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Dissipation in a partially coherent flux-driven ring

M. T. Liu and C. S. Chu
Department of Electrophysics, National Chiao Tung University, Hsinchu 30050, Taiwan, Republic of China

~Received 9 July 1999!

We have studied a mesoscopic ring threaded by a magnetic flux that increases linearly with time. The ring
is partially coherent such that conduction electrons in the ring will encounter incoherent scatterings. We have
treated both the incoherent scatterings and the coherent inelastic processes on the same footing. AS-matrix
model, as proposed by Bu¨ttiker1,2 for incoherent scatterings, has been adopted for our situation. This allows us
to solve exactly, and analytically, the coherent inelastic processes caused by the time-varying magnetic flux.
Our results demonstrate unequivocally that, for the electrons emanating out of incoherent scatterings, the lower
the energies of these electrons the greater will be their net contribution to the dc component of the induced
current. A physical explanation is presented.
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I. INTRODUCTION

A mesoscopic conducting ring threaded by a magn
flux has been of great interest to physicists because it
vides a paradigm allowing issues of fundamental importa
to be tested experimentally.3 For a fixed magnetic flux, the
single-electron states in a one-dimensional~1D! ring can be
identified with the Bloch states in a 1D crystal that has
periodic potentialV(x)5V(x1L), whereV(x) is the poten-
tial along the ring andL is the circumference of the ring.4

The threading magnetic fluxF plays the role of a wave
vector k such that the dependence toF of the electronic
eigen-energies in the ring can be obtained through the
persion relationEn(k) of the corresponding 1D crysta
wherek52(2p/L)F/F* . HereF* 5hc/e is a flux quan-
tum, and the band indexn in En(k) denotes the spectrum o
eigen-energies for the electron states in the ring. Futherm
the persistent current in the ring, given byj
52(2/L)(nf nj n52c(nf n ]En /]F, where f n represents
the occupation number for thenth eigenstate, is a periodi
function of F. It is due to the periodic dependence ofEn
on k.

This concept of analogy between the states in a me
copic ring and that in a one dimension crystal was exten
by Büttiker, Imry, and Landauer4 to the case when the flux i
changing linearly in time. This analogy has taken the ad
batic point of view such that the time evolution of the sta
are interpreted in terms of the instantaneous eigenstate
the ring.5 The intuitive picture that arises is essentially th
the eigenstates in the ring, when driven by the induced fi
F, evolve along their respective dispersion curves accord
to the relation\ k̇52eF. The modification of this picture
due to the possible transitions between different ene
bands have also been discussed.

This intuitive picture has since become the basics for
discussions of a number of physical properties proposed
mesoscopic rings. In a disordered ring, the eigen-ener
over the entire range ofF can be grouped into bands sep
rated by energy gaps. For the case when the induced ele
field is small, such that the Zener tunneling between ba
can be neglected, the states are caused to traverse the
PRB 610163-1829/2000/61~11!/7645~7!/$15.00
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band periodically, with a frequencyv5eFL/\. It was hence
predicted that the induced current has no dc component
has a Josephson-like ac component.4 On the other hand,
when the induced electric field is large enough to bring ab
noticeable Zener tunneling, Lenstraet al.5–8 showed that the
phase randomization in the Zener tunneling alone can ge
ate a nonzero dc component in the current, and hence a
sistive behavior, in the ring. This result was controverted
Landauer9,10 that, in the absence of inelastic scattering,
energies stored in the system are retrievable in later time
that the dc component in the induced current must be ze

Meanwhile, Gefen and Thouless11 studied the same prob
lem by taking the weak localization point of view an
showed that the states are localized in energy wheneve
driven ring has elastic scatterings. They concluded that
energy can be supplied to the system in the steady state
that the system would exhibit a resistive behavior only in
presence of inelastic scattering. Blatter and Browne12 found
out that the process of phase randomization in the Ze
tunneling amplitudes leads to the localization of the electr
in energy space but not to the resistive behavior. More
cently, Goreliket al.13 proposed the possibility of fractiona
pumping of energy into the ring. All these studies demo
strate beyond doubt that a driven ring is a complicated pr
lem and that the physics depends intricately upon both
elastic and inelastic scatterings.

These many different predictions to the physical prop
ties of a driven ring are based on the interpretation of
wave functions expanded in terms of the instantane
eigenstates of the ring, as we have mentioned earlier. T
approach, though formally correct, is numerically very i
volved and usually approximations were introduced to s
plify the problem. However, in the case of a mesoscopic r
where phase coherence is important, we feel that the ti
evolution of the states should be treated more carefu
Hence we propose to solve the problem fully quantum m
chanically by invoking a different expansion scheme for t
wave functions of the states in the ring. In addition, to a
dress the resistive behavior, we have adopted the incohe
scatterer model2 for the incoherent processes in the ring. A
an illustration to the insights obtained from this approa
and to the effectiveness of this approach, we consider a
7645 ©2000 The American Physical Society



en
su
in

ss
c
a

gh

is
ex

ct
on
si
it
f
h

es
a

is
ffe
re
es
i

th
p
n
g

nt
by
e

of

tt
ou
or
re
d
s

ro
F
ve
m
u

en
ng
we
en

a-

x,
,

ly.

-
eld

at
ve

-
a

his
gle-

e
g.
he
t of

par-

ing

sen
ur

is

7646 PRB 61M. T. LIU AND C. S. CHU
tially coherent flux-driven smooth ring. We note that ev
though we have not included other coherent processes,
as those that arise from disorder, in the ring, we have
cluded in this case the coherent, but inelastic, proce
caused by the time-varying flux. We have solved these
herent inelastic processes exactly. The extension of our
proach to the case when the ring has impurities is strai
forward and is currently under investigation.

In this work, the basic wave functions in a driven ring
shown similar to that in a biased one dimension crystal
cept for a phase factor that has coupled thespatial to the
time coordinates. We note, however, that this phase fa
and the periodic boundary condition in the ring together c
stitute the essential causes for the difference in the phy
between a ring and a one dimension crystal. In fact, w
directions accounted for, the phase factor provides a way
the system to count the number of turns that the electron
traversed. The wave function of the electron then becom
sum over many terms, each has its own time dependence
each associates with a different number of net clockw
turns traversed by the electron. Hence, our results are di
ent from what one would expect if one adheres to the afo
mentioned intuitive picture—that a driven ring behav
analogously to a biased one dimension crystal. Since the
tuitive picture for the one dimension crystal has assumed
adiabatic viewpoint, the discrepancy we find is an exam
showing that an adiabatic approximation that works in o
dimension does not necessarily work in a mesoscopic rin

In addition to the fully quantum-mechanical treatme
our approach differs from previous works on driven rings
the method of implementing incoherent scatterings. Incoh
ent scatterings have previously been introduced by way
relaxation time14,13 or a cut-off time.11 But in transport phe-
nomena, the electrons that have suffered incoherent sca
ing should not be discarded. Rather, these electrons sh
be allowed to continue their contribution to the transp
current, albeit incoherently. We have adopted an incohe
scatterer model for our time-dependent situation. This mo
has the incoherently scattered electrons coupled to a re
voir through a unitary coherent scatterer.1 The model also
has the nice feature that the incoherently scattered elect
can be reintroduced back into the ring systematically.
nally, in the calculation of the current in the ring, we ha
included contributions from all electrons below the Fer
energy, we find that states below Fermi energy contrib
significantly.

The paper is organized as follows. In Sec. II, we pres
our formulation that incorporates the incoherent scatteri
into the coherent states of the driven ring. In Sec. III,
present our numerical results. Finally, in Sec. IV, we pres
a conclusion.

II. THEORY

The Schro¨dinger equation for an electron in a ring of r
dius r, and threaded by a magnetic fluxFB , is given by

1

2me*
S \

i

1

r

]

]f
1

e

c

FB

2pr D 2

C̃~f,t !5 i\
]

]t
C̃~f,t !, ~1!

whereme* is the effective mass of the electron ande.0.
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In the following we select the length unitR* 5r, the en-
ergy unit E* 5\2/(2me* R* 2), the time unitt* 5\/E* , the
angular frequency unitv* 5E* /\, and the flux unitF*
5hc/e. Furthermore, for a linearly increasing magnetic flu
we haveFB5vtF* . With this, the electron would have
respectively, gained, or lost, an energy 2pv if it moves
around the ring once counter-clockwisely, or clockwise
According to the above choice of units, the Schro¨dinger
equation is made dimensionless, given by

S 2 i
]

]f
1vt D 2

C̃~f,t !5 i
]

]t
C̃~f,t !, ~2!

which, when invoking a transformation

C̃~f,t !5e2 ivtfC~f,t !, ~3!

can also be cast into the form

S 2
]2

]f2
2vf D C~f,t !5 i

]

]t
C~f,t !. ~4!

From the above equations, we see thatC describes a one
dimensional particle acted upon by a constant electric fi

whereasC̃, together with the periodic boundary condition
all times, describes a particle in a driven ring. The two wa
functions differ by a phase factore2 ivtf, which has coupled
the time with thespatial coordinate. This phase factor con
tributes nontrivially to the deviation of the physics in
driven ring from that in a driven one dimension system. T
effect of the phase factor enters when we impose the sin

valueness inC̃ by matching the wave function atf50 to
that atf52p. To facilitate the matching, we define in th
following a basic set of wave functions for the driven rin
The actual wave function for the driven ring that satisfy t
single valueness can be constructed out of this basic se
wave functions. The basic wave functions that represent
ticle moving counter clockwisely is given by

C̃ (1)~f,t;«!5

Az~f,«!H1
3

(1)F2

3
z3/2~f,«!G

~6A3 v/p!1/2
e2 i («1vf)t,

~5!

and the basic wave functions that represent particle mov
clockwisely is given by

C̃ (2)~f,t;«!5

Az~f,«!H1
3

(2)F2

3
z3/2~f,«!G

~6A3 v/p!1/2
e2 i («1vf)t.

~6!

Here z(f,«)5v
1
3(f1«/v), and H1

3

(1)
(z),H1

3

(2)
(z) are Han-

kel functions. The energy parameter« is a continuous vari-
able.

The normalization of these basic wave functions is cho
such that their particle current is unity, according to o

units. The current j, given by the expressionj 5C̃*

(2 i ]/]f1vt)C̃1c.c., is in the unit of2eE* /h. This
choice of the normalization for the basic wave functions
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deemed necessary, as pointed out by Stone and Szafer15 if
we want to invoke the incoherent scatterer model
Büttiker1 for the incoherent processes in our system.

The incoherent scatterer model consists of a coupler
couples the electrons in the system to a reservoir. Cur
that flows into the reservoir will be reinjected back into t
system according to the distribution in the reservoir. Ther
no phase correlation between the currents that flow in
out of the reservoir. It is through this process that ph
coherence in the particles is lost. The unitary property of
coupler warrants the conservation of current. Furtherm
by describing the coupler in terms of an energy-independ
S, the incoherent processes can be cast into a scattering p
lem and is readily treated on the same footing with ot
coherent processes in the system. TheS matrix,1 given by

S5F 0 A12a Aa 0

A12a 0 0 Aa

Aa 0 0 2A12a

0 Aa 2A12a 0
G , ~7!

couples incoming waves, with amplitudes a
5(a1 ,a2 ,a3 ,a4), to the outgoing waves, with amplitudesb
5(b1 ,b2 ,b3 ,b4), through the relationbT5SaT. The nota-
tion convention for these amplitudes is shown in Fig. 1.

The form ofS is chosen such that it is unitary as long
the basic wave functions, both incoming and outgoing,
normalized to give a unit current. The coupling parametera,
with 0<a<1, gives the extent the ring couples with th
reservoir. Fora51, the particle will lose track of its phas
entirely once it encounters an incoherent process. Fora50,
the ring and the reservoir are decoupled. TheS matrix also

FIG. 1. A partially coherent flux-driven ring. The flux, repre
sented by the center shaded circle and directed out of the pag
linear in time with FB5vt. The ring is coupled via a coupler
depicted by the triangle, to a reservoir, depicted by the wavy l
The coordinatef measures the counter-clockwise displacemen
an electron along the ring.
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has the nice feature that the outgoing amplitudes do not
pend on the location of the coupler. For definitness, in
calculation, we choose the coupler to locate atf5f0.

We also define, in leadsi 53,4, basic wave functions rep
resenting particles that incident upon the coupler as

Y~xi ,t;«!5
e2 i («t2A«xi )

~2A«!1/2
, ~8!

and that emanating from the coupler as

Z~xi ,t;«!5
e2 i («t1A«xi )

~2A«!1/2
, ~9!

where the coupler is atxi50.
When electrons are incident from the reservoir within

energy intervald« via either lead 3 or 4, the incident curren
is N(«)52 f («)d«, where f («) is the Fermi-Dirac distribu-
tion for the reservoir with a chemical potentialm, and a spin
degeneracy has been included. Hence, we choose the
dent amplitude to beAN(«).

Now, for the case when the electrons incident from t
lead i 54, the wave functions in the leads 4 and 3 are,
spectively,

C̃45AN~«!Y~x4 ,t;«!, ~10!

and

C̃35 (
n50

`

t34~n!Z~x3 ,t;«n!. ~11!

We stress here that the coefficientsAN(«) and t34(n) are
more appropriately interpreted as the current amplitud
with the former as the incident current amplitude and
latter as the reflected current amplitudes. The use of the t
wave functionfor the states in the leads 3 and 4 is to ma
tain the uniformity in our formulation. The indexn denotes
the possible reflected electron energies that are resulted
the action of the time-varying flux in the ring.

Meanwhile, the wave functions in the ring, and in th
regionf0<f<2p, is of the form

C̃ I5(
n

@An~«n!C̃ (1)~f,t;«n2vf0!

1Bn~«n!C̃ (2)~f,t;«n2vf0!#, ~12!

and, in the region 0<f<f0, the wave function is given by

C̃ II 5(
n

@Cn~«n!C̃ (1)~f,t;«n2vf0!

1Dn~«n!C̃ (2)~f,t;«n2vf0!#. ~13!

Here, «n5«12pvn. These wave functions are written i
the form that facilitates the matching of the wave functio
at all times.

From matching the wave functions atf50 andf52p at
all times, we obtain the relationsCn(«n)5An21(«n21), and
Bn21(«n21)5Dn(«n). At the coupler, we obtain two more
relations,

, is

.
f
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An~«n!5AaN~«!dn,01A12aCn~«n!, ~14!

and

Dn~«n!5A12aBn~«n!. ~15!

We note here thatCn(«n)50 for n<0. Solving these rela-
tions, we findBn5Dn50, andAn is nonzero forn>0, given
by An(«n)5AaN(«)(12a)n/2.

This solution can be understood according to the follo
ing physical picture. First of all, the increasing flux induc
an electric field that points clockwisely along the ring. Se
ond, the electrons incident from leadi 54 enter the ring as
counter-clockwise moving states. These electrons will ma
tain their counter-clockwiseness under the action of the
duced field while theirenergyincreases because of the pha
factor e2 ivtf. This increasing inenergyis reflected by the
increasing in the index n in the relation Cn(«n)
5An21(«n21). At the coupler, there is a probability ampl
tudeA12a for the electrons to maintain their phase coh
ence and this condition is contained in Eq.~14!.

The time-averaged current^d j4& t in the ring is then evalu-
ated to give

^d j4& t5 (
n50

`

aN~«!~12a!n5N~«!. ~16!

For the case when the electrons incident from the leai
53, the wave functions in the lead 3 and 4 are, respectiv

C̃35AN~«!Y~x3 ,t;«!1(
n

r 33~n!Z~x3 ,t;«n!, ~17!

and

C̃45(
n

t43~n!Z~x4 ,t;«n!. ~18!

The coefficientsr 33(n) andt43(n) denotes the reflection cur
rent amplitudes in the leads 3 and 4, respectively. The wa
functions in the ring are of the same form as in Eqs.~12! and
~13!, except that the coefficientsAn , Bn , Cn , and Dn are

replaced byÃn,B̃n,C̃n, and D̃n. Following the same match
ing procedure, we obtain the relation

C̃n(«n)5Ãn21(«n21),B̃n21(«n21)5D̃n(«n), Ãn(«n)

5A12aÃn21(«n21), and also the relation

D̃n~«n!5AaN~«!dn,01A12aD̃n11~«n11!, ~19!

where D̃n50 for n.0. We note that the clockwise state
that are injected into the ring would become evanescent a
they have traversedN turns, withN5@«/(2pv)#, where@x#
denotes the largest integer smaller than or equal tox. At the

Nth turn, we haveC̃2N5D̃2Neid(«). Finally, we obtain the

expressions ofD̃2n for 0<n<N,

D̃2n~«2n!5~12a!n/2AaN~«!, ~20!

and ofC̃n for n>2N,

C̃n~«n!5~12a!N1n/2eid(«)AaN~«!. ~21!
-

-

-
-

-
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Again, the solution can be understood according to
following physical picture. The electrons incident from lea
i 53 enter the ring as clockwisely moving states. Under
action of the induced electric field, theenergyof these elec-
trons decreases as they maintain their clockwiseness.

feature is reflected in the relationB̃n21(«n21)5D̃n(«n). In
the Nth clockwise turn, the wave functions become evan
cent and the electrons are reflected into counter-clockwis

moving states. This feature is given by the relationC̃2N

5D̃2Neid(«). The electrons will then maintain their counte
clockwiseness while theirenergyincreases by the action o
the induced field. This feature is given by the relati

C̃n(«n)5Ãn21(«n21). At the coupler, the probability ampli
tude for the electrons to maintain their phase coherenc
contained in Eq.~19! and also in the recurrence relation fo

Ãn(«n) just before Eq.~19!.
The time-averaged current^d j3& t in the ring is evaluated

to be

^d j3& t52 (
n50

N

uD2n~«2n!u21 (
n52N

`

uCn~«n!u2

52N~«!@12~12a!N11#1N~«!~12a!N,
~22!

where the first, second, current term is, respectively, the c
tribution of the clockwise moving, counter-clockwise
moving, part of the electron wave function in the ring. It
worth noting that in the case of largeN, the first current term
will dominate and its value approaches2N(«), which is
exactly equal but opposite to the time-averaged curr
^d j4& t in Eq. ~16!. This result implies that the net dc com
ponent in the current goes to zero rapidly as the energy of
injected electrons increases beyond«@2pv.

In any case, the net dc component in the current due
particles injected from within thed« interval in the reservoir
is

^d j& t5^d j3& t1^d j4& t

52~12a!N~22a! f ~«!d«.
~23!

The total dc component in the current^ j & t then involves an
integral over all possible incident energies from partic
within the reservoir. The expression for^ j & t is

^ j & t52~22a!E
0

`

~12a!Nf ~«!d«. ~24!

Since our major focus in this paper is the effects of incoh
ent processes on the low-temperature characteristics in
soscopic rings, it suffices to let the temperature of the re
voir be zero. Thus the expression for^ j & t we used in our
following numerical examples is given by

^ j & t52~22a!E
0

m

~12a!N d«, ~25!

wherem is the chemical potential of the reservoir.
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III. RESULTS

We present in Figs. 2–4 thêj & t characteristics and its
dependence on the chemical potentialm of the reservoir, on
2pv, and ona, respectively. In these numerical example
the physical parameters are chosen to be that of a sem
ductor ring, withR* 5150 nm andme* 50.067me . Accord-

FIG. 2. Total dc component in the current^ j & t as a function ofm
for 2pv50.001 and fora50.001, 0.0025, and 0.005.

FIG. 3. ^ j & t as a function of 2pv for m525, and for fivea
values.
,
n-

ing to our choice of units, the induced electromotive for
2pR* F in the ring equals 1027 V when 2pv50.004.
Since our emphasis is upon the interplay between the co
ent nature of the mesoscopic ring and the dissipation in
ring, the numerical examples presented will be in the smaa
regime.

In Fig. 2, we present the total dc component in the curr
^ j & t as a function of the chemical potentialm for 2pv
50.001 and fora50.001, 0.0025, and 0.005. All the thre
curves show that̂j & t increases withm initially and saturates
in the largerm regions. The saturated value of^ j & t depends
on a and is larger for smallera. Furthermore, the curves fo
larger a have their saturation features occurred earlier,
smallerm values. This saturation feature, together with t
trend that the slope of̂j & t decreases monotonically withm,
demonstrates unequivocally that the greater the energie
the electrons that emanate out of incoherent scatterings
smaller will be their net contribution tôj & t . These features
can be understood according to the remarks we made in
paragraph before Eq.~22!.

A more comprehensive account is summarized in the
lowing. The electrons that have suffered from incoher
scatterings are reinjected back into the system, but they
equally likely to be injected into either clockwise- o
counter-clockwise-moving states in the ring. Those electr
that move against the direction of the induced field will ke
on moving in the same direction while theirenergiesin-
crease continuously. This cannot keep on indefinitely
cause the electrons will, unavoidably, lose their phase co
ence via incoherent scatterings. On the other hand, th
electrons that move along the direction of the induced fi
have theirenergiesdecrease continuously. Whether the
electrons can hit their classical turning point and change t
direction of propagation depends on the degree of cohere

FIG. 4. ^ j & t as a function ofa for m525, and for 2pv
50.01, 0.004, and 0.001.
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7650 PRB 61M. T. LIU AND C. S. CHU
the energy of the reinjected electrons, and the magnitud
the induced field. The electrons will have a greater chanc
hitting their classical turning point if they can maintain the
coherence longer. Hence, the favorable condition for
electrons to hit their classical turning point and be reflec
is to have smalla, m, and large 2pv. For those electrons
that cannot hit their classical turning point, the correspond
aN5a@«/2pv# is very large. Our results in Eq.~22! show
that the contributions to the dc component in the curr
from both the clockwise- and counter-clockwise-inject
electrons will then cancel each other exactly. However,
those electrons that hit their classical turning point and
reflected, they have a net contribution. With this understa
ing, we then expect the above two physical situations
manifest differently in their dissipation characteristics.

Indeed, two dissipation characteristics are identified
Fig. 2. In the smallm region,^ j & t increases withm, showing
that all reinjected electrons contribute. The curvature in
curves show that contributions from electrons of larger
jected energies are smaller. This then is the regime when
reinjected electrons can hit their classical turning points.
call this the regime of coherent reflection. In the largerm
region, ^ j & t becomes saturated, showing that electrons
larger injected energies no longer contribute. This then is
regime when electrons of larger injected energies canno
their classical turning point. We call this the saturation
gime. In addition, asa decreases, the regime of cohere
reflection becomes more favorable such that the satura
feature is pushed to largerm values and the saturation valu
of ^ j & t increases.

In Fig. 3, we present̂ j & t as a function of the induced
electromotive force 2pv for m525, and for five values of
a, as indicated in the figure. The curves ofa50.005, and
0.0025 are linear, showing Ohmic-like behavior. Howev
the other curves of smallera values are no longer linear
showing non-Ohmic-like behavior. With the help of Fig.
we see that the Ohmic-like behavior corresponds to
saturation regime while the non-Ohmic-like behav
corresponds to the coherent reflection regime. Thus Fig
is another manifestation of these two regimes. The dep
dence of ^ j & t on a is presented in Fig. 4 wherem525,
and 2pv50.001, 0.004, and 0.01. The overall tren
shown is that ^ j & t drops as a increases or as 2pv
decreases. Again, this trend is consistent with our ab
understanding.

The approach in this paper also allows us to obtain
analytic expressions for the ac component in the curren
the saturation regime and in the smallv regime. Since the
current expression obtained from the wave functions in E
~12! and ~13! involves a double sum over terms with tim
dependences of the form sin(2pmvt), we look, in particular,
at the ac componentm51. For electrons injected within th
d« interval, the net contribution to the ac componentj 1 in
the ring is obtained, given by

j 154N~«!A12a sin~A«2p!sin~2pvt !. ~26!

In obtaining this expression, we have assumed that the e
trons cannot reach their classical turning point due to
incoherent processes. This result forj 1 has the added prop
of
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erty that the contribution from larger« is greater, which is
different from the dissipation characteristics in the dc co
ponent in the current.

As a comparison with an adiabatic point of view, w
calculate the persistent currentj p(a) in the ring for a static
flux F5aF* . Using similar approach in this paper, we o
tain

j p5aN~«!@F~a,«,a!2F~a,«,2a!#, ~27!

where

F~a,«,a!5
1

22a22A12a cos@2p~A«2a!#
. ~28!

If we assume the adiabatic viewpoint by allowinga5vt,
then j p(vt) would contain many terms with time depen
dences of the form sin(2pmvt). We find that them51 term
j p,1 , extracted from Eq.~27! using Fourier expansion, is th
same asj 1 in Eq. ~26!. Thus, we find in this situation that th
ac component in the current is consistent with the adiab
point of view but the dc component is not.

IV. CONCLUSION

In conclusion, we have found interesting dissipation ch
acteristics in a partially coherent flux-driven ring. Two r
gimes are identified. The first regime corresponds to the s
ation when the electrons that emanate out of incohe
scatterings, and move along the direction of the induc
electric field, have appreciable chance of reaching their c
sical turning point. In this regime, the dissipation is n
Ohmic-like and the dc component in the current increa
with the Fermi energym. The second regime corresponds
the situation when most of the electrons that emanate ou
incoherent scatterings, and move along the direction of
induced electric field, have negligible chance of reach
their classical turning point. In this regime, the dissipation
Ohmic-like while the dc component in the current becom
independent of the Fermi energy. However, in this latter
gime, we find that the ac component in the current, with
period of 1/v, is the same as the adiabatic result. All the
results are the consequences of the coherence and the
logical nature of the ring combined. We expect these dis
pation characteristics to manifest also in flux-driven rin
containing impurities that are in the regime of significa
Zener tunneling.
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