization problem. The main disadvantage
of these two methods is their high computational

0165-0114/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0165 -0114(97)00378 -3



366 C.-W. Ma, C.-C. Teng / Fuzzy Sets and Systems 110 (2000) 365–377

loading due to a two-dimensional search on the entire
solution space. This makes these two algorithms not
suitable for tracking a moving target. In [8], Lee et al.
introduced a so-called far-�eld approximation (FFA)
approach for the near-�eld direction �nding problem
when the array is uniformly spaced and linear. This
approach constructs a far-�eld approximation covari-
ance matrix from the received near-�eld covariance
matrix. It then applies existing far-�eld direction esti-
mation techniques, like MUSIC [12], to estimate the
directions of these near-�eld sources. The FFA ap-
proach, however, is highly biased in some situations
as we will see in Section 5 through computer simula-
tions. Moreover, the FFA approach does not provide
any information about the distance. Taking view of
the success of fuzzy neural networks on engineering
problems, we are motivated to solve the near-�eld
moving target tracking problem using FNNs. The
fuzzy neural networks are expected to be able to deal
with the on-line tracking problems due to its parallel
and real-time computational capability.
In this paper we estimate two parameters for locat-

ing a target: (1) the angle between array normal direc-
tion and the target direction, and (2) the distance from
the array center to the target. The proposed FNN-based
near-�eld moving target tracker �rst estimates the an-
gle by an FNN. According to the value of the estimated
angle, di�erent FNN is used to estimate the distance.
In other words, the FNN-based tracker involves one
FNN for angle estimation and several FNNs for dis-
tance estimation. The performance of the FNN-based
angle and distance estimators are illustrated by com-
puter simulations. We �nd that both the angle and
distance estimator provide satisfactory estimates. As
a result, the proposed FNN-based tracker tracks the
moving target with su�cient accuracy.

2. Problem formulation

Consider a near-�eld moving target which emits
narrow-band signals impinging on a passive sensor
array composed of p elements. The location of each
sensor is arbitrary as shown in Fig. 1. Since the target
is located in the near-�eld, the signal wavefronts are
spherical rather than planar. Under the near-�eld as-
sumption, the observed data collected by the ith sen-
sor at a particular time instance t can be expressed, by

Fig. 1. Array geometry.

its complex envelope, as

xi(t)= ai(r; �) · s(t) + ni(t); i=1; : : : ; p; (1)

where r is the distance from array center to the target,
� is the angle between array normal direction and the
target direction, and s(t) and ni(t) denote the scalar
complex waveform of the signal emitted by the target
and the additive noise at the ith sensor, respectively.
Moreover, ai(r; �) ·s(t) presents the complex response
at ith sensor, where ai(r; �) is expressed as follows [7]:

ai(r; �)=
ci
zi
exp

(
− j 2�

�
zi

)
: (2)

In (2), � is the wavelength of the impinging waves,
zi is the distance from the ith sensor to the moving
target, and ci is the gain coe�cient of the ith pas-
sive sensor. Without loss of generality, we assume
that the sensors are omnidirectional, i.e. ci=1 for
i=1; 2; : : : ; p. As shown in Fig. 1, zi is computed as
follows:

z2i = r
2 + d2i − 2rdi cos�i; (3)

where

�i= �i + �: (4)

Our aim here is to on-line estimate the angle � and
the distance r of the moving target based on the ob-
served data {xi}pi=1 using FNNs.

3. Fuzzy neural networks

In this section, we describe a four-layer fuzzy neural
network which is a modi�ed version of that proposed



C.-W. Ma, C.-C. Teng / Fuzzy Sets and Systems 110 (2000) 365–377 367

Fig. 2. Structure of a fuzzy neural network.

in [3]. This network will be adopted to estimate the
angle � and the distance r in the next section.

3.1. Structure of the FNN

As shown in Fig. 2, the fuzzy neural network
adopted in this paper is an n-input, 1-output, and
m-rule fuzzy neural network that maps {ui}ni=1 into y.
It constructs fuzzy rules one by one and adds all rules
together. Although it looks like the one proposed
in [3], the network uses a di�erent defuzzi�cation
operation. Suppose that the jth fuzzy rule reads

IF u1 IS A1; j, u2 IS A2; j ; : : : ; un IS An; j,

THEN y IS wj.

Fig. 3 shows the implementation of this rule. Putting
all fuzzy rules together, we get the whole fuzzy neural
network which is shown in Fig. 2. Layer 1 of such a
network is the input layer. It propagates the crisp input
ui to layer 2. Layer 2 is the singleton fuzzi�cation
layer, which maps crisp input value ui into fuzzy set
Ai; j with membership degree �Ai; j (ui). In this paper,
�Ai; j (·) is a Gaussian function, i.e.

�Ai; j (ui)= exp
[
− (ui − ai; j)

2

2(�i; j)2

]
(5)

Fig. 3. Implementation of a fuzzy rule.



368 C.-W. Ma, C.-C. Teng / Fuzzy Sets and Systems 110 (2000) 365–377

where ai; j is the mean (or center) and (�i; j)2 is the
variance (or width) of the Gaussian function. The
membership degree �Ai; j (ui) is then propagated to
layer 3. Layer 3, the fuzzy reasoning layer, performs
IF-condition reasoning by a product operation and
generates the �ring strength �j of the jth fuzzy rule by

�j =
n∏
i=1

�Ai; j (ui): (6)

After the �ring strength, �j, of each rule is computed,
the network multiplies �j by the consequence weight
wj to obtain the contribution of jth rule on the output y.
Finally, at layer 4, all the contribution of the m fuzzy
rules are summed up to produce the output of the FNN,
say

y=
m∑
j=1

wj�j: (7)

We refer to the defuzzi�cation process (7) as weighted
sum defuzzifer. This FNN structure is similar to the
one reported by Chao [3] except the defuzzi�cation
process. It is a universal approximator which is capa-
ble of approximating any real continuous function with
satisfactory accuracy, provided that su�cient fuzzy
rules are used [16].

Remark. Note that instead of using the commonly
used center average defuzzifer, the proposed network
uses the weighted sum defuzzifer. In our experience
the latter is simpler than, but as e�cient as, the former.
In [4], Chen also uses the weighted sum defuzzifer.
However, the network proposed in [4] does not con-
struct fuzzy rules one by one. The advantage of con-
structing fuzzy rules one by one is that the number of
fuzzy rules can be arbitrarily assigned, regardless of
the number of inputs. The fuzzy neural network used
in [4] makes fuzzy partitions of the input space. As a
result, the number of fuzzy rules increases exponen-
tially with the number of inputs. In the applications of
array signal processing, the number of sensors is gen-
erally not a small number. If the number of fuzzy rules
increases exponentially with the number of inputs (i.e.
the number of sensors), the fuzzy neural network will
be very large and will be impractical.

3.2. Design procedure

Although the FNN is considered as an universal
approximator to any real continuous function, the de-
termination of the membership function �Ai; j (·) and
consequence weight wj in (6) and (7) plays a crucial
role when designing the fuzzy neural network. Proper
determination of �Ai; j (·) and wj leads to a good func-
tion approximator with high accuracy. Otherwise, the
FNN will not be a satisfactory function approximator.
One way to determine �Ai; j (·) and wj is to consult the
experts. This way, however, generally provides unsat-
isfactory accuracy for engineering problems. The ad-
vantage of the FNN is that we are able to adjust both
wj and �Ai; j (·) using the back-propagation algorithm,
provided that a lot of input–output training pairs are
available. The back-propagation algorithm performs
the supervised gradient descent learning. Interested
readers may �nd the details of the learning processes
in [4]. In the following we summarize the design
procedure.
Step 1: Compute a lot of input–output pairs of the

desired function.
Step 2: Construct an initial FNN according to expert

knowledge or any other initialization proce-
dure, e.g., the on-line initialization procedure
proposed in [3].

Step 3: Train the FNN (i.e., adjust wj and �Ai; j (·)) by
back-propagation algorithm to make the FNN
�t the input–output pairs obtained in Step 1.

Step 4: Eliminate redundant rules, which consist
of fuzzy sets which look like impulsive
functions.

Note that Step 4 aims at con�rming the interpolation
capability of the FNN. Let FNN(u1; u2; : : : ; un) denote
the output of the FNN when its input is (u1; u2; : : : ; un).
After training, we have

‖y−FNN(u1; u2; : : : ; un)‖¡� for all training pairs.

(8)

It, however, does not guarantee

‖y−FNN(u1; u2; : : : ; un)‖¡�

for all y and {ui}ni=1. (9)

It is our experience that some of the fuzzy sets look
like impulse functions after training. These impulse-



C.-W. Ma, C.-C. Teng / Fuzzy Sets and Systems 110 (2000) 365–377 369

like fuzzy sets may produce an impulse at the out-
put. As is well known, the desired function that maps
{ui}ni=1 to y is a smooth function. A small change
in {ui}ni=1 does not produce large change in y. Sup-
pose that a fuzzy set of the jth rule looks like an im-
pulse and all training data does not �re this rule. Then,
the impulse-like fuzzy set may produce an impulse
at the output of the FNN, while during the training
step, the e�ect of the impulse-like fuzzy set does not
exhibit. Therefore, before putting the FNN into prac-
tical usage, the e�ect of these impulse-like fuzzy sets
should be removed. One way to remove this e�ect is
to eliminate fuzzy rules that consist of impulse-like
fuzzy sets. The fuzzy rule that consists of the impulse-
like fuzzy sets is referred to as a redundant fuzzy rule.

4. FNN-based near-�eld moving-target tracker

Tracking the near-�eld moving target requires es-
timating two parameters: � and r. The array output
vector {xi(t)}pi=1 is used to estimate these two pa-
rameters. The purpose of the FNN-based near-�eld
moving-target tracker is to establish a system that
maps {xi(t)}pi=1 into � and r. In this section, we
introduce two kinds of FNN-based estimators. One
is the FNN-based angle estimator, the other is the
FNN-based distance estimator. The FNN-based angle
estimator estimates the angle without considering the
distance. The FNN-based distance estimator, how-
ever, requires information of the estimated angle. Ac-
cording to the value of the estimated angle, di�erent
FNN-based distance estimator is used to estimate the
distance. Putting the FNN-based angle and distance
estimators together, we successfully establish an
FNN-based near-�eld moving target tracker.

4.1. FNN-based angle estimator

In [13], Southall et al. used a neural network to esti-
mate the angle of plan waves emitted by a far-�eld tar-
get. They believed that the amplitude of the received
signal is not a strong indicator of the angle. Instead,
they thought that the phase is much more important.
Using a neural network to learn the relationship be-
tween the angle and relative phases between adjacent
sensors, they successfully designed a far-�eld angle
estimator. Herein, our problem is more complicated.

Fig. 4. FNN-based angle estimator.

The target we consider is not located in the far �eld.
Since we consider near-�eld targets, both magnitude
and phase of the array outputs have strong relation-
ship with the angle �. In other words, both the real
and imaginary parts of array responses have strong
relationship with �. Therefore, we use an FNN to es-
tablish a function that maps from both the real and
imaginary parts of the array responses to the angle �.
Fig. 4 shows the structure of the FNN-based angle es-
timator. Since the initial phase of the received signal
is not known, we preprocess the array output by the
following equations:

u2i−1 = real part of xi=xi+1; (10)

u2i = imaginary part of xi=xi+1; (11)

i=1; 2; : : : ; p− 1: (12)

u2i−1 and u2i are treated as the inputs of the FNN.
The output of the FNN y is postprocessed to produce
the angle estimate �̂. The postprocessing simply shifts
and scales y, i.e.,

�̂=
�max − �min

2
×y + �max + �min

2
; (13)

where �max and �min are the maximum and minimum
of the angle that the target may travel to. The reason
of the postprocessing is that, in our experiences, the
FNN has a fast learning speed if its output y lies in
the region [−1; 1].
Remark. We now follow the procedure described
in Section 3 to show how to design an FNN-based
angle estimator step by step. At Step 1 of the



370 C.-W. Ma, C.-C. Teng / Fuzzy Sets and Systems 110 (2000) 365–377

procedure, (1), (10), (11), and (13) are used to com-
pute the input–output pairs, i.e., the pair of {ui}ni=1
and y. One location implies one input–output pair.
So, we are able to obtain a lot of input–output pairs.
At Step 2, we construct an initial FNN. As mentioned
in the previous section, the number of fuzzy rules
can be arbitrarily assigned. Our strategy is to assign
a large number of fuzzy rules. The fuzzy sets of each
fuzzy rule can be designed without considering other
fuzzy rules. An important problem is how to choose
the initial parameters of the fuzzy sets. Instead of
consulting the expert knowledge or using fuzzy-c-
means [15], we use the on-line initialization method
proposed in [3] to determine the initial parameters,
including ai; j and �i; j of �Ai; j (·) and the consequence
weights wj. The on-line initialization method directly
uses the �rst m training pairs to determine all the ini-
tial parameters. Although this method is quite simple,
it is e�cient and su�cient in practical applications.
At Step 3 of the design procedure, the back-
propagation algorithm is used to adjust the parameters
of the FNN. After training, the FNN approximates
the training data with satisfactory accuracy. However,
as mentioned in Section 3, the e�ect of impulse-
like fuzzy sets should be eliminated by Step 4. At
Step 4, the redundant fuzzy rules, which consist of
Gaussian membership functions with small variances,
are removed.

4.2. FNN-based distance estimator

For angles in di�erent angular section, di�erent
FNN-based distance estimator is designed to estimate
the distance. Fig. 5 shows the structure of the FNN-
based distance estimation for a particular angular
section. Note that the output of the postprocessing
becomes r̂1=k , where k is a factor greater than 1. The
reason for using such a factor k is that when the target
travels away from the array but the angle is �xed, the
farther the target travels, the smaller the array output
changes, i.e.,

dui
dr

∣∣∣∣
r is small

� dui
dr

∣∣∣∣
r is large

: (14)

This fact makes the back-propagation algorithm hard
to teach the FNN to map {ui}ni=1 into r. Therefore, we

Fig. 5. FNN-based distance estimator.

assume that there exists a constant k which is greater
than 1, and the following equation holds:

dui
dr1=k

∣∣∣∣
r is small

≈ dui
dr1=k

∣∣∣∣
r is large

: (15)

The back-propagation algorithm is now able to teach
the FNN to map {ui}ni=1 into r1=k with su�cient accu-
racy. Following the procedures described in Section 3,
the FNN-based distance estimator can be established.

4.3. FNN-based near-�eld moving target tracker

For di�erent angular section, we design di�erent
distance estimator. Using these FNN-based distance
estimators and the FNN-based angle estimator, the
FNN-based near-�eld moving target tracker is con-
structed as shown in Fig. 6. The estimated angle is
used to select the proper FNN-based distance estimator
for estimating the distance r. The structure is imple-
mented in parallel and is suitable for on-line process-
ing. In other words, it is suitable for tracking a moving
target.

5. Computer simulations

In this section, we used various computer simulation
results to show the performance of the FNN-based
angle and distance estimators and the FNN-based
tracker. In Example 1, we presented a detail example
of designing an FNN-based angle estimator and com-
pared the performance of the FNN-based angle esti-
mator with the FFA approach proposed in [8]. As we
will see, the FFA approach was highly biased when



C.-W. Ma, C.-C. Teng / Fuzzy Sets and Systems 110 (2000) 365–377 371

Fig. 6. FNN-based near-�eld moving target tracker.

the angle � was large and the distance r was short.
The FNN-based angle estimator did not have such
a shortage. In Example 2, we explored the perfor-
mance of the FNN-based distance estimator. It turns
out that the distance estimates were more accurate
when the distance was shorter. Example 3 veri�ed the
capability of the FNN-based near-�eld moving-target
tracker. Finally, in Example 4, we compared the
computational complexity between the FNN-based
tracker and the MLE approach presented in [7].

Example 1. We considered an acoustic signal source
(target) located in the near �eld, emitting 100Hz-
centered narrow-band waves into a linear array with

�ve sonar elements uniformly spaced half a wave-
length a part. Since the far-�eld distance (p−1)2(�=2)
was about 116m, the target we considered here was
located at a distance of 10–80m. Note that the FNN
approach did not require the array to be linear and
uniformly spaced. However, in order to compare the
performance between the FFA approach and the FNN
approach, the array under consideration was linear and
uniformly spaced.

For designing an FNN-based angular estimator, we
began with computing the training pairs. A certain
location of the target implied an input–output train-
ing pairs. 820 training pairs computed by (1), (10),



372 C.-W. Ma, C.-C. Teng / Fuzzy Sets and Systems 110 (2000) 365–377

(11), and (13) were used to train an FNN consist-
ing of 40 fuzzy rules by back-propagation algorithm.
The parameters of the initial FNN were selected by
the on-line initialization method proposed in [3]. In
other words, 40 input–output pairs out of the 820
training pairs were used to determine the parame-
ters of the 40 fuzzy rules at the beginning. After 300
training steps, the back-propagation algorithm con-
verged. As mentioned in Section 3, we had to elim-
inate the redundant fuzzy rules. Fuzzy rules consist-
ing of Gaussian membership functions with variances
less than 0.1 were considered redundant and were
eliminated. There were 16 fuzzy rules that should
be eliminated. After eliminating these 16 redundant
fuzzy rules, we obtained a 24-rule FNN. Fig. 7 de-
picts the angle estimation error the 40-rule FNN-based
angle estimator, for which the redundant fuzzy rules
were not yet eliminated. One impulse appeared in
Fig. 7. This means that the 40-rule FNN was not
suitable for estimating the angle, because the estima-
tion error might be dramatically large at some situ-
ations. Fig. 8 depicts the estimation error of the 24-
rule FNN-based angle estimator, for which the redun-
dant fuzzy rules were eliminated. Obviously, the im-
pulse in the error curve had been removed. In other
words, the e�ect of the impulse-like fuzzy sets was
avoided.
Regarding the performance, the performance of the

FNN-based angle estimator and the FFA approach in
noise-free environment were compared. The noise-
free environment allowed us to be able to clearly ex-
amine the bias of these two methods. Fig. 9 plots the
estimation error of these two methods. We observed
that the FNN-based angle estimator was better than
the FFA approach, especially when the distance was
short or the angle was large.

Example 2. After the angle was estimated, we pro-
ceeded to estimate the distance by FNN-based distance
estimators. The same acoustic signal source (tar-
get) and sonar array as those considered in Ex-
ample 1 were considered here. Assuming that the
angle might vary from −40◦ to 40◦, we divided
the whole angle region into eight equal sections,
i.e., [−40◦; −30◦); [−30◦; −20◦); [−20◦; −10◦);
[−10◦; 0◦); [0◦; 10◦); [10◦; 20◦); [20◦; 30◦), and [30◦;
40◦). For a particular angular section, we designed
an FNN-based direction estimator for it.

In the following, we report how we designed
an FNN-based distance estimator for angular sec-
tion [0, 10). First, a lot of input–output pairs were
obtained by setting �= [−2; 0; : : : ; 12], k =3 and
r1=k = [101=k ; : : : ; 801=k ]. Second, the on-line initializa-
tion procedure was used to initialize a 40-rule FNN.
Then, the back-propagation algorithm was used to ad-
just the FNN and made the FNN �t the input–output
training pairs. Finally, 11 fuzzy rules that consisted of
Gaussian membership functions with variances less
than 0.05 were considered redundant and were elimi-
nated. Note that, in this example, FNN-based distance
estimators for other angular sections had eliminated
8–15 redundant fuzzy rules.
Fig. 10 depicts the estimation errors of these FNN-

based direction estimators. As Example 1, data in
Fig. 10 were obtained in noise-free environment. We
observed that for all the sub�gures of Fig. 10, when
the distance was less then 40m, the distance esti-
mation error was very small. When the distance be-
came larger, the estimation error became larger too.
Nonetheless, all the estimation errors were bound in
[−0:5; 0:5]m. As we will see in the next example,
the estimation accuracy was satisfactory for tracking
moving targets.

Example 3. The same sonar array was considered in
this example. The target, however, was moving now.
In order to track the moving target, the FNN-based an-
gle estimator and the FNN-based distance estimators
were put together to construct an FNN-based near-
�eld moving target tracker as shown in Fig. 6.

Figs. 11–16 illustrate the tracking performance for
di�erent trajectories of the moving target and for dif-
ferent signal-to-noise ratios (SNR). In Fig. 11, the
SNR value was 90 dB. We observed that the proposed
FNN-based tracker could track the moving target with
high accuracy. The high tracking performance resulted
from the high accuracy of the FNN-based angle esti-
mator, and the FNN-based distance estimators. Fig. 12
was the result for the same trajectory when the SNR
was 80 dB. We found that when the target traveled at
a distance about 80m away from the array center, the
tracking error became visible. However, when the tar-
get traveled at a distance less than 50m from the array
center, the tracking error was almost not visible. For
Fig. 13, the target traveled along the same trajectory



C.-W. Ma, C.-C. Teng / Fuzzy Sets and Systems 110 (2000) 365–377 373

Fig. 7. Angle estimation error before eliminating redundant fuzzy rules.

Fig. 8. Angle estimation error after eliminating redundant fuzzy rules.



374 C.-W. Ma, C.-C. Teng / Fuzzy Sets and Systems 110 (2000) 365–377

Fig. 9. Angle estimation error vs. distance: solid line (FNN-based angle estimator), dash line (FFA approach).

Fig. 10. Distance estimation error vs. distance: FNN-based distance estimator.



C.-W. Ma, C.-C. Teng / Fuzzy Sets and Systems 110 (2000) 365–377 375

Fig. 11. Tracking performance, smooth trajectory, SNR =90 dB:
solid line (FNN approach), dashdot line (actual trajectory),
*-marker (sensor location).

Fig. 12. Tracking performance, smooth trajectory, SNR =80 dB:
solid line (FNN approach), dashdot line (actual trajectory),
*-marker (sensor location).

Fig. 13. Tracking performance, smooth trajectory, SNR =
70 dB: solid line (FNN approach), dashdot line (actual trajectory)
*-marker (sensor location).

Fig. 14. Tracking performance, non-smooth trajectory, SNR=
90 dB: solid line (FNN approach), dashdot line (actual trajectory),
*-marker (sensor location).



376 C.-W. Ma, C.-C. Teng / Fuzzy Sets and Systems 110 (2000) 365–377

Fig. 15. Tracking performance, non-smooth trajectory, SNR=
80 dB: solid line (FNN approach), dashdot line (actual trajectory),
*-marker (sensor location).

Fig. 16. Tracking performance, non-smooth trajectory, SNR =
70 dB: solid line (FNN approach), dashdot line (actual trajectory),
*-marker (sensor location).

and the SNR was 70 dB. The tracking error became
more visible. However, when target traveled near the
array, the tracking error was also small. Figs. 14–16
show the tracking performance while the target mov-
ing along a non smoothing trajectory. We observed
that the FNN-based tracker was also e�cient for non-
smooth trajectories.

Example 4. In this example, we computed the com-
putational complexity of the FNN-based tracker, and
compared it with the MLE approach presented in [7].
The FNN-based tracker consisted of an FNN-based
angular estimator and many FNN-based distance es-
timators. At a particular time instance, however, only
one FNN-based distance estimator was �red. There-
fore, the computational complexity was dominated by
an FNN-based angular estimator and an FNN-based
distance estimators. In the following, we used the
number of 
oating point operations (
ops) de�ned in
MATLAB 1 as an index of the computational com-
plexity. The total 
ops of an n-input; m-rule, and one-
output FNN network is


ops at layer 2 + 
ops at layer 3

+
ops at layer 4 (16)

= n× 5× m+ n× m+ 2× m: (17)

The FNN-based angular estimator in Example 3 con-
sisted of 24 rules and 8 inputs. The distance estima-
tor consisted of about 28 rules and 8 inputs. Totally,
the computational complexity of the FNN-based tar-
get tracker was about 2600 
ops.
Considering the computational complexity of the

MLE approach, we started by computing how many
points the MLE had to examine in the entire solution
space. In Example 3, the angle � varied from −40◦ to
40◦; the distance r varied from 10 to 80m. Examining
theMLE cost function at each 1◦ and each 1m requires
computing the MLE cost function 5600 times. The
MLE cost function used in [7] was

g(r; �)= trace{Pa(r; �) · R̂x}; (18)

where a(r; �) was de�ned as the complex conjugate
transpose of [a1(r; �); a2(r; �); : : : ; ap(r; �)], Pa(r; �) was
the projection operator onto the space spanned by

1 MATLAB is a trade mark of MathWorks Inc.



C.-W. Ma, C.-C. Teng / Fuzzy Sets and Systems 110 (2000) 365–377 377

a(r; �), and R̂x was the data covariance matrix. For
Example 3, MATLAB used 1287 
ops to compute
Eq. (18). As a result, the computational complexity
of the MLE approach was about 5600 × 1287=2600
times that of the FNN approach. Note that although
the MLE approach might provide accurate estimates
even in low SNR situations, the high computational
complexity made the MLE approach not suitable for
tracking a moving target.

6. Conclusion

We have shown that the FNNs can be used to es-
tablish a near-�eld moving target tracker. This kind
of tracker can deal with arbitrary array geometry. Due
to its parallel computational capability, it also ful�lls
the on-line tracking purpose. Regarding the structure,
it involves an FNN-based angle estimator and some
FNN-based distance estimators. The FNN-based an-
gle estimator estimates the angle without considering
the distance. The estimated angle is then used to select
a proper FNN-based distance estimator for estimating
the distance. Both the angle and distance are estimated
on-line. Thus, the moving target is tracked. Computer
simulations have validated the tracking capability of
the novel tracker. To sum up, we believe that by judi-
ciously applying the fuzzy neural networks, some of
the signal processing problems can be well resolved.
More applications of the fuzzy neural networks to
signal processing problem can be expected in the fu-
ture. This is also our future research interest.

References

[1] J.F. Baldwin, R.M. Gooch, T.P. Martin, Fuzzy processing
of hydrophone sounds, Fuzzy Sets and Systems 77 (1996)
35–47.

[2] J.J. Buckley, Y. Hayashi, Fuzzy neural networks: a survey,
Fuzzy Sets and Systems 66 (1994) 1–13.

[3] C.T. Chao, Y.J. Chen, C.C. Teng, Simpli�cation of fuzzy-
neural systems using similarity analysis, IEEE Trans. System
Man Cybernet. 26 (5) (1996) 344–354.

[4] Y.C. Chen, C.C. Teng, A model reference control structure
using a fuzzy neural network, Fuzzy Sets and Systems 73
(1995) 291–312.

[5] Y.M. Chen, J.H. Lee, C.C. Yeh, Two-dimensional angle-of-
arrival estimation in presence of �nite distance sources, IEEE
Trans. Antennas Propagat. 40 (9) (1992) 1011–1021.

[6] A. Eriksson, P. Stoica, T. S�oderstr�om, On-line subspace
algorithm for tracking moving sources, IEEE Trans. Signal
Process. 42 (5) (1994) 2319–2330.

[7] Y.D. Huang, M. Barkat, Near-�eld multiple source
localization by passive sensor array, IEEE Trans. Antennas
Propagat. 39 (7) (1991) 968–975.

[8] J.H. Lee, Y.M. Chen, C.C. Yeh, A covariance approximation
method for near-�eld direction-�nding using a uniform linear
array, IEEE Trans. Signal Process. 43 (5) (1995) 1293–1298.

[9] C.T. Lin, C.S.G. Lee, Neural-network-based fuzzy logic
control and decision system, IEEE Trans. Comput. 40 (12)
(1991) 1320–1336.

[10] J.M. Mendel, Fuzzy logic systems for engineering: a tutorial,
Proc. IEEE 83 (3) (1995) 345–377.

[11] C.R. Rao, C.R. Sastry, B. Zhou, Tracking the direction
of arrival of multiple moving targets, IEEE Trans. Signal
Process. 42 (5) (1994) 1133–1143.

[12] R.O. Schmidt, Multiple emitter location and signal parameter
estimation, IEEE Antennas Propagat. 34 (3) (1986) 276–380.

[13] H.L. Southall, J.A. Simmers, T.H. O’Donnell, Direction
�nding in phased arrays with a neural network beamformer,
IEEE Trans. Antennas Propagat. 43 (12) (1995) 1369–1374.

[14] M. Sugeno, An introductory survey of fuzzy control, Inform.
Sci. 36 (1985) 59–83.

[15] M. Sugeno, T. Yasukawa, A fuzzy-logical-based approach
to qualitative modeling, IEEE Trans. Fuzzy Systems 1 (1)
(1993) 7–31.

[16] L.X. Wang, Adaptive Fuzzy Systems and Control: Design
and Stability Analysis, Prentice-Hall, Englewood Cli�s, NJ,
1994.

[17] T. Wong, T. Lo, H. Leung, J. Litva, E. Bosse, Low-angle
radar tracking using radial basis function neural network, IEE
Proc. F 140 (11) (1993) 323–328.


