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Time moment analysis of first passage time, time lag and residence time
problems via Taylor expansion of transmission matrix

Jenn-Shing Chena) and Wen-Yih Chang
Department of Applied Chemistry, National Chiao-Tung University, Hsin-Chu, 30500, Taiwan

~Received 28 October 1999; accepted 15 December 1999!

Taylor expansion~with respect to the Laplace variable,s! of the transmission matrix,T(s), has been
developed for the diffusion transport with position-dependent diffusivity,D(x) and partition
coefficient, K(x). First, we find the relation between the expansion coefficients of the matrix
elements and the moments of the first passage times by connecting them toĴ(s), the Laplace
transform of the escaping flux,J(t). The moments can be formulated by repeated integrals ofK(x)
and@D(x)K(x)#21 from solving the backward diffusion equation subject to appropriate initial and
boundary conditions. In this way, Taylor expansion coefficients ofT11(s), T21(s), andT22(s) are
expressed in terms of the repeated integrals. Further application of the identity det@T(s)#51 leads to
the Taylor expansionT12(s). With the knowledge of the Taylor expansion ofT(s), the formulation
of the time moments for diffusion problems with position dependentD(x) and K(x) subject to
various initial and boundary conditions is then just a simple, algebraic manipulation. Application of
this new method is given to the membrane permeation transport and mean residence time problem.
© 2000 American Institute of Physics.@S0021-9606~00!50810-1#
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INTRODUCTION

Diffusion is a ubiquitous process in the physical wor
It is of great theoretical importance with a multiplicity o
applications in such diverse fields as chemical reaction1,2

electrochemistry,3 colloidal science,4 solid state physics,5

semiconductor-device fabrication and operation,6 physical
ceramics,7 biophysics,8 drug delivery,9 and environmenta
science.10 One way to characterize a diffusion system
which a particle initially located atx5x0 within a finite do-
main is by means of the probability density of the time
quired for the particle escaping from this domain for the fi
time, i.e., the distribution of the first-passage time.11,12Com-
plete information of the probability distribution can be o
tained only for some particular cases. Thus, one is usu
forced to resort to the time moments. Of the most import
among them is the first moment, i.e., the mean first pass
time. The latter is often related to the reciprocal of a~first-
order! rate constant if a chemical reaction is modeled
diffusion over a potential.12 In order to have more informa
tion about the distribution, higher moments are required.
example, without the second moment the dispersion of
distribution cannot be estimated.13

For a diffusion with initial condition of Dirac delta
function type, the first and higher moments are obtaina
from solving the backward diffusion equation with approp
ate boundary conditions.12 Another approach proposed b
Deutch14 is the use of repeated integration over the origi
diffusion equation. He obtained the mean first passage t
for a heterogeneous domain with initial distributions of
ther Dirac delta-function type or of saturated equilibriu
However, the results for the second moment is not given

Now turn our attention to membrane diffusion transpo

a!Author to whom correspondence should be addressed.
4720021-9606/2000/112(10)/4723/8/$17.00
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Of them the absorptive permeation is the commonest p
tice. The experiment is set up under a zero initial activ
within the whole membrane, and a constant and a zero
tivity at the upstream and downstream faces, respectiv
Permeability,P, and time lag,tL , are crucial parameters t
estimate the total releaseQ(t) as a function of time through
the asymptotic linear equationQ(t)5P(t2tL).15,16 tL can
be expressed bytL5*0

`t@(d/dt)Jd(t)/Jd,ss#dt,17 with Jd(t)
the time-dependent flux at the downstream face andJd,ss the
steady-state flux. MathematicallytL is the first moment of
the (d/dt)Jd(t)/Jd,ss distribution. Various mathematica
techniques have been employed to formulate the first m
ment, i.e., the time lag, for diffusion with position-depende
partition coefficient and diffusivity. However, up to date, w
have not found the formulation for the higher moments. R
cently, the matrix theoretical analysis in the Laplace dom
on the diffusion transport problem has been put forth.17–22

This analysis allows us to formulate the time lag and me
first passage time in terms of the derivative~with respect to
the Laplace variable,s! of the elements of the transmissio
matrix.17 We will extend the analysis to the treatment on t
higher moments for first passage time and membrane tr
port problems as well. We shall see that Taylor expansion
the transmission matrix,T(s), plays an important role in the
analysis. We found that the coefficients of expansion app
to be in the forms of repeated integrals ofK(x) and
@D(x)K(x)#21. With this as an instrument, the mome
analysis for the afore-mentioned diffusion problems can
reduced to a simple, algebraic manipulation.

TRANSMISSION MATRIX FOR DIFFUSION
TRANSPORT

Traditionally the membrane permeation transport, due
whose underlying process is diffusion, described by
Fick’s diffusion equation, or Smoluchowski equation if th
3 © 2000 American Institute of Physics
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 This a
membrane is inhomogeneous and/or is subject to exte
force. Alternative to this description is through the vehicle
transmission matrix.17–22In this approach the membrane pe
meation system is treated as an electrical network sys
with two input ports and two output ports. The penetra
activity and flux at the upstream face are then assigned to
input ports as an ordered pair, and those at the downstr
face to output ports as another ordered pair. The transmis
matrix which links two ordered pairs appears to be char
teristic to the properties of the membrane, including its thi
ness, the diffusivity and partition coefficient of the penetra
in the membrane. The magnitude of the last two entities m
be position dependent.

For further uses we shall summarize for diffusion tran
port three previously derived equations corresponding to
ferent initial conditions.17,19–22A one-dimensional linear dif-
fusion transport with zero initial activity within the whol
domain, 0,x,h, and time-dependent conditions for bo
boundaries can be described in the Laplace domain in te
of a transmission matrix,T(s), by17,19

F âd~s!

Ĵd~s!
G5T~s!F âu~s!

Ĵu~s!
G5FT11~s! T12~s!

T21~s! T22~s!
GF âu~s!

Ĵu~s!
G , ~1!

whereâu(s) andĴu(s) are the Laplace transform of the pe
etrant activity,au(t), and fluxJu(t), respectively, at the face
x50, or at upstream face. Their counterparts at the facx

5h, or at downstream face, areâd(s) and Ĵd(s), respec-
tively. For convenience, the face atx50 and the upstream
face are used interchangeably, so are the face atx5h and
downstream face.

If the initial condition is of Dirac delta-function type
located atx0 , such that 0,x0,h, the transport equation i
given by17

F âd~s!

Ĵd~s!
G5T~s!F âu~s!

Ĵu~s!
G1T* ~s!F01G , ~2!

whereT* (s) is the transmission matrix for the subdoma
from the facex0 to the faceh.

If, on the other hand, the initial condition is of saturat
equilibrium with a constant activitya0 , the transport equa
tion then becomes22

F âd~s!2
a0

s

Ĵd~s!
G5FT11~s! T12~s!

T21~s! T22~s!
GF âu~s!2

a0

s

Ĵu~s!
G . ~3!

For a simple, homogeneous diffusion, which has c
stantD andK,T(s) is explicitly expressed by17,19

T~s!5F cosh~qh! 2
sinh~qh!

DqK

2DqK sinh~qh! cosh~qh!
G , ~4!

whereq5As/D and h is the thickness of the domain. Fo
diffusion through a heterogeneous domainT(s) takes on the
form17

T~s!5T~n!~s!T~n21!~s!¯T~1!~s!. ~5!
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140.113.38.11 On: Wed, 
al
f

m
t
he
m

on
-
-
t
y

-
f-

s

-

This is a consequence of the fact that the heterogeneous
main is look upon as an assembly of many~sayn! thin sub-
domains, with the first connected to the upstream face ax
50, followed by the second, etc., up to the last (nth) which
adjoins the downstream face atx5h. HereT( i )(s), the trans-
mission matrix for thei th subdomain, takes the same form
Eq. ~4!, except thatD, K, q, h, are replaced, respectively, b
Di ,Ki ,qi ,hi , the corresponding entities for thei th subdo-
main.

TAYLOR EXPANSION OF TRANSMISSION MATRIX

The coefficients of thesn terms (n50,1,2,...) ofT11(s)
and T22(s) will be derived by the use of the backward di
fusion equation11,12,23

1

K

d

dx
DK

d

dx
mn52nmn21 ,

n51,2,3,..., with m051, ~6!

wheremn21 andmn are the (n21)th andnth moments, re-
spectively. We consider a particle initially located at a r
flecting facex50, and the other boundary atx5h, from
which the particle escapes, is absorbing. The moments
solved in Eqs.~A1!–~A3! in the Appendix. The escaping
probability as a function of time is represented byJd(t),17

whose Laplace transform is related by

Ĵd~s!5
1

T11~s!
, ~7!

which is obtained by a substitution ofâd(s)50, Ĵu(s)50,
andT* (s)5T(s) into Eq.~2!. To proceed, we expandT11(s)
and Ĵd(s) in terms of Taylor series abouts50

T11~s!5T11~0!1
s

1
lim
s→0

dT11~s!

ds
1

s2

2!
lim
s→0

d2T11~s!

ds2 1¯

5a01a1s1a2s21¯ , ~8!

Ĵd~s!5 Ĵd~0!1
s

1!
lim
s→0

dĴd~s!

ds
1

s2

2!
lim
s→0

d2Ĵd~s!

ds2 1¯

5m0
d2

s

1!
m1

d1
s2

2!
m2

d
¯ . ~9!

The definition ofan , n50,1,2,3,..., is self-explanatory a
seen from Eq.~8!. The use of the superscriptd is to specify
that the particle exits from the downstream face. The equ
ity in Eq. ~9! is due to the fact that

mn
d5E

0

`

tnJd~ t !dt5~21!n lim
s→0

dnĴd~s!

dsn , ~10!

sinceJd(t) is look upon as the escaping probability densi
Inserting Eqs.~8! and ~9! into Eq. ~7!, we obtain the Taylor
expansion ofT11(s) in terms of repeated integrals overK(x)
and @D(x)K(x)#21 as

T11~s!5a01a1s1a2s21¯ , ~11!

with
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 This a
a05m0
d51, ~12!

a15m1
d5E

0

h

KE
x1

h 1

DK
dx18 dx1 , ~13!

a25
1

2!
~2~m1

d!22m2
d!

5E
0

h

KE
x2

h 1

DK E
x28

h

KE
x1

h 1

DK
dx18 dx1 dx28 dx2 , ~14!

where Eqs.~A1!–~A3! in the Appendix withx050 have
been used.

If a particle is initially at a reflecting face atx5h, and
the exitx50 is absorbing, also from Eq.~2! we have

Ĵu~s!52
1

T22~s!
, ~15!

which is given by substitutingT* (s)5I and Ĵd(s)50,
âu(s)50. Exactly following the procedure for obtaining th
Taylor expansion ofT11(s), we arrive at the Taylor expan
sion T22(s) as

T22~s!5d01d1s1d2s21¯ , ~16!

with

d05m0
m51, ~17!

d15m1
u5E

0

h 1

DK E
x1

h

K dx18 dx1 , ~18!

d25
1

2!
~2~m1

u!22m2
u!

5E
0

h 1

DK E
x2

h

KE
x28

h 1

DK E
x1

h

K dx18 dx1 dx28 dx2 . ~19!

The definition ofm i
u( i 50,1,2) has been given in the appe

dix and their integral expression in Eqs.~A4! and~A5! have
been used.

With respect to the Taylor series ofT21(s), we consider
an initial activity of saturated equilibrium at a constant lev
a0 throughout the whole diffusion domain. The face atx
50 is reflecting, while the exit face atx5h is absorbing.
The Laplace transform ofJd

e(t) becomes

Ĵd
e~s!52

T21~s!

T11~s!

a0

s
, ~20!

which is given from Eq.~3! by substitution ofâd(s)50 and
Ĵu(s)50.22 The superscripte in Eq. ~20! is to specify that the
initial condition is of saturated equilibrium distribution. Th
Taylor expansion ofĴd

e(s) for saturated equilibrium distribu
tion can be expressed by

Ĵd
e~s!5S m0

e2m1
es1

m2
e

2!
s22¯ D E

0

h

a0K~x0!dx0 ~21!

whose expansion coefficientsm i
e( i 50,1,2) are taken from

Eqs.~A7!–~A9!. Putting Eqs.~11! and~21! into Eq.~20!, we
obtain the Taylor expansion ofT21(s) as
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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T21~s!52g02g1s2g2s22¯ , ~22!

with

g050, ~23!

g15m0
eE

0

h

K dx15E
0

h

K dx1 , ~24!

g25~a1m0
e2m1

e!E
0

h

K dx

5E
0

h

KE
x2

h 1

DK E
x28

h

K dx1 dx28 dx2 , ~25!

where Eqs.~13!, ~A7!, and~A8! have been used. The neg
tive sign beforeg i( i 50,1,2,...) is artificially put on to rende
all g i positive.

As far as the Taylor expansion ofT12(s) is concerned,
the identity19

T11~s!T22~s!2T12~s!T21~s!51, ~26!

is employed. Substitution of Eqs.~11!, ~16!, and ~22!, re-
spectively forT11(s), T22(s), and T21(s) with their coeffi-
cients expressed by repeated integrals into Eq.~26!, we ob-
tain after some algebra the Taylor expansion ofT12(s) as

T12~s!52b02b1s2b2s22¯ , ~27!

with

b05E
0

h 1

DK
dx, ~28!

b15E
0

h 1

DK E
x

h

KE
x1

h 1

DK
dx18 dx1 dx, ~29!

b25E
0

h 1

DK E
x

h

KE
x2

h 1

DK E
x28

h

KE
x1

h 1

DK
dx18 dx1 dx28 dx2 dx.

~30!

Again the negative sign beforeb i ( i 50,1,2,...) is to render
b i positive.

Extended calculation to higher terms enables us to g
eralize the Taylor expansion of the transmission mat
T(s), to

T~s!53
` `

S ansn 2S bnsn

n50 n50

` `

2Sgnsn Sdnsn

n51 n50

4 , ~31!

with an , bn , gn , dn , following the iterative schemes:

ã0~x!51, ãn~x!5E
x

h

KE
y

h 1

DK
ãn21~z!dz dy,

an5ãn~0!, n>1, ~32!
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b̃0~x!5E
x

h 1

DK
dy, b̃n~x!5E

x

h 1

DK E
y

h

Kb̃n21~z!dz dy,

bn5b̃n~0!, n>1, ~33!

g̃1~x!5E
x

h

K dy, g̃n~x!5E
x

h

KE
y

h 1

DK
g̃n21~z!dz dy,

gn5g̃n~0!, n>2, ~34!

d̃0~x!51, d̃n~x!5E
x

h 1

DK E
y

h

K d̃n21~z!dz dy,

dn5 d̃n~0!, n>1. ~35!

It is interesting to note that if the integrandsK and 1/DK are
exchanged inan ,dn is obtained, and vice versa; if they a
exchanged inbn then we obtaingn11 , and vice versa.
in

t
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140.113.38.11 On: Wed, 
APPLICATION

Equation~31! with coefficients expressed by Eqs.~32!–
~35! is the principal result of our derivation. It will be ap
plied to the time moment analysis of the membrane perm
ation transport and the residence time problem. But bef
doing this, the classical problem of first passage time fo
particle initially located at a pointx0 within a finite diffusion
domain will be worked out. We consider quite a general c
that both the boundaries atx50 and atx5h are partially
absorbing with radiative constantku and kd , respectively.
Substituting Ĵu(s)5kuâu(s) and Ĵd(s)5kdâd(s) into Eq.
~2!, one obtains

Ĵu~s!5ku

T22* ~s!2kdT12* ~s!

~kdT11~s!2T21~s!!1ku~kdT12~s!2T22~s!!
,

~36!
Ĵd~s!5kd

T11~s!T22* ~s!2T21~s!T12* ~s!1ku~T12~s!T22* ~s!2T22~s!T12* ~s!!

~kdT11~s!2T21~s!!1ku~kdT12~s!2T22~s!!
. ~37!
ents
Ti j* (s) in Eqs. ~36! and ~37! is the matrix element of
T* (s), which is the transmission matrix for the subdoma
from x5x0 to x5h. The coefficients ofTi j* (s) are identical
to those ofTi j (s), except that 0 for the lower limit of the las
integration in Eqs.~32!–~35! is replaced byx0 , for example,
a2* 5*x0

h K*x2

h (1/DK)*x
28

h
K*x1

h (1/DK)dx18 dx1 dx28 dx2 and

g2* 5*x0

h K*x2

h (1/DK)*x
28

h
K dx1 dx28 dx2 .

To proceed, the Taylor expansion ofĴd(s)2 Ĵu(s) is cal-
culated by Eqs.~36! and ~37! to be

Ĵd~s!2 Ĵu~s!5
A0

B0
1

A12B1

B0
s

1
A2B02B0B22A1B11B1

2

B0
2 s21¯ ,

~38!

where

A05B05kd2ku2kukdb0 , ~39!

A152kud1* 1kd~a11d1* 2g1b0* !

2kukd~b11b0d1* 2d1b0* !, ~40!

A252kud2* 1kd~a21d2* 1a1d1* 2g1b1* 2g2b0* !

2kukd~b0d2* 1b1d1* 2d1b1* 1b22d2b0* !, ~41!
B15kda12kud12kukdb11g1 , ~42!

B25kda22kud22kukdb21g2 . ~43!

Since the moments correspond to the expansion coeffici
in Eq. ~38!, it readily follows that

m051, ~44!

m15
B12A1

B0
, ~45!

m252
A2B02B0B22A1B11B1

2

B0
2 . ~46!

In the case that the facex50 is radiative, and the face
x5h is reflecting, i.e.,kd50, we have from Eq.~45! the first
moment

m15 lim
kd→0

B12A1

B0

5d12d1* 2
g1

ku

5E
0

x0 1

DK E
x

h

K dy dx2
*0

hK dx

ku
, ~47!

and from Eq.~46! the second moment
m25 lim
kd→0

2
A2B02B0B22A1B11B1

2

B0
2 52

ku~2kud21g21kud2* !1~g12kud1!~g11kud1* 2kud1!

ku
2 , ~48!
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 This a
whose explicit expression in terms of integrals is a little
complicated and will not be given here. Equation~47! after
some algebraic manipulation is in agreement with the re
@Eq. ~8! in Ref. 14# derived by Deutch by means of th
method of repeated integration.

Although our method provides another instrument
dealing with the classical problem of first passage time.
would not like to claim that it is superior over the establish
methods such as solving backward diffusion equation or
peated integration on the original diffusion equation. Ho
ever, up to date, we found the corresponding backward
fusion equation for the time moments of membra
permeation and for the residence time problem is of
avail, and the method of repeated integration appears t
applicable with the limitation to first moment~time lag!
analysis. In what follows we will demonstrate that the tim
moment analysis of these problems can be solved by our
method.

For a absorptive permeation experiment, the system
stipulated with a zero initial activity throughout the who
membrane and the boundary conditions at the downstr
face âd(s)50, and at the upstream faceâu(s)5r0 /Kus
whereKu is the partition coefficient,r0 is a constant pen
etrant concentration at the upstream face. Solution forĴd(s)
from Eq. ~1! is found to be

Ĵd~s!52
1

T12~s!
âu~s!52

1

T12~s!

r0

Kus

5H 1

b0
2

b1

b0
2 s1S b1

2

b0
3 2

b2

b0
2D s21¯J

3S r0

KusD . ~49!

The first moment~time lag! then is given by

tL5E
0

` td/dt Jd~ t !

Jd,ss
dt

5 lim
s→0

2~d/ds!sĴd~s!

Jd,ss

5
b1

b0

5
*0

h~1/DK !*x
hK*x1

h ~1/DK !dx18 dx1 dx

*0
h~1/DK !dx

5
*0

hK*0
x~dy/DK !*x

h~dy/DK !dx

*0
h~1/DK !dx

. ~50!

The last equality is due to the Dirichlet formula.24 Equation
~50! is also derived by repeated integration.25,26

For the second moment,tL
(2) , we have
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

140.113.38.11 On: Wed, 
t

lt

e

-
-
f-

t
be

w

is

m

tL
~2!5E

0

`

t2
d

dt
Jd~ t !dt/Jd,ss

5 lim
s→0

~d2/ds2!sĴd~s!

sĴd~s!

5
2~~b1

2/b0
3!2~b2 /b0

2!!

~1/b0!

52S b1
2

b0
2
2

b2

b0
D 52S tL

22
b2

b0
D , ~51!

where the explicit expressions fortL , b0 , andb2 and shown
in Eqs.~50!, ~28!, and~30!, respectively.

Another important membrane transport is desorptive p
meation, which is stipulated with the same boundary con
tions as absorptive permeation except for a constant in
activity a0 throughout the whole membrane. Solving f
Ĵd(s) using Eq.~3!, we obtain

Ĵd~s!52
T22~s!

T12~s!

a0

s

5F 1

b0
1

d1b02b1

b0
2 s

1
b0

2d22b0b22b1d1b01b1
2

b0
3 s21¯G a0

s
. ~52!

Again we have the first moment, i.e., the time lead,t1

t15 lim
s→0

2~d/ds!sĴd~s!

Jd,ss
5

b12d1b0

b0
. ~53!

Substituting the Taylor expansion coefficients in the form
repeated integers followed by using Dirichlet formula, w
have

t152
*0

hK*0
x~dy/DK !*0

x~dy/DK !dx

*0
h~1/DK !dx

. ~54!

The second moment (t1
(2)) expression in terms of repeate

integrals appears to be a little bit cumbersome, and only
in terms of expansion coefficients is given

t1
~2!52Fd22

b2

b0
1

b1

b0
t1G52Fd22

b2

b0
1tLt1G , ~55!

where Eq.~50! for tL has been used.
As the last example of application, we consider the me

residence time at positionx for a particle initially located at
x0 , 0,x, x0,h. Both end boundaries are absorbing. T
mean residence time is the average of the total time that
particle has resided at positionx if the observation time is
taken up to a timet.27–29Mathematically it can be defined in
terms of the integration of Green’s functionr(x,t8ux0) with
respect tot8 from 0 tot. The Green’s function is a solution o
the diffusion equation under the same boundary conditi
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with the initial conditiond(x2x0). The Green’s functionlike
penetrant activity has been solved in terms of the transm
sion matrix element elsewhere17 to be

â~x,s!55 2
T12

~3!~s!T12
~1!~s!

T12~s!
x,x0

2
T12

~32!~s!T12
~21!~s!

T12~s!
1T12

~2!~s! x.x0

, ~56!

where T(1)(s), T(2)(s), T(3)(s), T(21)(s), and T(32)(s) are
the transmission matrix for the subregions from 0 tox, x to
x0 , x0 to h, 0 to x0 , and x to h, respectively, ifx0.x. If
x0,x, then the coordinatesx0 andx are interchanged. Thu
the mean residence time atx for infinite observation time,
corresponding tot→`, is found to be
or
a

e

e
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h

i
th
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l
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s- t~xux0!5E
0

`

r~x,t8ux0!dt85 lim
s→0

r̂~x,sux0!

5 lim
s→0

â~x,s!K~x!, ~57!

where the last equality is due to the definition17 of activity
a(x,t)5r(x,t)/K(x). Substitution Eq.~56! into Eq.~57!, we
find

t~xux0!

55 lim
s→0

2T12
~3!~s!T12

~1!~s!

T12~s!
K~x! x,x0

lim
s→0

F2T12
~32!~s!T12

~21!~s!

T12~s!
1T12

~2!~s!GK~x! x.x0

.

~58!

In terms of repeated integrals it becomes
t~xux0!55 K~x!E
0

x 1

D~x8!K~x8!
dx8E

x0

h 1

D~x!K~x!
dxH E

0

h 1

D~x!K~x!
dxJ 21

x,x0

K~x!E
0

x0 1

D~x!K~x!
dxE

x

h 1

D~x8!K~x8!
dx8H E

0

h 1

D~x!K~x!
dxJ 21

x.x0

. ~59!
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DISCUSSION AND CONCLUSION

Frischet al. also studied the time moment problems f
membrane absorptive permeation, desorptive permeation
sorption transports.30 They theoretically investigated the tim
moments of the amount of penetrant in an absorbing~or
desorbing! membrane composed of a linear laminated m
dium. They have shown that these time moments can
obtained via a precursorBn(x) by mn5*0

hK(x)Bn(x)dx,
where Bn(x) itself can be obtained from an integral wit
Bn21(x) as a part of integrand. Thus, withB0(x) known,
otherBn(x) can be recursively calculated. Similar scheme
also applied to the calculation of the time moments for
difference between the instantaneous and asymptotic fl
up to a given time through a membrane. As a comparis
our new method appears to be simple and straightforwa

Recently Zwanzig23 has elucidated the effect of potenti
roughness on the effective diffusivity of a particle under t
influence of the potentialU0(x)1U1(x), whereU0(x) is the
spatially varying part andU1(x) is the fluctuating part. The
latter is responsible for the potential roughness. It is fou
that the effective diffusivityD* is related to the origina
diffusivity D by

D* 5
D

^exp@~U1~x!/kT!#&^exp@2~U1~x!/kT!#&
, ~60!

wherek is the Boltzmann constant and^ & denotes the spatia
average. As a first example, if the roughness is sim
U1(x)5e cos(qx), then23
nd

-
e

s
e

s
n,
.

d

y

D* 5
D

@ I 0~e/kT!#2 , ~61!

whereI 0 is the modified Bessel function of the zeroth kin
ande/kT is its argument. If the amplitude of the roughness
a Gaussian distribution, with a probability proportional
exp(2U2/2e2) in which e25^U1

2&, then23

D* 5D exp@2~e/kT!2#. ~62!

In the above examples, it is interesting to note that
parametersan , bn , gn , anddn are modified by being mul-
tiplied by a factor@ I 0(e/kT)#2n for the first example and by
$exp@2(e/kT)2#%n for the second. Since bothI 0(e/kT).1 and
exp(2e/kT),1 for e.0, we assert that the effect of potenti
roughness in this two cases is to increase the magnitud
D* , and hence the time moments of orders>1.

In conclusion, we have given an alternative approach
the time moment analysis for diffusion problems. First w
calculate in the Laplace domain the escaping flux with
propriate boundary conditions using one of the transp
equations@Eqs.~1!–~3!#. Expand the flux into a power serie
of s, we found the coefficients of expansion, which corr
spond to the time moments, is a combination of the coe
cients of the Taylor series of the matrix elements. With t
latter expressed by repeated integrals as shown in Eqs.~32!–
~35!, the time moments can be also represented by the
peated integrals as well. As compared to the traditional ite
tive Green’s function,11 solving the backward diffusion
equations11,12,23and repeated integration,14 our method gains
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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some advantage in the sense that it can be accomplished
simple, straightforward way, involving only algebraic oper
tion.

APPENDIX

The boundary conditions for a reflecting boundary ax
50 and an absorbing boundary atx5h are mn

d(h)50,
(dmn

d/dx)ux5050, where the superscriptd is used to specify
the escaping flux is from the downstream face. With
initial position atx5x0 the time moments for escaping pro
ability are

m0
d51, ~A1!

m1
d5E

x0

h 1

DK E
0

x1
K dx18 dx1 , ~A2!

m2
d5~2! !E

x0

h 1

DK E
0

x2
KE

x28

h 1

DK E
0

x1
K dx18 dx1 x28 dx2 ,

~A3!

where Eq.~A1! is directly from Eq.~6!, and Eqs.~A2! and
~A3! are obtained by direct integration on Eq.~6! with the
help of boundary conditions. If initial position is atx50, the
lower integrating limitx0 is replaced by 0.

The boundary conditions for an absorbing face atx50
and a reflecting face atx5h are mn

u(0)50, (dmn
u/dx)ux5h
i-

ai
s

lso
a
e

ve
.
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50. The superscriptu is to specify that the flux exits from
the upstream face. With the initial position atx5h the time
moments for escaping probability are

m0
u51, ~A4!

m1
u5E

0

h 1

DK E
x1

h

K dx18 dx1 , ~A5!

m2
u5~2! !E

0

h 1

DK E
x2

h

KE
0

x28 1

DK E
x1

h

K dx18 dx1 x28 dx2 ,

~A6!

where Eq.~A4! is directly from Eq.~6!, and Eqs.~A5! and
~A6! are obtained by direct integration.

The time moments for a reflecting boundary atx50 and
an absorbing boundary atx5h with initial position at x
5x0 has been given in Eqs.~A1! –~A3!. Thenth moment for
the initial condition of saturated equilibrium distribution
the average over the initial distribution, i.e., it is weighted
a Boltzmann factorK(x0)@*0

hK(x0)dx0#21. With this in
mind we have

m0
e51, ~A7!

m1
e5

*0
hK*x

h~1/DK !*0
x1K dx18 dx1 dx

*0
hK dx

, ~A8!
m2
e52!

*0
hK*x

h~1/DK !*0
x2K*x

28
h

~1/DK !*0
x1K dx18 dx1 dx28 dx2 dx

*0
hK dx

, ~A9!
,

where the superscripte is to specify the initial saturated equ
librium condition throughout the whole domain.
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