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Abstract

Protocol verification is one of the most challenging tasks in the design of protocols. Among the various proposed approaches, the one based
on reachability analysis (or known as state enumeration approach) is of the most simple, automatic and effective. However, the state
explosion problem is a principle obstacle toward successful and complete verifications of complex protocols. To overcome this problem,
we proposed a new approach, the “path-based approach.” The idea is to divide a protocol into a collection of individual execution record,
denoted as concurrent paths, a partial order representation recording the execution paths of individual entities. Then, the verification of the
protocol is, thus, replaced by that of individual concurrent paths. Since concurrent paths can be automatically generated through Cartesian
product of the execution paths of all modules, and verified independently, the memory requirement is limited to the complexity of individual
concurrent path rather than the whole protocol. Thus, the state explosion problem is alleviated from such “divide and conquer” approach.
Furthermore, we propose an algorithm, making the trade-off on memory requirement to generate the concurrent paths more efficiently; and
utilize the technique of symmetric verification, parallel computing to improve the efficiency of verification. Eventually, our experience of
verifying real protocols shows that our approach uses much less memory and time than reachability @h20@0sEIsevier Science B.V.
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1. Introduction reachability graph (RG), a directed graph containing all the
reachable states in its nodes, to avoid generating duplicate
In the design of protocols, one of the most challenging states and to exclude the infinite exploration when cycles
tasks, the protocol verification is to certify that the protocol exist in the graph. Due to the limited memory capacity, on
executes correctly without crucial logical errors such as the basis of Ref. [12], the full search reachability analysis
deadlock, livelock, channel overflow. Among the various can verify the protocol with 10 states, and the most
proposed approaches, the one based on reachability analysisontrolled partial search or known aalief strategieq21]
(or known asstate enumeration a technique to enumerate can be up to 19states, which is intended to reduce the
all the reachable states of a system from an initial one, is of number of global states necessary to be explored. Although,
the most simple, automatic and effective [12,25]. However, the technique of BDD [4] has made much progress in the
the technique suffers from the “state explosion problem” number of states [5], the efficient use of BDD depends on
[12,25,32]. This problem shows the phenomenon that the the problem domain. The conventional reachability analysis
number of states grows exponentially with the complexity technique outperforms the BDD-based technique in some
of the protocol. Quantitatively, a protocol has at most cases [16]and is still the most general approach for protocol
IQN((IM] + NN states, wherd\ is the number of units  verification. In addition to these methods, other categories
in the protocol Q the number of local states for each uiMt, of verification approaches such as thashing technique
the number of message types d@nthe number of channel  [12,34], partial ordering [8,28], compositional methods
capacity [19]. Although, the number of reachable states is [9,29], andon-the-fly techniqu§7,10,30] provide different
several orders of magnitude smaller than this amount, that iscontributions for solving the state explosion problem, but
the number of syntactically reachable states, it still grows they do not contribute complete solutions [21].
exponentially with the complexity of protocols. All reach- Inspecting the reachability analysis technique and its
able states must explicitly or implicitly be memorized in a variations, the major hurdle to a successful verification is
the enormous size of the RG and the necessity to memorize
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verification is necessary and the parallel verification is 3. Definition of path: the execution unit of a concurrent

possible.) However, assuming the RG is available and
designating a fixed order among the arcs originating from
the same node, we can virtually travel the RG by a systema-
tic depth-first strategy and enumerate all the paths in the RG,
i.e. the so-callegxecution sequenceéa the forms of simple

or cyclic paths as done in the path-based testing of structural
testing [1]. Furthermore, if all these execution sequences are
generated independently upon the others without construct-
ing the RG, the desired properties of the protocols whose
definitions rely upon the global states and their relations can
be analyzed from individual execution sequences one by
one, i.e. the safety properties and some liveness properties.
Accordingly, the memory requirement to remember the
global states is limited by the length of an execution
sequence rather than the complete RG, and the state explo-

program is usually structured and has an explicit exit
so that the path is easily defined as a sequence of state-
ments from the entry to the exit of the program. In a
protocol, the entry is usually clearly defined as the initial
state, but the exit or terminal state does not always exist.
In the duologue method, the terminal state was enforced
so that the path could be defined. Another problem is
about the loops in the path. In a program, the loop is
defined by the iteration statement, but the loops in the
unilogue was not clearly defined so that not all loops
were identified in the unilogues in Ref. [36].
Furthermore, the number of unilogues become infinite
if the loop exists. In Ref. [36], an arbitrary limit on the
loop time was enforced to avoid the infinite number of
unilogues.

sion problem may be alleviated from such “divide and

conquer” approach [21]. lizing the concurrent path of protocols to perform the

To achieve the aforementioned goal to generate execution .~ . .
. verification without the above problems. The new approach
sequences independently, we found that the concept and

. . Is called thegpath-based approachn our approach, the path,
generation method of concurrent path used in concurrent . . .
. ) . _the concurrent path and the relations with the conventional
program testing [15,27] is a clue. The concurrent path is a . .
4 ) L oo execution sequences of protocols are formally defined. The
partial-order representation, which is a combination of

execution behavior of individual execution units, i.e. the generation and verification methods are also proposed so
. o . . o that the basic properties, such as the absence of deadlock,
unit path of individual execution unit. The set of all concur-

rent paths is included by the Cartesian product of all unit ngﬁggmed reception, livelock and tempo-blocking are
paths of individual execution unit that are easily generated. This .a eris oraanized as follows. In Section 2. we over-
The analysis to determine whether a member in the product_ . Paperis org ) L

. : . view the crucial concepts of the approach, including the
is a concurrent path is performed_mdependent of other underlying protocol model, theCommunication Finite
members. Hence, the memory requwemen_t to ggne_ra_\te thE\State Maching(CFSM) mod,el the concurrent path, and
concurrent path depends on the complexity of individual the basic idea of our approach In Section 3, we for’malize
execution unit and individual concurrent path rather than i '

. our approach, giving the definition, properties and genera-
the execution space of the whole concurrent program. The; .
: ) : . tion of concurrent paths. In Section 4, we show the steps
state explosion problem is thus solved by the introduction of i .
. . toward the path-based approach: (a) generating the paths for
concurrent path in the concurrent program testing [15]. As .
P each FSM and all the concurrent path candidate and (b)
for the area of protocol verification, the concurrent path can =~~~ . : : . : :
: . . verifying the candidates for its validity (since some candi-
be used to denote the execution behavior of protocols that is . . . : .
L . . _dates are invalid because the candidates are arbitrary combi-
originally represented by the execution sequence. In fact, its ~_ . o : : .
A ) : nations of paths) and, if it is valid against the properties by
concept and generation is similar to the pioneering duologue erforming the reachability analysis on the concurrent path
approach by Zafiropulo and West [31,33,36]. However, the P 9 y Y paih.

- : Specially, in Section 5, we present several performance
duologue approach has the following problems in compar- | .
) ) improvement techniques for our approach. An example
ison to that of concurrent path:

protocol is verified using our approach in Section 6. Discus-
sion and comparison with other approaches are presented in
Section 7, and the future work is shown in Section 8.

Therefore, in this paper, we will concentrate on forma-

1. Limit of entities: the verification methods using duolo-
gues, the predicate method of Ref. [36] or the phase
diagram of Ref. [31], were limited to two entities. This
is the major problem of the duologue-based method.

2. Flood of nonoccurrable dUOlOgueS: the dUOlOgue or 2. Concepts of path_based protoco| verification
concurrent path is an arbitrary combination of unilogue
or execution path, but well-behaved duologue or valid 2.1. CFSM model
concurrent path is not and usually occupies a small
amount of all. The nonoccurrable duologue must be  The underlying protocol model, in this paper, to prescribe
removed more efficiently than the well-behaved one is a protocol, is theCommunication Finite State Machine
analyzed; otherwise, the performance dramatically (CFSM) model, which is a collection of modules commu-
aggravates. In their approaches, all types of duologuesnicating with each other via messages. A protdeah the
were analyzed in the same manner. CFSM model, denoted as @FSM systenor shortly a
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Fig. 1. A simple protocol.

systemis 5-tuple:
P = ((S)iL1. (Mjj)ij—1. {ODiL1. (Z)iL 1, (ADL1)

wherenis the number of modules, i.my, ..., m,; Sis the set

of states ofm and§ N § = ¢ for i #j (“¢” denotes an
empty set)O, andz; represent the initial and terminal states
of m that range overS; respectively,M; is the set of
messages that can be sent framto m; M; is empty for
eachi, andM; N My, = ¢ for i # p orj # g, and4; is a
partial mapping functionS X 1; — S, and Ai(s x) is the
state entered after thg receives the messagdn states,

for eachi. (I; = an=1 M; is the set of messages that can be
received bym).Each modulen; in the CFSM syster® is a
Finite State MachindFSM) composed of states and transi-
tions defined byg andA;, respectively. Every two modules
m; and my are connected by a dedicated communication
channel to transmit the message My from m to m,

(€11, -+ C1n» Co1, - G- (Gj IS @ sequence of messages
ranging overM; whose length is denoted ds;|. The
message sequencgrepresents the contents of the commu-
nication channel from modul® to my. Note that every; is
empty, for M; is empty.) (The brackets aroursland C
could be combined without confusion, so thats in the
form of (s, ..., Sy, C11, -+ Cin> Co1s -0 Crin)-)

The system stays at a global initial state when it is initi-
alized, and it will finally reach a global terminal state within
the normal execution. Thedobal initial stateof P is a global
state, denoted as,G

Go = ((O)iL1. (&)=1)

(¢ denotes an empty message sequence), andltieal
terminal stateof P is a global state, denoted &5.

Gr = ((Z)iL1. (aj=1)-

which is modeled by an FIFO queue with a channel capacity The execution behavior of a CFSM system is defined by
Cj limiting the number of messages in the channel. (Notice the relations (calleglobal transitionsto differentiate with

that in the following discussion, the symbols and notions
defined in a place retain the same definitions in their

the transitions of modules) between the global states. We
define a binary relation% ” on global states oP (meaning

succeeding discussions, if they are not especially redefined) that P at one global state can be transferred to the other in

Fig. 1 shows a simple CFSM system with two modules in
a graphical form. The label attached to the transitionm
in the type ofmy. + msg orm. — msgare called theending
or receiving transitionsrespectively, wherey (1 = j = n)
is the module sending or receiving the messagsg
(msge M; or M, respectively). (When there are only
two modules, the label ofn is always the other one and
can be omitted.) The transitidris defined by the function
Bt) = Aj(a(t), A(t)), wherea(t) and B(t) are referred to the
heading and tail states pfrespectively, and(t) denotes the
message to be sent or received in transition

The status of a CFSM system, at any moment of execu-

one step of execution)y = ¢’ iff there existi, k and x

satisfyings; = Ai(s;, X) in either of the following two condi-
tions:

Cii = XCii and X E My, )]
or

Cik =XG,  XEM, and [ci|=Cy, )
where g=(SC), ¢ =(S.C’), S =(sl,...sn), and

C' ={c1, .. Cn Co1, ... Ch)y ANACy,.
The first and the second conditions denote a blocking
receiving and a bounded non-blocking sending, respec-

tion, is depicted by the global state of the system recording tively. The associative transition with respectAgs, x) is
the states of the constituent modules and the contents of thgeferred to the global transition fromto g

communication channels. global state gof the CFSM
systemP is a pair

g=<(SC),

where S is an-tuple of stategs,, ..., s,) (5 represents the
current state of modulem), and C is a n*tuple

” o *9y

Extending the relation & ", “ = ™ is the reflexive and
transitive closure of = ”, then a global statg’ is reachable
fromgif g="¢'. ¢ is said to be reachable with respect to

! Capital letters are specially used to represent a specific state, message
or information or a set of them.
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the modules in a total order manner, and to construct the RG
as the one shown in Fig. 2. In the RG, every node denotes
the global statey; = (c), and every trail from the starting
node, such as nodg in Fig. 2, to the sink nodes, such as
nodeg,, g; andg;,, is an execution sequence, wherés the
name of the node (global state) ands the text in the
ellipse. For example, there are six trails in Fig. 2, each of
which corresponds to an execution sequence as follows:

€S : Yo=01=0=03=04

93
0,1,€,done
a

94
0,0,.£€

€3 9o=01=05s=0s = Or,

;

Fig. 2. The reachability graph of the protocol in Fig. 1. €3: 00=091=05= 0= 0O,

] €%: Jo=0s=05s=Us = Or,
the system if§ = Gy and all the global states traversed from
g to g’ constitutes aubsequencef the system. €%: 0o=0g =05 = Uo = Uy,
Note that, examining every reachable global state and q
subsequence, several types of errors are recognized, sucf”
as theoverflow deadlock, unspecified reception, livelock eg: gg = 0gs = 910 = 011 = O1o-
and temporal blocking21]. The channel overflow occurs .
.Among them,es andes are correct execution sequences,
at a reachable global state when the number of messages in
. wherea®s, es, s, andes; are faulty ones (they deadlock at
any channels exceeds the capacity of that channel. (In our )
case, it occurs when condition (2) is to happen, but the 9 . . .
N ) o However, the reachability analysis technique suffers from
limitation of |cj| = Cy is violated.) A reachable global . ;
. . L the state explosion problem because the size of RG grows
stateg # Gy contains a deadlock error if no transition can . . .
exponentially with the complexity of protocol, and thus the

bring the system to leave this global state and all the chan- . - d . . .
o . . conventional reachability analysis technique is not suitable
nels are empty. The unspecified reception error in any .
for analyzing complex protocols.

reachable global states is similar to the case of deadlock
except that some channels contain at least one message. A 2 Basic idea of path-based verification via concurrent
global state with any of the above errors is calledfthdty paths
global state (When a faulty global state is reached in the
execution, we assume no further execution is permitted.) Inspecting the reachability analysis and its variations, the
The errors of livelock or tempo-blocking occur when a major hurdle to a successful verification is the enormous
subsequence has an infinite loop (i.e. a loop without exit) size of the RG and the necessity to memorize the complete
or an undesired loop (i.e. a loop that has exit, but is not a graph. However, the properties to be verified depend on the
designed one), respectivélyTherefore, daulty execution global states and the execution sequence (i.e. the safety
sequences a subsequence, say="g containing any properties and some liveness properties). If all execution
faulty global state, livelock, or tempo-blocking. Otherwise, sequences (thus including all global states) are generated
if gis the global terminal state, this subsequencecisreect separately without constructing the RG, we can completely
execution sequenc8oth the correct and faulty execution verify the system by examining every execution sequence
sequences are referred to as éxecution sequenceghich and its global states. The memory requirement to remember
are the target of verification to explore and analysis. the global states is limited by the length of an execution

One simple, but effective method to enumerate all reach- sequence rather than the complete RG, and the state explo-
able global states and execution sequences, is the reachabikion problem may be alleviated from such a “divide and
ity analysis technique to demonstrate the interactions amongconquer” approach [21].

An execution sequence can be classifiedeaminated

Tsethepositive closure in the regular expression to represent thenon-termmfJlted and infinite. A- terminated exeCUt-Io-n-

. : . : sequence is a finite one ranging from the global initial
cycles in an execution sequence. An execution sequence with a cycle, . " .
which must be infinite since the cycle can be repeated forgyer; g, = state to the global state in which every module state is at
G= g = (A=sis)asg == ...(G=...g) = ..., whereg its terminal state, such &5 andes in Fig. 2. If we project
and g, are the same global states and denote a cyclic structure. If we the sequence of transitions in a terminated execution
represent all the cyclic structure in the infinite execution sequence as sequence onto the set of transitions of a module, may

t the infinit ti in a finite f . .
above, we can represent the infinite execution sequence in a finite form " get a sequence wfs transitions and this sequence
0= ...(0=..9)" = ..0,(1 =i =]), whereg, is the last global state

reached, assuming once the terminal global state is reached, no furtherWill b.e. a path ofm. (A Path of a mOdme is a seéquence of
exploration is allowed. transitions whose heading and tailing states are respectively,
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the initial and the terminal state of that module.) If we paths must be included by the Cartesian product of the sets
perform such a projection of an execution sequence with of all module paths. The Cartesian product can be generated
respect to every module, we can get a set of path each ofeasily, but each member of the product is an arbitrary

which owes to a distinct module. For example, éisgin Fig. combination of module paths, and not all members are
2, if we project the transitions g, i.e. [a;,8,,83,84] ONtO concurrent paths obviously. Thus, as long as we can identify
the transition ofm, andm,, we can get the pathyf,t,;] of m; the concurrent paths from Cartesian product we can acquire
and [o,to)] of my, becausen; = ty;, a, = t1,, az =ty and all concurrent paths. The key of identification results from
ay = tyy. each member of Cartesian product can be treated as a

As for the non-terminated execution sequence, it has atsimplified CFSM system and can be executed. If it is not
least one module not reaching its terminal state. If we a concurrent path, it does not denote a real execution beha-
perform the projection to execution sequence, we can getvior and its execution must be blocked at an intermediate
sequence of subpaths, and the behavior of non-terminatedglobal state and render an anomaly of error. (If it can finally
execution sequence can be represented by the set ofeach the terminal global state, it denotes a behavior of
subpaths. However, for any subpath, it is included by at terminated execution sequence and is a concurrent path.)
least one path, provided the terminal state of the module Thus, for each member with a blocking global state, if this
is reachable from every state. (This requirement should beblocking state is a real one (i.e. no transitions in the original
satisfied for any correct system; otherwise, there must besystem can release this blocking), it is a concurrent path;
errors of deadlock, livelock or dead code.) Since the execu- otherwise, it is not. We will describe the detail of identifica-
tion blocks at the tailing state of the subpath, the additional tion in the next section.
transitions in the path but not in the subpath are not execu- The second advantage is obvious. The original system is
table. The behavior of such non-terminated execution now divided into a set of concurrent paths, each of which
sequence can thus also be represented by a set of paths. denotes a partial behavior of and is smaller than the original

An infinite execution sequence must imply that it has system. As stated before, each of them can be executed and
cyclic structure as the number of global states is finite; thus verified independently using the algorithm of the reach-
and there exists a last global state (unless the structure ofability analysis to enumerate the potential execution
the path is similar to the infinite decimal which should be sequence(s). With these potential execution sequences, we
rare.) Thus, we can also classify the infinite execution can check the required properties against them. Since each
sequence into terminated or non-terminated according toconcurrent path is smaller than the original system, the
the last global state reached and it can also be representednemory requirement of the reachability analysis is also
by a set of paths. (These paths may have loops.) much smaller. Therefore, the state explosion problem is

Therefore, we can use a set of module paths, each ofalleviated.
which belongs to a distinct module, to represent the beha- Furthermore, the conventional parallel verification algo-
vior of execution sequence. In comparison with the execu- rithm of Stern and Dill [26] relies on the message passing or
tion sequence, the concurrent path denotes the executiorshared memory mechanism to build the image of the whole
behavior in a partial-order manner, whose ordering relation- reachability graph. It has from time to time to exchange the
ship is implicitly defined by the precedence of sending and newly generated global state among the parallel computers
corresponding receiving transitions, and explicitly by the to maintain the consistency of the reachability graph. Thus,
sequential ordering among the transitions in a path [27]; a great cost of communication is required. Our approach
the execution sequence performs in a total-order manner,allows each concurrent path to be verified independently
whose ordering relationship is explicitly defined by the rela- and naturally in parallel. All the information to be
tion of global states. It should be noted that both notations exchanged is the verification result of each concurrent
exhibit the same “happen-before” relation of the transitions’ path and thus the cost of communication is very low.
execution [20]. Therefore, as long as we can show the beha- In the following sections, we formally define the concur-
vior of all execution sequences within a RG can be equiva- rent path and propose the path-based verification underlying
lently represented by a set of concurrent paths and we canthe concept of concurrent path.
generate such set of concurrent paths algorithmically, we
can use the notation of concurrent path to completely verify
the protocol. 3. Definition and generation of concurrent path

The advantage of using the notation of concurrent path
instead of the execution sequence is three-fold: (1) all 3.1. Definition of concurrent path
concurrent paths can be generated automatically and
under low space complexity; (2) the system is separated The concept of concurrent path has been used in the
into a set of concurrent paths, each of which is much smaller verification and testing of concurrent programs [15,27,35].
than the original system; and (3) parallel verification. The The concurrent path defines the execution behavior of
first advantage results from the representation of the concur-concurrent programs by separately specifying the execution
rent path, i.e. a set of module paths. The set of all concurrentpath of the execution unit that can execute in parallel, such
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To differentiate the paths of the above definitions, the paths

concurrent path in concurrent programs [15,35], we define following Definitions 1 or 2 are callesimple pathsand that
the concurrent path prescribing the execution behavior of following Definition 5 arecomplex pathslif a simple path

the CFSM model followed by the definition of paths of a
module in the succeeding context.

In order to define the concurrent path of a CFSM system,

we first define thanodule pathor briefly path

Definition 1. Within a systen®, a finite pathp, in module
m, of lengthk (k = 0) is defined as followsp, = [s;; ],
denoted as, if k=0, or p; =[S, S, ---S—1; t1> T2, - 1]
otherwise, wheres; = Ojands, 1 = Z,, andt; is the transi-
tion froms to sy, i.e. A(S,A(t)) =541, 1=i=Kk

The empty path denoted ag, is also considered as a path

does notinclude any cycle, i.e. for ah« j(1 = i,j),§ # s,
it is called pure simple path

To define the concurrent path in a CFSM system, we
examine the RG and the execution sequences as follows.
The finite execution sequences in the RG are divided into
two sorts:terminatedand non-terminated The terminated
execution sequence ranges from the global initial state to the
global state in which every module state is at its terminal
state, such ass andes in Fig. 2. According to the seman-
tics defined in the CFSM model, in a CFSM system with
modulesm;, m,, ..., and m,, with respect to a terminated
execution sequencesem of lengthl I =1): g, =0, =
...q, each global transition from one global state to its
succeeding one, say;, = ¢4, (1=i=1I-1), requires

and exists only when the initial and terminal states are the the execution of only one module transition, s&y,

same.

Definition 2. Within a systemP, an infinite pathp, in
module m, is defined as followsp, =[S, .-+ S, S 11 -+
ty, ... t, ...], wheres; = O,, andt; is the transition frons
10 §+1.

In addition to the definitions of paths, we further define the

subpaths that are infixes of paths, and prefixed as follows:

Definition 3. An infix or subpathu, of p, of modulem, is
defined asu, =[S, S 1, --» §+1: ti- tivq, ... 4] if its length is
j—i+1>0o0r][s;]ifitisempty, where lI=i =)=k

A nonempty path/subpatbs,s_1, ...,
written [t;,t;_,, ..., ] for short.

§+1 b vy, o ] is

Definition 4. A prefix x, of p, is a p's subpath whose
heading state is the same with and is said to béncluded
by pa., i.€. pa = X3-W,, Where “." is the concatenation opera-
tor upon the subpaths ang, is a subpath ofp,. If u, is
empty, X, is denoted as a pure prefix.

which is a transition indexed bg in certain modulem;

(1 =k = n). Thus, we, can annex the global transition with
the module one asg=>9|+1 and rewrite theesem as
glz>gzz> S g, wherex; =ty (L=i=1-1).

For eachese., we can collect the transitions of the
module m, to a transition sequences, each member of
which belongs tomy, i.e. t§ = [ty tak, - takl, Where
tyk (1 =i =x) is the transition ofm,, x is the number of
my's transitions iresem. Thets, is also a path because of the
following reasons:

1. The transitiort, , must be the succeeding transition of
tak (L =1 =x). This holds because only the transitions
starting from the tail state of the last executed transition
are possibly executable with respect to the succeeding
global state and the module state in the global state
remains unchanged until any transition from the same
module is executed.

2. The starting state df,, and the tail state of, , are the
initial and terminate states afy, respectively, because
the esem Starts and ends at the global initial and terminal
states, respectively.

There is, however, one extreme case that certain module is
not involved in the execution @se, i.€. it always stays at

its initial state. Since the null transition sequengas also
considered a path, every modute (1 = i = n) must have

Since the number of states and transitions are finite, therethe corresponding patp; for eSem (pi IS ts If ts exists;

must exist cyclic structure iR so that they can appear more

otherwisep; is &,). From the module point of viewy could

than once. Thus, we can introduce the positive closure usedbe seen as the result of projecting the transition sequence in
in the regular expression [14] to represent the loops the paththeesem0ver the transitions afy to denote the correspond-

follows, instead of that in Definition 2.

Definition 5.  Within a systemP, a nonempty cyclic path
P, in modulem, is defined ap, = [y, ... (S, .-.9)", ... &1
t, .. (i, e ,_1) , . ], wheres, = O,, S 1 = Zy andt; is
the transition froms to s,; (i =1). The subpath
[S. ... St ...§-1] is the loop ofp,.

ing behavior ofesem in m in terms of paths. Along;, each
transition is associated with an execution condition to be
satisfied, i.e. expecting to send or receive a message. Only
when satisfied, the transition is executed and the module is
transferred to the tail state.

The complete behavior of the system, in termegg,, is
achieved via the cooperation of gifs. On cooperation to
renderesem, the execution condition of every transitiongn
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will be satisfied, be executed and let the moduldransfer will not be executed and do not influence the behavior of
to its tail state so that the succeeding one will wait for €Suem
execution. After a series of transitions’ executioms, Another sort of execution sequence we have not consid-
finally reaches its terminal state, which is the tail state of ered yet is the infinite one. An infinite execution sequence
the last transition. The system being simplified in a way that must imply that there exists cyclic structure in it since the
every module has only one path, its execution will at least number of global states is finite. Thus, an infinite execution
exhibit the execution behavior of tfés,., (The behaviorof  sequenceg; =g, = ...g=...g...(1=i=j) can be
some other execution sequences may emerge because the releepresented bg; = ...(g; = ...q)" = ...q, 1 =i =]), or
tive execution speeds of modules are not fixed.) The simpli- g; = ...(g, = ...q)" (1 =i = j), whereg, is the last global
fied system is now just a combination of patt,{p,,...,Pn} state reached assuming once the terminal global state is
that includes the execution behaviores,, from the system reached no further exploration is allowed. Thus, the infinite
point of view. This combination is denoted as@ncurrent execution sequence can also be classified into terminated
pathfor a terminated execution sequence or briefiy and non-terminated, and we can follow the discussions of
The other sort of finite execution sequence is tiom- €Serm OF €Syerm 10 CONClude that can be representedchym,
terminated execution sequenc&Sm This has at least  or Cpyerm respectively.
one module not reaching its terminal state, i.e. it must be As discussed above, no matter whetlesg,,, Or €Syem
a faulty execution sequence. As done toelsg,, we could (finite or infinite), its execution behavior is included by
collect transitions in thes,emfor eachmy, but there aretwo  the concurrent pathcfiem Or Cpaer) that is a collection of
situations in the collecting process as follows: paths such that there is exactly one path per module in this
collection. Expanding this representation of execution beha-
vior, we can define a more general representation form of
execution behavior, theoncurrent pathas follows.

1. If m can reach its terminal state @$m, the transition
sequence collected is a path as in the casesgf,

2. If not, the sequence is a pupeefix of a path instead of a
path.

In situation (2), the execution condition associated with the

succeeding transition of the tail state of the last transition in Definition 6. Within a systemP, a concurrent pathis
the prefix is not satisfied because of the fault embedded indefined as an ordered set of pathg, {p,,...,pn}, Wherep;
eSwerm Hence, the system cannot terminate normally in the is a path ofm.

global terminal state and the transition sequenaga$ just

a pure prefix. If the notation similar 8., is to include the The concurrent path denotes the execution behavior in a
execution behavior oS the result is a combination of  partial-order manner, whose ordering relationship is impli-
prefixes &, S,,...,.S.}, wheres is a prefix ofm (1 =i = n), citly defined by the precedence of sending and correspond-

and at least ong is a pure prefix rather than a path. This ing receiving transitions, and is explicitly by the sequential
combination is still a simplified CFSM system yet with the ordering among the transitions in a path [27]; the execution
terminal state of certain module not reachable. If the system sequence does in a total-order manner, whose ordering rela-
is executed, it is also blocked at some global state other thantionship is explicitly defined by the relation of global states.
global terminal one. It should be noted that both notations exhibit the same
However, this combination of prefix does not conform to “happen-before” relation of the transitions’ execution [20].
the definition ofcpen, but it is reasonable to assume that The notation of concurrent path has the advantage over that
every state in the original module can reaghthrough a of execution sequence that it can be generated in the magni-
sequence of transitions; that i,could be reachable in the  tude of module rather than the RG. Therefore, as long as we
simplified system by adding some transitions between the can show the behavior of all execution sequences within a
tail state ot , andz. These added transitions have the only RG can be equivalently represented by a set of concurrent
function to make the, reachable from the syntax point of paths, and we can generate such a set of concurrent paths
view, but they will never be executed from a semantic point algorithmically, we can use the notation of concurrent path
of view. In other words, the exhibited behaviors of the two to verify completely the protocol with smaller complexity.
systems are the same. Therefore, with respect to the prefix In the remaining subsection, we annotate the correspon-
combination §,, S,,...,S,}, a pathp, i.e. the path in the  dence relations among both representations to underlie the
modulem of new simplified system, can be found to include verification underlying the concept of concurrent path. A

prefix s for everys, and the concurrent pattp{, p,...,pn}, concurrent path is said toorrespondwith an execution

denoted aspyem, instead is used to include the behavior of sequence, and vice versa, if they demonstrate the same

eSwerm The transitions i, but notins (1 < i = n), if any, execution behavior. The correspondence is natified in
Theorem 1.

31t should be noted that the number of such concurrent paths is not
limited to one, and any one of them can be used to denote the behavior o ) )
of {sy, S....5}- Definition 7. Given a concurrent patbp, the behaviour
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set, denoted aB(cp), is a set of all the execution sequences
in the reachability graph afp.

Definition 8. A concurrent patlepis said to correspond to
an execution sequences if es€ B(cp), denoted agp —
es

Lemma 1. Given a CFSM system P and an execution

sequence es, there exists a concurrent path, say cp, so tha%J

cp corresponds to es, denoted ase<p.

Proof. The proof has been informally shown in Subsec-
tion 2.2, so we omit it here. [

Lemma 2. For every execution sequence es and concur-
rent path cp, e B (cp) if es— cp.

Proof. Letestravels the transitiors, t,, ... t, in sequence.
An ese B(cp) if

1. all the transitionsy, t,,..., andt, are in the union of the
transitions of all the paths iop;

2. the sequenceg, t,, ... .t, is possible to be executed; and

3. the projection oésinto the domain of a module is equal
to the corresponding path ap of that module. For exam-
ple, amondy, t,,....t, (n(10), only t,, t4, t;o are of module
m;, the projection fromesto the domain ofm is the
sequence of,, t,, t1o

Ascpis defined by Definition 7, the conditions (i)—(iii) must
be satisfied. O

completely verified by being inspected with all the execu-
tion sequences of their behavior sets. In the next subsection,
we show the method to generate all concurrent paths.

Definition 9.  Given a concurrent paitp, the behavior set,
denoted a$3(cp) is a set of all execution sequences corre-
sponding tocp.

Corollary 1. All execution sequences are included by the
nion of the behavior sets of all concurrent paths

Proof. V execution sequences by Theorem 1,3 a
concurrent patlep, es— cp. By Lemma 2es€ B(cp). O

3.2. Generation of concurrent paths

The purpose of verification is to examine thoroughly the
complete behavior of a system against the desired proper-
ties. The complete behavior is originally denoted by RG or
the set of all execution sequences, and now by the set of all
concurrent paths. ldeally, all concurrent paths should be
generated for verification. The number of this set of execu-
tion sequences following Definition 5 is finite, and so does
the corresponding concurrent paths to include these execu-
tion sequences by Theorem 1. It is possible to generate all
the concurrent paths to represent the complete execution
behavior with respect to the issue of number.

One approach to generate all the necessary concurrent
paths is the reachability analysis, but obviously is infeasible
in its complexity, i.e. confronts the state explosion problem.
A new method to reduce the complexity of generation
results from the representation of concurrent path. The
concurrent path specifies the path that the module will
traverse if the CFSM system is performing the correspond-
ing behavior rather than the execution sequences directly

Theorem 1. For any execution sequence es, there exists a SPecifies the path in the execution space represented by
concurrent path cp such that es corresponds to cp and viceth® RG. This gives an idea to generate the concurrent

versa, denoted as es cp.

Proof. By Lemma 1, a concurrent patip does exist for
any execution sequeneg andes— cp. By Lemma 2gs&
B(cp). By Definition 7, cp— es Hence, we can find a
concurrent pathcp for any execution sequences such
thates— cpandcp—es [

paths from the modules instead of the RG. The representa-
tion of concurrent path shows that all concurrent paths are
included by the Cartesian product of all the paths of the
constituent modules; we can acquire all the concurrent
paths from the Cartesian product. (The method to generate
paths is available in the area of software testing [1] and is
not discussed here.)

However, there are members in the Cartesian product but
not having the corresponding execution sequences. A

Since every execution sequence has a corresponding™ember is denoted as eoncurrent path candidateor
concurrent path, the complete execution behavior is conven-candidatefor short. Take the protocol in Fig. 1 as an exam-
tionally denoted by the set of all execution sequences andPle- There are at least two paths for each module. The

now by the set of all concurrent paths according to Corollary
1 shown below. We can examine all possible execution

behaviors by examining all concurrent paths. Once we can

modulemy has the following two paths:

P11 = [ty (t31) ", to]

generate all concurrent paths, the protocol can be py; = [tsy, 1411,
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and the modulen, has: system. The blocked state denotes an anomaly of error, and
D12 = [t o] there exists at least one transition in the CFSM system but
12— 2 f22b not the succeeding transition in the candidate to release this
* blocking situation. By checking the validity of blocking
P2z = [ts2: (a2) . tsp]- state, we can determine whether a candidate is a concurrent
The number of candidates will be four, but there are only six path or not.
execution sequences in the RG as shown in Subsection 2.1. The removal of invalid candidates underlies the reach-
Thus, we must decide the correspondence between concurability analysis, and the verification can be embodied into
rent path candidates and execution sequences, if availablethe removal process directly. Therefore, we only need a
A candidate is said to bealid if there is at least one execu- complement checking procedure into the removal process
tion sequence corresponding to it; otherwise, itnigalid. to complete the entire verification process.
Consider the candidatepf;, p1o} and take it as a simplified
system. Its execution is always blocked at the global state of
(%, S0, &, €) because the execution condition tef or ts; is
not satisfied with respect to this global state. Nevertheless,

t,; orts, can shift the original system from the blocked global approach, called thpath-based approacfor the protocol

Stfite to the new 9”61.’ 0. & req) or(so,s_z, alarm, &); thus, verification based on the CFSM model. This approach
this candidate is invalid since the candidate cannot render a.

valid execution but an anomaly of unspecified reception. As involves three steps:

for the concurrent pathp;, p.2}, it can reach the global 1. enumerate the paths for individual modules;

state(s;, s, &, ) via four different execution sequences and 2. compose the concurrent path candidates; and

thus a valid concurrent path. 3. remove invalid candidates through the reachability
In general, when the execution condition of a transition analysis and perform the verification.

cannot be satisfied within the candidate but that of another

transition can within the original system, the execution of

the candidate will render an anomaly of deadlock, or unspe-

cified reception, which will never happen in the real execu- logically be divided into two phases. At first, two types of

tion. This candidate is classified as an invalid one. The .
. . . the subpaths are generated, the pure simple path and the
appearance of such invalid candidates comes from those

. . s loops around the loop states. Then, according to the above
candidates that are arbitrary combinations of paths. The . X
) . . . S . recommendation, the generated paths are the pure simple
invalid candidate is the combination corresponding to

non-real behavior. The invalid candidates raise two issuesOnes and complex paths. ”.1 Ref. [6], Qhang detailed the
to be solved: generation of paths along with the algorithm.

When all the paths are available, the concurrent path
1. If we directly apply the verification to all candidates, we candidates are generated through the Cartesian product of
cannot determine whether it has an anomaly or a real all the paths of the constituent modules because the concur-
error. rent path candidate is a combination of the paths of the
2. The number of candidates is tremendous because it is theconstituent modules. In this subsection, we present a simu-
product of the numbers of modules’ paths, and the veri- lation method to determine the validity of candidate.
fication of each candidate is quite time-consuming via  The simulation follows the semantics of the CFSM
the technique similar to the reachability analysis. If the defined in Subsection 2.1. Candidates are analyzed with
invalid candidate can be excluded efficiently, the perfor- the full search reachability analysis. Since the number of
mance of verification will be improved. transitions in a path is finite, the simulation of a concurrent
path candidate always terminates and has the following
results:

4. Verification in terms of concurrent paths

Based on the idea of concurrent path, we propose a new

The first step is to generate the paths of module. The
general algorithms to generate the paths can, for example,
be found in Refs. [1,20]. In our case, the generation could

Hence, it is necessary to develop a procedure to efficiently
remove these invalid candidates. In this subsection, we
discuss the removing method and leave the performancel. It is terminated if all transitions on the paths are
issue in Section 5. executed and the last reached global state is the global
Since, a candidate is a CFSM system yet simplified, and terminal state.
according to the semantics of the CFSM model, it can be 2. It isimproperly terminatedif all transitions on the paths
executed via the reachability analysis to examine whether it are executed, but the last global state is not the global
renders a real execution. (Reachability analysis technique is  terminal state.
adopted because of its simplicity and its capacity to accom- 3. Itisblocked if there exists at least one transition in a path
modate most protocol underlying models although it is not  that cannot be executed because it is a sending transition
efficient enough, but the efficiency will be improved later.) and the associative channel has reached its capacity, or it
A non-real execution must be blocked at some global state is a receiving transition and the heading message in the
that is not a global terminal one and not a blocked one inthe  associative channel is not the necessary one. The global
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Candidate Number of global | Last Global State | Result of Type of
states visited of Simulation Simulation | Candidate
1| {pi, P2} 5 <Sg, So» €, £ terminated | valid
2 | {pas P12} 5 <Sp, So» €, £ blocked invalid
3 {pu.n P} 5 <s,, 5, €, £ blocked valid (deadlock)
4 | {pas P22} 5 <5y, Sp, €, € terminated | valid

Fig. 3. Analysis result of the protocol in Fig. 1.

state that the system reaches when the blocking occurs idt should be noted that the livelock and the tempo-blocking
called theblocked global stateand the transitions in the  might render a channel overflow when the corresponding
candidate that cannot occur from the blocked global state cyclic sequence always increases the number of messages
are collected into a set, calletisabled set in the channel after each cycle.

4. It is lively locked if there exist loops in the paths and Take the protocol in Fig. 1 as an example again. The
cycle in the corresponding execution sequence. modulem; of the protocol in has three paths,

Both the terminated and improperly terminated candi- p;; = [t;4, (t31)", th1],
dates are obviously valid. The execution of the terminated
one does not contain any actual errors other than the tempop,, = |
blocking. The tempo-blocking occurs when there are global
states occurring more than once in the corresponding execu-2ndny does:
tion sequence. That of the improperly terminated, one must Py
contain the unspecified reception, if we demand that no
further execution for each module is allowed when that = [tar. (ta)". te]
module reaches its terminal state. The messages yielding’22 ~ 2 (42 »1s2l;
the unspecified reception are those remaining in the lastThus, there will be four concurrent path candidates. The last
reached global state. As for the blocked candidate, it corre- reached global states and the results of the analysis are listed
sponds to either the invalid or the valid with errors depend- in Fig. 3. A deadlock is detected in this simple protocol (the
ing on the reason of blocking. To distinguish them, we can third candidate).
check the blocked global state with the CFSM system to  The simulation method to perform validity analysis of a
identify the reason. If the global state is also blocked in candidate is formally described in Algorithm A1. This algo-
the CFSM system, i.e. no transition in the system can be rithm contains two procedures: analyze_cp and check_live-
enabled from the global state, the candidate is also valid butlock. Analyze_cp first applies the reachability analysis to
with errors. For further checking to identify the type of find the last global state, and determines the type of candi-
error, the transitions in the system that are also not execu-date following the aforementioned discussion. During the
table are inserted into the disabled set of the candidate. Thereachability analysis, some necessary global states are kept
error could be one of the following: into the variableq and four sets, i.e. visited state 9@t
working state seW, current pathP and cycle seC. With
the depth-first strategyy keeps the next global state to be
reached. The set 0¥ andQ keeps the states being visited on
backtracking and visited, respectively. All visited global
states along the current searching path are kept in the set
of P to determine whether there is a cycle in the current
If there exist at least one transition in the system to occur path. When the execution enters a cycle, a global state along
from the global state (these transitions are collected into aits incoming transition is collected into the set@f When
set, callecenabled st there are the following possibilities:  all concurrent paths are analyzed, an addition procedure

1. It is alivelock if every transition in the enabled set has Ch?Ck—“.VEIOCk is used to identify the livelock in the system
using this cycle se€.

been traveled in current searching execution sequence
and is the entry to the cycle in it.

2. It is aninvalid candidate otherwise because the blocked
global state is impossible to occur in the actual execution,
i.e. it will leave through any transitions of the enabled set.

t42, t511,

2 = [t12, Too],

1. an unspecified receptionif there are remaining
message(s) in the blocked global state and there is no
sending transition in the disabled set; or

2. adeadlockif there is no message in the channels and no
sending transition in the disabled set.

Algorithm Al: Validity Analysis

Input: py,...,.on  /“p; denote a path of module */
Output: valid, invalid

Description: The algorithm analyzes every concurrent
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path candidate d,...,py} and categorize it into two
classes: valid and invalid.

Steps

Validty Anlyzé);

C = {};/ ¥ cycle set: a global variable shared to both
function’/

begin

for every concurrent path candidatp,{...,py} do

Analyze CRpy,....pn)
Check_Livelock);

end;

Analyze CRpy,...,pn)
begin

g = global_initial_state;

P={}; /" current search path
W= {g} /" working set’/
Q={} /" visited state set/

valid = False;

[* reachability analysis upon the candidate
repeat

popq from W,

[* on reaching the terminal state, check the tempo-
blocking and unspecified receptiéh

ifq is the terminal stat¢hen

ifC is not emptythen/* at least one cycle is reachéd
report the candidate as valid w.r.t. current p&h
(tempo-blocking);
else
report the candidate as valid w.r.t. current pRth
valid = True;

if all module states i are terminal states of modules
&& some channel contents are not emgien

report the candidate as valid w.r.t. current p&th
(unspecified reception);

valid = True;
" check ifq is a visited or to be visited stafé
ifqis in Q or Wthen

break
updateP with respect tag;/* update the path witly */
insertg into Q;/* insertq into visited state set/
Icheck the execution is blockedl
if no executable transition ip, U ... U py then
/" the execution for current path is blockéd

collect all executable transitions m; U ... U my into
the setE
if anyt in E is not a transition in(p; U ... U py) then
report the candidate as invalid w.r.t. current pRth
else if any transition whose heading state isgns a
sending transitiothen
report the candidate as valid w.r.t. current p&h
(channel overflow)

239

valid = True;
else ifany channel ofy is not emptythen

report the candidate as valid w.r.t. current p&h
(unspecified reception)

valid = True;
else

report the candidate as valid w.r.t. current p&h
(deadlock)

valid = True;
I* explore new global staté
for each executablein p;; U ... U py do

ifgisin P and @, t) is not inC then /" a new exit to the
cycle exists’/

insert(g, t) into C;/* save this cycle and its entering
transition™/ .
Let g as the global state from aftert; /* q=g "/
pushg into W

until Wis empty/ no executable states available
if valid = Falsethen
classify this candidate as invalid;
else
classify this candidate as valid;
end
Check_LivelocR
begin
for each distincg in C do

collect all executable transitions i, U ... U my into
the setE
if (g, t) is in C for every transitiort in E do

report the candidate containimmphas a livelock;
end.

The above analysis always terminates, because of the
finite number of transitions in a path. Assume there rare
modules, each of them has at maspaths whose lengths
arekin average. The time and memory complexity to check
all concurrent paths i©(M" x n"™*) andO(k"), respectively.

This algorithm performs the analysis sequentially, but it
is worthy of note that the simulation of a candidate is
completely independent of that of one another so that the
simulations of different candidates can proceed in parallel,
which is discussed later.

5. Performance improved techniques

The performance of the above method largely depends on
the number of concurrent path candidates to be checked and
the checking time for each candidate. However, a candidate
is an arbitrary combination of module paths and checked for
its validity independently by simulation. If we can record
some useful information about the relation of different
candidates to eliminate unnecessary simulation, the perfor-
mance can be improved. In Section 5.1, we observe there are
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candidates being invalid for the same reason, and, once a
candidate is identified as invalid, all the other candidates
with the same invalid behavior are not necessary to be
checked again. Thus, the number of candidates to be
checked is reduced. In Section 5.2, we observe that, in the
case of a system with several modules having the same FSM
behavior, the behavior rendered by the permutation of these
modules are de facto equivalent. Thus, all candidates with
such equivalent relation have to be checked representatively
by any one of them to save the checking effort of the others.
In addition, to reduce the number of candidates to be
checked, as each candidate is checked independently, we
can also use the parallel verification technigue to improve
the performance as shown in Section 5.3.

5.1. Avoid duplicated checking of invalid candidate

Although, the simulation is an effective method to deter-
mine the validity of the candidates as well as to detect
errors, a potential drawback is about the efficiency of veri-

fication because the candidate is an arbitrary combination of
paths, and the invalid may occupy a large percentage of all.
In the previous method, each candidate is analyzed indepen

dently, but there are invalid candidates that result from the

same reason. However, on the detection of an invalid candi-

date, if we can directly find out other candidates that will

also be invalid due to the same reason and mark them inva-
lid immediately, when these candidates are encountered in
succeeding analysis, the redundancy to determine their

validity is eliminated. Therefore, in this subsection, we
present a method accelerating the removal of the invalid
candidates by reducing such redundancy.

Consider an invalid candidatep = {ps, po, ..., P} Of @
CFSM system withn modules blocked at a non-terminal
global stateg = (s;,s,, ..., S C11, ---» Cony- L€L t be one of
the succeeding transitions from of some modulem
whose execution condition is not satisfied due to the inva-
lidity and m, be the corresponding module with respect to
(i.e. if tis a sending or receiving transitiom is the desti-
nation or source module df respectively). The following
observations will help eliminate the redundant simulation

by giving special marks to the candidates unnecessary to be

simulated, denoted asdundant candidates

1. The invalidity results from the relation of andmy. Any
candidatecp’ is also invalid if it also containg; andp; as
cp, and the execution can makg andm, reach the state
§ ands, respectively. If these candidates are blocked at
some other global state earlier thgythey may be valid
(but with errors) rather than invalid, but this error will
ultimately be detected in the analysis of the candidate
that satisfy the execution condition af Hence, all
suchcp's can be marked and ignored directly without
affecting the result of verification.

2. The invalidity results from the blocking position in
module mp and my. Let t; and t; be any transitions
whose heading state & ands in modulemy and my,
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respectively, not executable frog Let t be the transi-
tion that concludep's invalidity because it is executable
but not included incp. Let the subpathy, and g, be
included byp; and p;, and havet; andt; as their last
transition, respectively. Any candidatescp’ =
{p’. P2, .... Pn} Whosep] andpj includeq; andg, respec-
tively, it will also be marked because as long as the
execution ofcp', if possible, reaches ands in module

m; andmy, respectively, the contents of channels between
them are the same ag andc;i, andt; andt; are thus not
executable but is; that is,cp’ is invalid. If they can not
reach these two states, as in observation (1), the error

must be detected in the analysis of other candidates.

Therefore, according to the above two observations, when
an invalid candidatecp is detected, any candidatp’ is
redundant and marked dp’ includes the pathg; andp;,

pi andpj are defined as observation (2).

To incorporate these two observations into the verifica-
tion method,C(n, 2) two-dimensional (2D) matrixes are
necessary to keep these marks, wheiie the combination
function. Each matrixy; hasn; rows andy columns, where

m; andn; is the number paths in modufg andm, respec-
tively. The marks with respect top’ is marked in the entry
(4(p), £(p))) of matrix my;, where{(p) denotes the index of
pathp in its module. A new candidatepf, p5, ..., pi} will
be simulated if the entry(p{), Z(p])) of matrix my is yet
not marked, for eachandj (1 =i <j =n).

It is difficult to estimate how efficiently the method helps
remove the invalid candidates. To one extreme, it may
provide no help when the paths of a module are completely
independent with other. However, our experiment on the
verification of the X.21 protocol shows that, 57% of candi-
dates are marked in advance before they are analyzed.

To improve the efficiency of verification, we make some
trade-off on the memory requirement in this performance
improvement technique. The original memory requirement
is used to keep the global states on the current search trace
and the set of cycle entering state, which depends on the
length of path. Currently, we add the additional memory
requirement on the matrixes to keep the marks on the redun-
dant candidates. Since each entry in the matrix occupies
only 1 bit, the total memory to these table &, 2) x p?
bits, wheren is the number of modules anuis the number
of paths in a module on the average. Assume there are 16
mega bytes of memory available. To an extent, one can at
most verify a protocol with 100 modules each of which has
at most 160 paths, or, to the other extent, with two modules
each of which has at most 4000 paths. When the number of
paths exceeds this limit, the technique of parallel verifica-
tion (discussed below) can be used.

However, the size of required memory is computed in
advance as long as the paths of modules are enumerated.
When the memory requirement exceeds the limit of physi-
cally available memory, the paths of each module can be
splitintok independent set& & 1), each of which includes
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1/k portions of paths in the module so that the memory set of path index, i.€(ps, ..., Pm) = ({(P1)s -.-{(Pm)), and
requirement for each verification is down takd The denotes a permutation function over the order set
value ofk is chosen to satisfy the available memory capa- Z(p;, ...pn), that is Z(p, ... pm) € m((P1, .. Py)) iff for

city. k” verifications are necessary for every possible combi- eachi, there exisj (j # i) such that/(p,) = g(pj).

nation of the sets of different modules. However, the  Then, for the set of symmetric concurrent path candi-
memory requirement ik times smaller than the original dates, we can add the following rule to check only the

one. first concurrent path candidate reached among them when
checking the validity of concurrent path candidate.
5.2. Symmetric verification Rule: A candidate py, ps,...,pn} has to be checked if, for

_ o _ _ eachp (1 <i=m), {p) > {p) forall j <i.

One reason to increase the verification time is the huge  |n summary, with the symmetric technique, instead of
number of concurrent path that is the product of the numbersyerifying all k” candidate, we only have to verify
of paths of all modules. In the case of replicated modules [(—m+ oMtk — iy = K™Y —m+ 1) candi-
(the entities that are represented by the same finite stategates, (assume every module lkgsaths in average).
machine), the concept of symmetric verification [17] is
helpful in improving the efficiency of verification. The 5.3. Parallel verification
symmetric verification aims to exploit the structural symme-
try in the protocol. The structural symmetries induce an ~ One of the best features of the proposed approach is the
equivalence relation between states. Thus, for each equiva_verification of different candidates that can be performed
lence set induced by symmetry, only one state has to peindependently, and the algorithm can be naturally adapted
explored and the number of states to be explored is reduced© be parallel. For example, N (N(1) groups of candidates
greatly. are to be verified in parallel, the paths of the module with the

To apply this concept, we must define the symmetry with fewer number of simple paths is chosen for separation. Its
respect to concurrent paths (or candidates). The symmetrypaths are divided intbl sub.se.ts SO thgt the paths in the same
results from the permutation of the paths from the identical Subset have the most similar prefix. Thew,groups of
modules. (A module is said to be identical to the other if candidates can be generated by the Cartesian product of
their corresponding finite state machines are the same.) AON€e subset and the sets of the paths of other modules.
concurrent path may be almost the same with the other Each verification may also maintain their own matrix used
except for some paths from the identical modules are in in Subsection 5.1 considering all only the paths in its subset.
different order. In this case, they are symmetric and corre- If some information sharing mechanism such as the share
spond to the same behavior. For example, for the concurrentemory exists, all the paths are added into the matrix to
pathcp={ps. ... i, ... P}, ... Pn} @nd cp’ = {py, ... pi, ..., avoid all redundancies.
Pj, ... pa}, if M andny are the identical moduleg; andpj
are the same paths, apgdandp; are two concurrent paths g aAn example: the verification of X.21 protocol
that are symmetric. Thus, for the set of symmetric concur-
rent paths, we only have examined any one of them instead The X.21 protocol [13] shown in Fig. 4 is used to demon-
of all. strate our approach embodied in a verification tool, called

Formally, a concurrent patip = {py. pz. ... pp}issaldto  the path-based protocol analysis tool, developed in the
be symmetric to anotherp’ = {p1,pz, ... Py}, denoted as  environment of Windows 95 on IBMe PC equipped with
cp-cp', if, for eachi (1 =i =), p; and ff are either the  the CPU of Inte), Pentium and 32 MB of memory. This tool

same or there must exist anothje(l =j =n andj # i) provides the techniques of Sections 4 (verification in terms
such that of concurrent path), 5.1 (avoiding redundant checking) and
1. m andm are identical, and 5.2 (symmetric verification). We also implement the
2. p; andp] are the same paths. complete RA in our tool.

The X.21 protocol has two modules, called DTE and
To explain how to do this, we first assume only the first  pCE, each of which has 24 states and 61 transitions (the
(1 <m<n) modules that are identical, and the order of numper of transition is more than the visible one in Fig. 4
index to the paths in these identical modules are the sameyagyit from the state “all” denoting any other state in the
(i.e. a pathp; are the same of another paiiff the {(p) = module). The initial state and the quasi-terminal are state 1.
{(py). i.e. the index ofy; is equivalent to that ofy). Thus the  (Since the protocol can repeat forever, there is no apparent
set of symmetric concurrent paths with respect to a concur- terminal state and we assume state 1 is a quasi-terminal state
rent path §,, ..., pn} can be denoted as that is after state 1 is reached, a new service is going to be
/ / / / / rovided. The concept of quasi-terminal state will be
P2, P o PHEPL, - Pr) € TPy, - P} gxplained in more detgil Iaterc.l) For each module, it can be
where ¢ is an extension of the original definition of the decomposed into 53 independent complex paths, and four
index function{ to map the order set of path to its order loops around three distinct states. Thus, we can generate
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Fig. 4. Specification of X.21 protocol.

“all.” As for the errors of tempo-blocking, they are due to
the complete matched loops between DTE and DCE
modules such as the loops between states “1” and “21".

In comparison with the complete RA, the path-based
approach take longer time (7 s) than RA (55s), but the
memory requirement of the former is only about 26K at
most (the memory for analyzing each concurrent path
depends on the length of paths, thus it ranges from 0.9 to
26K and the average is 5K) and that of RA is about 500K.
Furthermore, among the 2809 candidates, if we use the
technique in Section 5.1, we only have to check 479 candi-
dates actually with the efficiency improvement ratio of 82%
and the verification reduce to 2 s.

7. Discussion
7.1. Quasi-terminal state

One potential and crucial drawback is the requirement of
terminal state for each module which does not always exists
in the protocol, especially in the module that continuously
provides the service. Alternatively, there is a quasi-terminal
state where the module finishes its last service and is to

2809 concurrent path candidates, and only 221 are valid.Provide the new. Such state is instead used as a terminal
There are one deadlock, seven unspecified reception, andtate to generate the paths. The problem on this is that when

12 tempo-blocking as shown in Fig. 5. The faulty global the system reaches such a state, it may not shortly reach the
states with the error of unspecified reception are global terminal state but is blocked at other global state. If

(16,21¢,¢) (16,21,b)) (116,21, bg) (16,21¢,) this global state has at least one executable transition start-
(16,3,b,V, (16,3,be), (20,3,b,y. These errors result from ing from the quasi-terminal state, it does possibly not denote
the nondeterministic behavior specified in the module, &n €rror, but the information of the previous service retains
such as for a state there may be two transitions, one is visiblel© ffect the succeeding. Therefore, in this case, when a
in the figure, and the other is to the succeeding state of statec@ndidate is blocked at a global state that is not the global
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Fig. 5. Result of analyzing X.21.

terminal one but has at least one module reaching its quasi-
terminal state and any transition starting from the quasi-
terminal state is executable, further verification is required.
All such last global states are kept in a set, and another
verification process starts for each new member in this set
until no more new member is available or the new one is an
unusual state denoting potential errors. As the number of
possible last global states is finite and usually small, the
verification will finally terminate. With such a technigue,
only the gquasi-terminal state is required that exists in most
protocols.

7.2. Comparison with other methods

The study of protocol verification started as early as
1970s [2,24]. Many proposed approaches endeavored to
overcome the obstacle of state explosion. In addition to
the duologue approach, there are some works that also alle-
viates the state explosion problem from the memory point of
view:

1. Bounded depth-first searcfl2]: this is a depth-first
search with a bound on the length of the execution
sequences. Its maximum memory requirement is also
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the length of an execution sequences. It can do the paths of a module, and uses the Cartesian product to gener-
exhaustive search if the long execution time is allowed. ate the concurrent path candidates, then applies the reach-
However, it does the double work since no searching ability analysis to the candidate to determine the validity of
history of other execution sequences is kept. It is also the candidate. Within the reachability analysis of individual
difficult to set an accurate upper bound for search without candidates, all the logical errors, if any, in the protocol are
exploring the unnecessary global states. thus detected. Assume there arenodules, each of which
2. Protocol expressiofil1,23]: this approach describes the has at mostm paths whose lengths akeon average. The
behavior of the FSMs with an extended type of regular time and memory complexity for verifying general concur-
expression, termed “protocol expression”. A cross rent paths ar©(m" x n™*) andO(k™, respectively and can
product and algebraic reduction and equivalence rules, be further reduced t®(m" x n x k) andO(n x k) for simple
denoted as soundness rules, are used to analyze andoncurrent paths, respectively.
reduce the state, which can be performed either by simple To improve the efficiency of the verification, we make
manual algebraic analysis or automated cross productsome trade-off on the memory requirement to avoid redun-
evaluator. This approach is a variation of the reachability dant analysisC(n, 2) 2D matrixes are necessary to mark the
analysis using the soundness rule. However, the sound-redundant candidates that will be invalid due to the same
ness rule can be used only in the CFSM and is difficult to reason of some previously analyzed invalid candidate or a
extend to other more complex modules. Besides, the valid but erroneous candidate that will ultimately be
performance, this approach depends on the applicationdetected in the analysis of other candidates, wingeethe
of the operators % ” or “ ™. If these two operators flood, number of modules. By eliminating the time to analyze
the state space problem emerges. these redundant candidates, our experiments shows that
3. Tree protocol[3]: this method grows the execution tree the efficiency is improved greatly, but the memory require-
of a module rather than the execution tree of system, thusment is onlyO(n? x p?), wherep is the number of paths of a
the memory requirement is limited to the complexity of module in average. Therefore, the state explosion problem is
single modules. However, the rule to grow the tree is completely conquered from the memory point of view with
quite complicated and also difficult to extend. almost the same magnitude of performance of the reach-
4. On-the-fly[7,10,30]: the on-the-fly technique use the ability analysis. Furthermore, if the parallel verification
depth-first search technique and only keep the statestechnique is used, our approach can be much faster than
along current search path to avoid the state spacereachability analysis.
problem. Since a global state may appear in different
search paths, it also use the state cache to keep some
forgotten states to avoid wasting verification time in References
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