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Time moment analysis of first passage time, time lag and residence time
problems via Taylor expansion of transmission matrix

Jenn-Shing Chen® and Wen-Yih Chang
Department of Applied Chemistry, National Chiao-Tung University, Hsin-Chu, 30500, Taiwan

(Received 28 October 1999; accepted 15 December)1999

Taylor expansioriwith respect to the Laplace variab® of the transmission matrix;(s), has been
developed for the diffusion transport with position-dependent diffusividyx) and partition
coefficient, K(x). First, we find the relation between the expansion coefficients of the matrix
elements and the moments of the first passage times by connecting thifs) ta¢he Laplace
transform of the escaping flud(t). The moments can be formulated by repeated integrafq xf
and[D(x)K(x)]~* from solving the backward diffusion equation subject to appropriate initial and
boundary conditions. In this way, Taylor expansion coefficient¥ qfs), T,:(S), andT,,(s) are
expressed in terms of the repeated integrals. Further application of the idertiigsdetl leads to

the Taylor expansioii 1,(s). With the knowledge of the Taylor expansionTfs), the formulation

of the time moments for diffusion problems with position depend2(t) and K(x) subject to
various initial and boundary conditions is then just a simple, algebraic manipulation. Application of
this new method is given to the membrane permeation transport and mean residence time problem.
© 2000 American Institute of Physids$0021-9606800)50810-1

INTRODUCTION Of them the absorptive permeation is the commonest prac-
tice. The experiment is set up under a zero initial activity
Diffusion is a ubiquitous process in the physical world. within the whole membrane, and a constant and a zero ac-
It is of great theoretical importance with a multiplicity of tivity at the upstream and downstream faces, respectively.
applications in such diverse fields as chemical reaction, Permeability,P, and time lagt, , are crucial parameters to
electrochemistry, colloidal sciencé, solid state physics, estimate the total releag(t) as a function of time through
semiconductor-device fabrication and operafiophysical the asymptotic linear equatio®(t)=P(t—t,).1>®t, can
ceramics, biophysics® drug delivery? and environmental be expressed by = [5t[(d/dt)J4(t)/Ig ssldt, " with Jy(t)
science’® One way to characterize a diffusion system inthe time-dependent flux at the downstream face lnd the
which a particle initially located at=x, within a finite do-  steady-state flux. Mathematicalty is the first moment of
main is by means of the probability density of the time re-the (d/dt)Jqy(t)/Jqss distribution. Various mathematical
quired for the particle escaping from this domain for the firsttechniques have been employed to formulate the first mo-
time, i.e., the distribution of the first-passage tilé?Com-  ment, i.e., the time lag, for diffusion with position-dependent
plete information of the probability distribution can be ob- partition coefficient and diffusivity. However, up to date, we
tained only for some particular cases. Thus, one is usualljpave not found the formulation for the higher moments. Re-
forced to resort to the time moments. Of the most importancently, the matrix theoretical analysis in the Laplace domain
among them is the first moment, i.e., the mean first passagen the diffusion transport problem has been put foftif?
time. The latter is often related to the reciprocal offisst- ~ This analysis allows us to formulate the time lag and mean
ordep rate constant if a chemical reaction is modeled byfirst passage time in terms of the derivativéth respect to
diffusion over a potentiaf? In order to have more informa- the Laplace variables) of the elements of the transmission
tion about the distribution, higher moments are required. Fomatrix” We will extend the analysis to the treatment on the
example, without the second moment the dispersion of th&igher moments for first passage time and membrane trans-
distribution cannot be estimatéd. port problems as well. We shall see that Taylor expansion of
For a diffusion with initial condition of Dirac delta- the transmission matrix;(s), plays an important role in the
function type, the first and higher moments are obtainablénalysis. We found that the coefficients of expansion appear
from solving the backward diffusion equation with appropri- to be in the forms of repeated integrals &f(x) and
ate boundary condition’. Another approach proposed by [D(X)K(x)]1~%. With this as an instrument, the moment
DeutcH is the use of repeated integration over the origina/@nalysis for the afore-mentioned diffusion problems can be
diffusion equation. He obtained the mean first passage timeeduced to a simple, algebraic manipulation.
for a heterogeneous domain with initial distributions of ei-
ther Dirac delta-function type or of saturated equilibrium. TRANSMISSION MATRIX FOR DIFFUSION
However, the results for the second moment is not given. TRANSPORT

Now turn our attention to membrane diffusion transport. Traditionally the membrane permeation transport, due to

whose underlying process is diffusion, described by the
dAuthor to whom correspondence should be addressed. Fick’s diffusion equation, or Smoluchowski equation if the
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membrane is inhomogeneous and/or is subject to externdlhis is a consequence of the fact that the heterogeneous do-
force. Alternative to this description is through the vehicle ofmain is look upon as an assembly of masgyn) thin sub-
transmission matrix’~22In this approach the membrane per- domains, with the first connected to the upstream face at
meation system is treated as an electrical network systens 0, followed by the second, etc., up to the lasth) which
with two input ports and two output ports. The penetrantadjoins the downstream facexat h. HereT()(s), the trans-
activity and flux at the upstream face are then assigned to thmission matrix for theth subdomain, takes the same form of
input ports as an ordered pair, and those at the downstreaBy. (4), except thaD, K, q, h are replaced, respectively, by
face to output ports as another ordered pair. The transmissidd, ,K;,q; ,h;, the corresponding entities for théh subdo-
matrix which links two ordered pairs appears to be characmain.
teristic to the properties of the membrane, including its thick-
ness, the diffusivity and partition coefficient of the penetrant
in the membrane. The magnitude of the last two entities mayfAYLOR EXPANSION OF TRANSMISSION MATRIX
be position dependent. o

For further uses we shall summarize for diffusion trans- 1 he coefficients of the" terms (1=0,1,2,...) ofTyy(s)
port three previously derived equations corresponding to dif@nd T2(s) will b(izczignved by the use of the backward dit-
ferent initial condition&”1°-22A one-dimensional linear dif- fusion equatiof**
fusion transport with zero initial activity within the whole 1d d
domain, 6<x<h, and time-dependent conditions for both = gxPK g #n= ~Nin-1,
boundaries can be described in the Laplace domain in terms
of a transmission matrixT(s), by'’° n=1,2,3,..., with uo=1, (6)

Ti(s) TiAs)
To(s) TaS)

whereu,_, and i, are the 6—1)th andnth moments, re-
., (D spectively. We consider a particle initially located at a re-
flecting facex=0, and the other boundary a&=h, from

whered,(s) andJ,(s) are the Laplace transform of the pen- which the particle escapes, 1S absorbmg. The momen_ts are

etrant activity,a,(t), and fluxJ,(t), respectively, at the face solved n Eqs.(Al)—(AS) n Fhe Appendlx. The esca[l);ng

x=0, or at upstream face. Their counterparts at the face prr(])bab|ll_|ty las a func?on O.f tlmle 'Sd rt;epresented (),

=h, or at downstream face, ag(s) and jd(s), respec- whose Laplace transform Is related by

tively. For convenience, the face a0 and the upstream

face are used interchangeably, so are the face=dt and

downstream face. o ) o -
If the initial condition is of Dirac delta-function type Which is obtained by a substitution @fy(s)=0, Ju(s)=0,

located atxy, such that 8x,<h, the transport equation is andT*(s)=T(s) into Eq.(2). To proceed, we exparth;(s)

given by’ andJy(s) in terms of Taylor series abost=0

a,(s)
FNys)

a,(s)
Ju(s)

aqy(s)
Ju(s)

Jy(s)= @)

Lt
Tii(s)’

; | dTi(s) s*  d?Tyy(s)

aq(s) au(s) 0 _ LS 1u(s) | 8° u(s) |

su9) T 3ue | Tl @ THOTTHOT I T e
where T*(s) is the transmission matrix for the subdomain =g+ a;S+ a,8%+- -+, ®)

from the facex, to the faceh.

If, on the other hand, the initial condition is of saturated  j (s)=J3,(0)+ i”m
equilibrium with a constant activitg,, the transport equa- 11y ds 25 ds’
tion then becomé3

dJg(s) s?  d2J4(s)

2
s s
i ag ZMg—ﬂM‘f+ gﬂg ©)
au(s)_ ?

Toi(S) ToslS) (3)  The definition ofa,, Nn=0,1,2,3,..., is self-explanatory as
34(s) 2 22 Ju(s) seen from Eq(8). The use of the superscrigtis to specify

that the particle exits from the downstream face. The equal-
For a simple, homogeneous diffusion, which has conity in Eq. (9) is due to the fact that

stantD andK,T(s) is explicitly expressed By*°
sinh(gh) ud= fo t"Jg(t)dt=(—1)"lim

s—0

é1(1(5)—? [Tn(s) T1As)

d"Jg(s)
ds" ’

(10
coshgh)

T(s)= DgK
B . sinceJy(t) is look upon as the escaping probability density.
DgKsinhigh)  coshigh) Inserting Eqs(8) and(9) into Eq.(7), we obtain the Taylor
whereq=+/s/D andh is the thickness of the domain. For €Xpansion 0fr11(_51) in terms of repeated integrals ove(x)
diffusion through a heterogeneous domais) takes on the and[D(x)K(x)]"~ as

form17 Tll(s):ao+ als-l- a232+--- y (11)
T(s)=TMW(s) T V(s)---TW(s). (5  with
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ap=pi=1, (12 T21(S)= — yo— y15— ¥28°—- -, (22
h (h 1 with
a’l:l’“(lj:j KJ’ e dxg dxy, (13
o Jx,DK ¥0=0, (23
_1 2 d h h
=57 (211"~ k) n=u8fode1= fOdel, (24)

—dx] dx; dx, dx,, 14 h

<[} [ pronanonan,  as o= (eauf ) [ K ox

where Eqgs.(A1)—(A3) in the Appendix withx,=0 have

been used. f J J K dx, dxj dxs, (25

If a particle is initially at a reflecting face at=h, and

th itx=0 is absorbing, also f Eq2 h
€ exix Is absorbing, also from Eq2) we have where Eqgs(13), (A7), and(A8) have been used. The nega-

1 tive sign beforey;(i=0,1,2,...) is artificially put on to render
Tois)’ (19 all y; positive.
R As far as the Taylor expansion @f;4(S) is concerned,
which is given by substitutingT*(s)=1 and J4(s)=0, the identity®
a,(s)=0. Exactly following the procedure for obtaining the

ju(s): -

Taylor expansion off;4(s), we arrive at the Taylor expan- T11(S)ToAS) = T1AS) Tas(s) =1, (26)
sionTay(s) as is employed. Substitution of Eq$11), (16), and (22), re-
Tox(S)= 8p+ 815+ 8,8%+ -+, (16)  spectively forTyy(s), Tox(s), and Ty(s) with their coeffi-

cients expressed by repeated integrals into (26), we ob-
tain after some algebra the Taylor expansionTf(s) as

So=puh=1 1
oMo @ T12(8)=—Bo— B15— BoS*—+++, (27)
h 1 (h .
_ o u_ / with

h1
:80= fO ﬁdx, (28)

with

522%(2(,%2)2—#5)
f f f DKI K dxg dx, dxydx,.  (19) Bl_f f JDKdX1dX1dX (29)

The definition ofw;'(i=0,1,2) has been given in the appen- g f f f f f dx; dx; dx5 dx, dx.

dix and their integral expression in Eq&4) and(A5) have

been used. (30
With respect to the Taylor series ©%4(s), we consider

an initial activity of saturated equilibrium at a constant level

ay throughout the whole diffusion domain. The facexat

=0 is reflecting, while the exit face at=h is absorbing.

Again the negative sign beforg; (i=0,1,2,...) is to render
Bi positive.

Extended calculation to higher terms enables us to gen-
eralize the Taylor expansion of the transmission matrix,

The Laplace transform of§(t) becomes T(s), to
Toi(s) & r .
(9= 1A & (20 * *
12(S) s Sas" —3Bs"
which is given from Eq(3) by substitution ofay(s)=0 and n=0 n=0
J,(s)=0.2?The superscrip¢in Eq.(20) is to specify that the T(s)= . . : (32
initial condition is of saturated equilibrium distribution. The
Taylor expansion oﬁg(s) for saturated equilibrium distribu- —2yps" TS
tion can be expressed by n=1 n=0
e . . . .
j th an, Bn, Yn. Oy, following the iterative schemes:
359)=| ws—ntst rst—| [Tk @y M an P an O, Tollowing he freraty

whose expansion coefficiens®(i=0,1,2) are taken from ao(x)=1, an(x)= j j DK @n-1(2)dz dy,
Egs.(A7)—(A9). Putting Eqs(11) and(21) into Eq.(20), we
obtain the Taylor expansion df,,(s) as ap=an(0), n=1, (32
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Sedy, Ba(x)= fDKf KBn-1(2)dz dy,
Bn=Bn(0), n=1, (33
7100= [ Kaly, 0= [k [ S sz ay
Yn=%a(0), Nn=2, (34)
So(x)=1, En(x)=f:D—1K JthEn_l(z)dz dy,

5,=0,(0), n=1. (35

It is interesting to note that if the integransand 1DK are

J. S. Chen and W. Y. Chang

APPLICATION

Equation(31) with coefficients expressed by Eq82)—
(35) is the principal result of our derivation. It will be ap-
plied to the time moment analysis of the membrane perme-
ation transport and the residence time problem. But before
doing this, the classical problem of first passage time for a
particle initially located at a pointy within a finite diffusion
domain will be worked out. We consider quite a general case
that both the boundaries a=0 and atx=h are partially
absorbing with radiative constamt, and «,, respectively.
Substituting J,(s) = x,a,(s) and J4(s)= k4a4(s) into Eq.
(2), one obtains

5o(S) — kg T1A(S)

exchanged iny,, 8, is obtained, and vice versa; if they are Ju(s)= K”(KdTll(s)—T21(s))+ Ku(KkgT12AS)—Tox(S))’
exchanged irB,, then we obtainy,, ;, and vice versa. (36
3 (s) T11(8)T5x(8) = T2u(8) T1xS) + ky(T1AS) T5x(S) — T2x(S) T1A(S)) (37
=K
e (KaT12(8) ~ T2a(8)) + ry(KaT1AS) — T2AS))

|
Ti’}(s) in Egs. (36) and (37) is the matrix element of Bi=kqa1— Kk, 61— kykgBit V1, (42

T*(s), which is the transmission matrix for the subdomain
from x=x, to x=h. The coefficients off;(s) are identical 2= Ky~ KyO2~ KykaBat 72 (43

to those ofT(s), except that O for the lower limit of the last Since the moments correspond to the expansion coefficients

mtegratlon in Eqs(32) (35) is replaced by, , for example,
al = f“ KSh (1/DK)f Kf (LDK)dx; dx; dx;dx, — and

fx fo (1/DK)f deldxzdxz

To proceed, the Taylor expansmnl}j(s) —ju(s) is cal-
culated by Eqs(36) and(37) to be
— Bl
Bo

. R A, A,
Jd(S)—Ju(s)=—B + s
0

A,By—BoB,—A;B,+B? )
_|_

in Eq. (38), it readily follows that
Mo:]_, (44)

Bi—A;
1= By (45)

A,By—BoB,—A;B,+B3
MH2=2 B2 : (46)
0

In the case that the face=0 is radiative, and the face

B2 SR x=h is reflecting, i.e.x4= 0, we have from Eq(45) the first
moment
(38
where g lim BlB— A
kg—0 0
Ao=Bo= kg— ky— KykdBo, (39 ¢
Ar=— k0T + Kq(ar+ 81 — v185) =68,— 5*—%
u
— kykd(B1t BodT — 618%5), (40) o 1 dX
0
Ar=— K63 + kg(ar+ 85 + a1 87 — y1B1 — ¥285) j f Kdy dx= Ky (47)
— kukg(Bods + 161 —81BT +B2—52B5), (4D and from Eq.(46) the second moment
_ABo— BBy~ AB1+ B ky(— kuSpt vat Ky 85+ (y1— Ky (yit kuST — Ky S1)
o= lim 2 > =2 > : (48
B K
Kd~>0 0 u
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whose explicit expression in terms of integrals is a little bit
complicated and will not be given here. Equati@Y) after
some algebraic manipulation is in agreement with the result
[Eq. (8) in Ref. 14 derived by Deutch by means of the
method of repeated integration.

Although our method provides another instrument in
dealing with the classical problem of first passage time. We
would not like to claim that it is superior over the established
methods such as solving backward diffusion equation or re-
peated integration on the original diffusion equation. How-
ever, up to date, we found the corresponding backward dif-
fusion equation for the time moments of membrane
permeation and for the residence time problem is of not

avail, and the method of repeated integration appears to bv?/

applicable with the limitation to first momertime lag
analysis. In what follows we will demonstrate that the time

moment analysis of these problems can be solved by our new

method.

stipulated with a zero initial activity throughout the whole

membrane and the boundary conditions at the downstreartd

face 84(s)=0, and at the upstream fad,(s)=pq/K,S
whereK,, is the partition coefficientp, is a constant pen-
etrant concentration at the upstream face. Solutiord §0s)
from Eq. (1) is found to be

s N 1 po
()=~ 7 9 =TT g Kes
(1 B (BB, }
_|ﬂo B§S+<ﬁ3 A
Po
X(Kus)' (49

Time moment analysis of transmission matrix

= d
tf):f t2— Jg(1)dt/ g o6
o dt

~ (d¥ds)sIy(s)
m—
s=0  sJy(s)

_2((BUBY)~ (B2 BY)
(1/B0)

2
e
Bo Bo Bo

4727

(51)

here the explicit expressions fgr, By, and3, and shown
in Egs.(50), (28), and(30), respectively.

Another important membrane transport is desorptive per-

B ToAS) @
TiAs) s

|1 Bo B
‘{/B(f g s
) B552— BoB2— B151Bo+ B

Jua(s)=

Bo

= (dlds)sdy(s)  B1— 8180
t,=Ilim = .
s—0 Jd,ss Bo

ao
2

S +... J—
E s

eation, which is stipulated with the same boundary condi-

For a absorotive permeation experiment. the svstem igions as absorptive permeation except for a constant initial
P b P ' Y activity ag throughout the whole membrane. Solving for

(s) using Eq.(3), we obtain

. (52

Again we have the first moment, i.e., the time letd,

(53

Substituting the Taylor expansion coefficients in the form of
repeated integers followed by using Dirichlet formula, we

The first momenttime lag then is given by have
SIKS%(dy/DK) f%(dy/DK)dx
= td/dt Jy(t) t,=— e-2 R :
tﬁf 1d7dtJa® FR(1DK)dx
0 Jd,ss

~ —(d/ds)sJy(s)
=lm———

s—0 Jd,ss
_ B

Bo
~ TBADK) K S, (UDK)dx; dxy dx
B S (1/DK)dx

~ JEK[3(dy/DK) [ R(dy/DK)dx
- S)(1/DK)dx

. (50

52_ &'i‘tLtJr

=2%"

t(f)=2[52— @Jr &u
0 BO

where Eq.(50) for t, has been used.

(54)

The second momentt(f)) expression in terms of repeated
integrals appears to be a little bit cumbersome, and only that
in terms of expansion coefficients is given

(55

As the last example of application, we consider the mean
residence time at positionfor a particle initially located at

Xg, 0<X, Xo<h. Both end boundaries are absorbing. The
mean residence time is the average of the total time that the

particle has resided at positionif the observation time is
taken up to a time.?’~?° Mathematically it can be defined in

The last equality is due to the Dirichlet formfthEquation
(50) is also derived by repeated integratforf®
For the second momert{?), we have

terms of the integration of Green’s functigiix,t’|xo) with
respect td’ from 0 tot. The Green'’s function is a solution of
the diffusion equation under the same boundary conditions
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with the initial conditiond(x—Xg). The Green'’s functionlike o ) L
penetrant activity has been solved in terms of the transmis-  7(X[Xo) = fo p(X,t"[xo)dt’ = lim p(x,s|Xo)
sion matrix element elsewhéfeo be =0

=lim a(x,s)K(x), (57
s—0
T T (s) where the last equality is due to the definifibof activity
_ % X<Xo a(x,t)=p(x,t)/K(x). Substitution Eq(56) into Eq.(57), we
A 12 find
a(x,s)= T(BZ)(S)T(ZD(S) ) (56) I
2 R o)) x>xg 7(X|Xo)
TiAs) (3)(&) T
.~ T5(s)Tyz(s)
IlmT—(S)K(x) X<Xg
where TA)(s), T@(s), TC)(s), TCY(s), and TC(s) are ] 3212 ” _
the transmission matrix for the subregions from Oxfox to i ~TF() T3 (s) 12 |k
Xg, Xg to h, 0 to Xg, andx to h, respectively, ifxo>x. If ST:) T1AS) FT12(8)|K(X)  x>Xo
Xo<X, then the coordinates, andx are interchanged. Thus
the mean residence time atfor infinite observation time, (58
corresponding ta— o, is found to be In terms of repeated integrals it becomes
X 1 h 1 h 1 -1
K(x - - dx’f dx f dx X<X
SN wD0OK0) X Jo DOOK() 0
X X x' —————dX X>X
o D(X)K(x) ~Jx D(X")K(x") o D(X)K(X) 0
|
DISCUSSION AND CONCLUSION D
. . . D*=—F——, (61
Frischet al. also studied the time moment problems for [1o(e/kT)]

merrr;ibrrr:l?re ?bsorrt%g\_/reh pertr;earu%n, ﬂe?r?\spmt/ie pteg:ﬁat;?rg ar\‘/ﬂwerelo is the modified Bessel function of the zeroth kind
sorption transports. 1hey theoretically investigated the iIme -, .y -y 7 js jts argument. If the amplitude of the roughness is

moments of the amount of penetrant in an ab_sorkfmlg a Gaussian distribution, with a probability proportional to
desorbingg membrane composed of a linear laminated me-

2 2y i H 2 _ 2 3
dium. They have shown that these time moments can ngp(—U /2¢%) In which €°=(U3), thert
obtained via a precursoB,(x) by wn,=bK(X)Bn(x)dx, D* =D exf — (e/kT)?]. (62
where B,(x) itself can be obtained from an integral with
B,_1(x) as a part of integrand. Thus, witBy(x) known,

otherB,(x) can be recursively calculated. Similar scheme ist“ | o X
also applied to the calculation of the time moments for theliPlied by a factorIo(e/kT)]™" for the first example and by

_ 27\n H
difference between the instantaneous and asymptotic flowXH —(€/KT)7]" for the second. Since botl(e/kT)>1 and
up to a given time through a membrane. As a comparisor£XP("€KT)<1 for e>0, we assert that the effect of potential
our new method appears to be simple and straightforward.roughness in this two cases is to increase the magnitude of
. :
Recently Zwanzif has elucidated the effect of potential , and hencg the time moments of ordar$._
roughness on the effective diffusivity of a particle under the !N conclusion, we have given an alternative approach to
influence of the potentiall o(x) + Uy (x), whereU() is the the time moment analysis for an‘fusmn proplems. F|r.5t we
spatially varying part ant;(x) is the fluctuating part. The calculate in the Laplace domain the escaping flux with ap-

latter is responsible for the potential roughness. It is founcPrOpri_ate boundary conditions using one of the trans_port
that the effective diffusivityD* is related to the original equationdEgs.(1)—(3)]. Expand the flux into a power series

In the above examples, it is interesting to note that the
parametersy,, B,, vn, ands, are modified by being mul-

diffusivity D by of s, we found the coefficients of expansion, which corre-
spond to the time moments, is a combination of the coeffi-
D cients of the Taylor series of the matrix elements. With the

D* (60) latter expressed by repeated integrals as shown in(Bgs-

(ex (U1 (x)/kT) J){ex — (U1(x)/kT)]) (35), the time moments can be also represented by the re-
wherek is the Boltzmann constant aid denotes the spatial peated integrals as well. As compared to the traditional itera-
average. As a first example, if the roughness is simplytive Green's functiort! solving the backward diffusion
U,(x) = e cos@x), therf® equation$2?%and repeated integratidfiour method gains
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some advar_ltage in the sense that _it can be accomplished in=2D, The superscripti is to specify that the flux exits from
simple, straightforward way, involving only algebraic opera-the ypstream face. With the initial positionsat h the time

tion.

APPENDIX

The boundary conditions for a reflecting boundaryat
=0 and an absorbing boundary at=h are ,uﬁ(h)zo,
(d,uﬁ/dx)|xzo=0, where the superscriptis used to specify

the escaping flux is from the downstream face. With the
initial position atx= x, the time moments for escaping prob-

ability are
d_
Iu‘O_ 1! (Al)
d J‘h 1 J‘Xl
=| — K dx; dxq, A2
M1 XODK o 1 1 ( )

d_ (2! fh ! fszfh ! leKd ' dx, X, d
mz=(21) DK Jo J,BK Jo X; dxg x5 dXy,
(A3)
where Eq.(Al) is directly from Eq.(6), and Eqs(A2) and
(A3) are obtained by direct integration on E&) with the
help of boundary conditions. If initial position is &&= 0, the
lower integrating limitx, is replaced by O.
The boundary conditions for an absorbing facexatO
and a reflecting face at=h are u;(0)=0, (dun/dX)|y=n

moments for escaping probability are

mo=1, (A4)
u h1 (h '
Mu=(2!)JhiJhKJX£iJthx’ dxq x5 dx
2 ODK %o 0 DK %g 1 172 2
(A6)

where Eq.(A4) is directly from Eq.(6), and Egs.(A5) and
(A6) are obtained by direct integration.

The time moments for a reflecting boundaryat0 and
an absorbing boundary at=h with initial position atx
=Xg has been given in Eq§A1) —(A3). Thenth moment for
the initial condition of saturated equilibrium distribution is
the average over the initial distribution, i.e., it is weighted by
a Boltzmann factorK(xo)[ng(xo)dxo]‘1. With this in
mind we have

fBKfQ(l/DK)fgsz:é(llD K) S 5K dx; dxg dxj dx, dx

5=2!
H2 JoK dx

where the superscrigtis to specify the initial saturated equi-
librium condition throughout the whole domain.
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