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Abstract

Protocol verification is one of the most challenging tasks in the design of protocols. Among the various proposed approaches, the one based
on reachability analysis (or known as state enumeration approach) is of the most simple, automatic and effective. However, the state
explosion problem is a principle obstacle toward successful and complete verifications of complex protocols. To overcome this problem,
we proposed a new approach, the “path-based approach.” The idea is to divide a protocol into a collection of individual execution record,
denoted as concurrent paths, a partial order representation recording the execution paths of individual entities. Then, the verification of the
protocol is, thus, replaced by that of individual concurrent paths. Since concurrent paths can be automatically generated through Cartesian
product of the execution paths of all modules, and verified independently, the memory requirement is limited to the complexity of individual
concurrent path rather than the whole protocol. Thus, the state explosion problem is alleviated from such “divide and conquer” approach.
Furthermore, we propose an algorithm, making the trade-off on memory requirement to generate the concurrent paths more efficiently; and
utilize the technique of symmetric verification, parallel computing to improve the efficiency of verification. Eventually, our experience of
verifying real protocols shows that our approach uses much less memory and time than reachability analysis.q 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction

In the design of protocols, one of the most challenging
tasks, the protocol verification is to certify that the protocol
executes correctly without crucial logical errors such as
deadlock, livelock, channel overflow. Among the various
proposed approaches, the one based on reachability analysis
(or known asstate enumeration), a technique to enumerate
all the reachable states of a system from an initial one, is of
the most simple, automatic and effective [12,25]. However,
the technique suffers from the “state explosion problem”
[12,25,32]. This problem shows the phenomenon that the
number of states grows exponentially with the complexity
of the protocol. Quantitatively, a protocol has at most
uQuN��uMu 1 1�h�NN states, whereN is the number of units
in the protocol,Q the number of local states for each unit,M
the number of message types andh the number of channel
capacity [19]. Although, the number of reachable states is
several orders of magnitude smaller than this amount, that is
the number of syntactically reachable states, it still grows
exponentially with the complexity of protocols. All reach-
able states must explicitly or implicitly be memorized in a

reachability graph (RG), a directed graph containing all the
reachable states in its nodes, to avoid generating duplicate
states and to exclude the infinite exploration when cycles
exist in the graph. Due to the limited memory capacity, on
the basis of Ref. [12], the full search reachability analysis
can verify the protocol with 105 states, and the most
controlled partial search or known asrelief strategies[21]
can be up to 108 states, which is intended to reduce the
number of global states necessary to be explored. Although,
the technique of BDD [4] has made much progress in the
number of states [5], the efficient use of BDD depends on
the problem domain. The conventional reachability analysis
technique outperforms the BDD-based technique in some
cases [16] and is still the most general approach for protocol
verification. In addition to these methods, other categories
of verification approaches such as thehashing technique
[12,34], partial ordering [8,28], compositional methods
[9,29], andon-the-fly technique[7,10,30] provide different
contributions for solving the state explosion problem, but
they do not contribute complete solutions [21].

Inspecting the reachability analysis technique and its
variations, the major hurdle to a successful verification is
the enormous size of the RG and the necessity to memorize
the complete graph. (Another related problem is the long
verification time and it becomes minor if the complete
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verification is necessary and the parallel verification is
possible.) However, assuming the RG is available and
designating a fixed order among the arcs originating from
the same node, we can virtually travel the RG by a systema-
tic depth-first strategy and enumerate all the paths in the RG,
i.e. the so-calledexecution sequences, in the forms of simple
or cyclic paths as done in the path-based testing of structural
testing [1]. Furthermore, if all these execution sequences are
generated independently upon the others without construct-
ing the RG, the desired properties of the protocols whose
definitions rely upon the global states and their relations can
be analyzed from individual execution sequences one by
one, i.e. the safety properties and some liveness properties.
Accordingly, the memory requirement to remember the
global states is limited by the length of an execution
sequence rather than the complete RG, and the state explo-
sion problem may be alleviated from such “divide and
conquer” approach [21].

To achieve the aforementioned goal to generate execution
sequences independently, we found that the concept and
generation method of concurrent path used in concurrent
program testing [15,27] is a clue. The concurrent path is a
partial-order representation, which is a combination of
execution behavior of individual execution units, i.e. the
unit path of individual execution unit. The set of all concur-
rent paths is included by the Cartesian product of all unit
paths of individual execution unit that are easily generated.
The analysis to determine whether a member in the product
is a concurrent path is performed independent of other
members. Hence, the memory requirement to generate the
concurrent path depends on the complexity of individual
execution unit and individual concurrent path rather than
the execution space of the whole concurrent program. The
state explosion problem is thus solved by the introduction of
concurrent path in the concurrent program testing [15]. As
for the area of protocol verification, the concurrent path can
be used to denote the execution behavior of protocols that is
originally represented by the execution sequence. In fact, its
concept and generation is similar to the pioneering duologue
approach by Zafiropulo and West [31,33,36]. However, the
duologue approach has the following problems in compar-
ison to that of concurrent path:

1. Limit of entities: the verification methods using duolo-
gues, the predicate method of Ref. [36] or the phase
diagram of Ref. [31], were limited to two entities. This
is the major problem of the duologue-based method.

2. Flood of nonoccurrable duologues: the duologue or
concurrent path is an arbitrary combination of unilogue
or execution path, but well-behaved duologue or valid
concurrent path is not and usually occupies a small
amount of all. The nonoccurrable duologue must be
removed more efficiently than the well-behaved one is
analyzed; otherwise, the performance dramatically
aggravates. In their approaches, all types of duologues
were analyzed in the same manner.

3. Definition of path: the execution unit of a concurrent
program is usually structured and has an explicit exit
so that the path is easily defined as a sequence of state-
ments from the entry to the exit of the program. In a
protocol, the entry is usually clearly defined as the initial
state, but the exit or terminal state does not always exist.
In the duologue method, the terminal state was enforced
so that the path could be defined. Another problem is
about the loops in the path. In a program, the loop is
defined by the iteration statement, but the loops in the
unilogue was not clearly defined so that not all loops
were identified in the unilogues in Ref. [36].
Furthermore, the number of unilogues become infinite
if the loop exists. In Ref. [36], an arbitrary limit on the
loop time was enforced to avoid the infinite number of
unilogues.

Therefore, in this paper, we will concentrate on forma-
lizing the concurrent path of protocols to perform the
verification without the above problems. The new approach
is called thepath-based approach. In our approach, the path,
the concurrent path and the relations with the conventional
execution sequences of protocols are formally defined. The
generation and verification methods are also proposed so
that the basic properties, such as the absence of deadlock,
unspecified reception, livelock and tempo-blocking are
verified.

This paper is organized as follows. In Section 2, we over-
view the crucial concepts of the approach, including the
underlying protocol model, theCommunication Finite
State Machine(CFSM) model, the concurrent path, and
the basic idea of our approach. In Section 3, we formalize
our approach, giving the definition, properties and genera-
tion of concurrent paths. In Section 4, we show the steps
toward the path-based approach: (a) generating the paths for
each FSM and all the concurrent path candidate and (b)
verifying the candidates for its validity (since some candi-
dates are invalid because the candidates are arbitrary combi-
nations of paths) and, if it is valid against the properties by
performing the reachability analysis on the concurrent path.
Specially, in Section 5, we present several performance
improvement techniques for our approach. An example
protocol is verified using our approach in Section 6. Discus-
sion and comparison with other approaches are presented in
Section 7, and the future work is shown in Section 8.

2. Concepts of path-based protocol verification

2.1. CFSM model

The underlying protocol model, in this paper, to prescribe
a protocol, is theCommunication Finite State Machine
(CFSM) model, which is a collection of modules commu-
nicating with each other via messages. A protocolP in the
CFSM model, denoted as aCFSM systemor shortly a
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system, is 5-tuple:

P� �kSil
n
i�1; kMij l

n
ij�1; kOil

n
i�1; kZil

n
i�1; kDil

n
i�1�

wheren is the number of modules, i.e.m1;…;mn; Si is the set
of states ofmi and Si > Sj � f for i ± j (“f” denotes an
empty set);Oi andZi represent the initial and terminal states
of mi that range overSi ; respectively,Mij is the set of
messages that can be sent frommi to mj ; Mii is empty for
eachi, andMij > Mpq � f for i ± p or j ± q; andDi is a
partial mapping function:Si × Ii ! Si ; and Di�s; x� is the
state entered after themi receives the messagex in states,
for eachi. �Ii �

Sn
j�1 Mij is the set of messages that can be

received bymi�:Each modulemi in the CFSM systemP is a
Finite State Machine(FSM) composed of states and transi-
tions defined bySi andDi ; respectively. Every two modules
mi and mj are connected by a dedicated communication
channel to transmit the message inMij from mi to mj ;

which is modeled by an FIFO queue with a channel capacity
Cij limiting the number of messages in the channel. (Notice
that in the following discussion, the symbols and notions
defined in a place retain the same definitions in their
succeeding discussions, if they are not especially redefined).

Fig. 1 shows a simple CFSM system with two modules in
a graphical form. The label attached to the transitiont in mi

in the type ofmj : 1 msg; or mj : 2 msgare called thesending
or receiving transitions, respectively, wheremj �1 # j # n�
is the module sending or receiving the messagemsg
(msg[ Mji or Mij ; respectively). (When there are only
two modules, the label ofmi is always the other one and
can be omitted.) The transitiont is defined by the function
b�t� � Di�a�t�;l�t��; wherea�t� andb�t� are referred to the
heading and tail states oft, respectively, andl�t� denotes the
message to be sent or received in transitiont.

The status of a CFSM system, at any moment of execu-
tion, is depicted by the global state of the system recording
the states of the constituent modules and the contents of the
communication channels. Aglobal state gof the CFSM
systemP is a pair

g� kS;Cl;

whereS is a n-tuple of statesks1;…; snl �si represents the
current state of modulemi�; and C is a n2-tuple

kc11;…; c1n; c21;…; cnnl: (cij is a sequence of messages
ranging overMij whose length is denoted asucij u. The
message sequencecij represents the contents of the commu-
nication channel from modulemi to mj : Note that everycii is
empty, for Mii is empty.) (The brackets aroundS and C
could be combined without confusion, so thatg is in the
form of ks1;…; sn; c11;…; c1n; c21;…; cnnl:)

The system stays at a global initial state when it is initi-
alized, and it will finally reach a global terminal state within
the normal execution. Theglobal initial stateof P is a global
state, denoted as G0.

1

G0 � kkOil
n
i�1; k1ln

i;j�1l

(1 denotes an empty message sequence), and theglobal
terminal stateof P is a global state, denoted asGT.

GT 0 � kkZil
n
i�1; k1ln

i;j�1l:

The execution behavior of a CFSM system is defined by
the relations (calledglobal transitionsto differentiate with
the transitions of modules) between the global states. We
define a binary relation “) ” on global states ofP (meaning
that P at one global state can be transferred to the other in
one step of execution):g) g0 iff there exist i, k and x
satisfyings0i � Di�si ; x� in either of the following two condi-
tions:

cki � xc0ki and x [ Mki; �1�
or

c0ik � xcik; x [ Mik; and uc0ik u # Cik; �2�
where g� kS;Cl; g0 � kS0;C 0l; S0 � ks01;…; s0nl; and
C 0 � kc011;…; c01n; c

0
21;…; c0nnl, andCik.

The first and the second conditions denote a blocking
receiving and a bounded non-blocking sending, respec-
tively. The associative transition with respect toDi�si ; x� is
referred to the global transition fromg to g0.

Extending the relation “) ”, “ ) p” is the reflexive and
transitive closure of “) ”, then a global stateg0 is reachable
from g if g)p g0: g0 is said to be reachable with respect to
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Fig. 1. A simple protocol.

1 Capital letters are specially used to represent a specific state, message
or information or a set of them.



the system ifg� G0 and all the global states traversed from
g to g0 constitutes asubsequenceof the system.

Note that, examining every reachable global state and
subsequence, several types of errors are recognized, such
as theoverflow, deadlock, unspecified reception, livelock
and temporal blocking[21]. The channel overflow occurs
at a reachable global state when the number of messages in
any channels exceeds the capacity of that channel. (In our
case, it occurs when condition (2) is to happen, but the
limitation of uc0ik u # Cik is violated.) A reachable global
stateg ± GT contains a deadlock error if no transition can
bring the system to leave this global state and all the chan-
nels are empty. The unspecified reception error in any
reachable global states is similar to the case of deadlock
except that some channels contain at least one message. A
global state with any of the above errors is called thefaulty
global state. (When a faulty global state is reached in the
execution, we assume no further execution is permitted.)
The errors of livelock or tempo-blocking occur when a
subsequence has an infinite loop (i.e. a loop without exit)
or an undesired loop (i.e. a loop that has exit, but is not a
designed one), respectively.2 Therefore, afaulty execution
sequenceis a subsequence, sayg)p g0 containing any
faulty global state, livelock, or tempo-blocking. Otherwise,
if g is the global terminal state, this subsequence is acorrect
execution sequence. Both the correct and faulty execution
sequences are referred to as theexecution sequenceswhich
are the target of verification to explore and analysis.

One simple, but effective method to enumerate all reach-
able global states and execution sequences, is the reachabil-
ity analysis technique to demonstrate the interactions among

the modules in a total order manner, and to construct the RG
as the one shown in Fig. 2. In the RG, every node denotes
the global stategi � kcl; and every trail from the starting
node, such as nodeg0 in Fig. 2, to the sink nodes, such as
nodeg4, g7 andg12, is an execution sequence, wheregi is the
name of the node (global state) andc is the text in the
ellipse. For example, there are six trails in Fig. 2, each of
which corresponds to an execution sequence as follows:

es1 : g0 ) g1 ) g2 ) g3 ) g4;

es2 : g0 ) g1 ) g5 ) g6 ) g7;

es3 : g0 ) g1 ) g5 ) g9 ) g7;

es4 : g0 ) g8 ) g5 ) g6 ) g7;

es5 : g0 ) g8 ) g5 ) g9 ) g7;

and

es6 : g0 ) g8 ) g10) g11) g12:

Among them,es1 andes6 are correct execution sequences,
whereases2, es3, es4 andes5 are faulty ones (they deadlock at
g7.)

However, the reachability analysis technique suffers from
the state explosion problem because the size of RG grows
exponentially with the complexity of protocol, and thus the
conventional reachability analysis technique is not suitable
for analyzing complex protocols.

2.2. Basic idea of path-based verification via concurrent
paths

Inspecting the reachability analysis and its variations, the
major hurdle to a successful verification is the enormous
size of the RG and the necessity to memorize the complete
graph. However, the properties to be verified depend on the
global states and the execution sequence (i.e. the safety
properties and some liveness properties). If all execution
sequences (thus including all global states) are generated
separately without constructing the RG, we can completely
verify the system by examining every execution sequence
and its global states. The memory requirement to remember
the global states is limited by the length of an execution
sequence rather than the complete RG, and the state explo-
sion problem may be alleviated from such a “divide and
conquer” approach [21].

An execution sequence can be classified asterminated,
non-terminated and infinite. A terminated execution
sequence is a finite one ranging from the global initial
state to the global state in which every module state is at
its terminal state, such ases1 andes6 in Fig. 2. If we project
the sequence of transitions in a terminated execution
sequence onto the set of transitions of a module, saym,
we can get a sequence ofm‘s transitions and this sequence
will be a path ofm. (A path of a module is a sequence of
transitions whose heading and tailing states are respectively,
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Fig. 2. The reachability graph of the protocol in Fig. 1.

2 We use the positive closure in the regular expression to represent the
cycles in an execution sequence. An execution sequence with a cycle,
which must be infinite since the cycle can be repeated forever,g1 ) g2 )
…gi )…gj )… �1 # i # j�; asg1) g2)…(gi)…gj)

p)…, wheregi

and gj are the same global states and denote a cyclic structure. If we
represent all the cyclic structure in the infinite execution sequence as
above, we can represent the infinite execution sequence in a finite form
g1 ) …(gi ) …gj)

p ) …gz�1 # i # j�; wheregz is the last global state
reached, assuming once the terminal global state is reached, no further
exploration is allowed.



the initial and the terminal state of that module.) If we
perform such a projection of an execution sequence with
respect to every module, we can get a set of path each of
which owes to a distinct module. For example, thees1 in Fig.
2, if we project the transitions ofes1, i.e. [a1,a2,a3,a4] onto
the transition ofm1 andm2, we can get the path [t11,t21] of m1

and [t12,t22] of m2 becausea1 � t11; a2 � t12; a3 � t22; and
a4 � t21:

As for the non-terminated execution sequence, it has at
least one module not reaching its terminal state. If we
perform the projection to execution sequence, we can get
sequence of subpaths, and the behavior of non-terminated
execution sequence can be represented by the set of
subpaths. However, for any subpath, it is included by at
least one path, provided the terminal state of the module
is reachable from every state. (This requirement should be
satisfied for any correct system; otherwise, there must be
errors of deadlock, livelock or dead code.) Since the execu-
tion blocks at the tailing state of the subpath, the additional
transitions in the path but not in the subpath are not execu-
table. The behavior of such non-terminated execution
sequence can thus also be represented by a set of paths.

An infinite execution sequence must imply that it has
cyclic structure as the number of global states is finite;
and there exists a last global state (unless the structure of
the path is similar to the infinite decimal which should be
rare.) Thus, we can also classify the infinite execution
sequence into terminated or non-terminated according to
the last global state reached and it can also be represented
by a set of paths. (These paths may have loops.)

Therefore, we can use a set of module paths, each of
which belongs to a distinct module, to represent the beha-
vior of execution sequence. In comparison with the execu-
tion sequence, the concurrent path denotes the execution
behavior in a partial-order manner, whose ordering relation-
ship is implicitly defined by the precedence of sending and
corresponding receiving transitions, and explicitly by the
sequential ordering among the transitions in a path [27];
the execution sequence performs in a total-order manner,
whose ordering relationship is explicitly defined by the rela-
tion of global states. It should be noted that both notations
exhibit the same “happen-before” relation of the transitions’
execution [20]. Therefore, as long as we can show the beha-
vior of all execution sequences within a RG can be equiva-
lently represented by a set of concurrent paths and we can
generate such set of concurrent paths algorithmically, we
can use the notation of concurrent path to completely verify
the protocol.

The advantage of using the notation of concurrent path
instead of the execution sequence is three-fold: (1) all
concurrent paths can be generated automatically and
under low space complexity; (2) the system is separated
into a set of concurrent paths, each of which is much smaller
than the original system; and (3) parallel verification. The
first advantage results from the representation of the concur-
rent path, i.e. a set of module paths. The set of all concurrent

paths must be included by the Cartesian product of the sets
of all module paths. The Cartesian product can be generated
easily, but each member of the product is an arbitrary
combination of module paths, and not all members are
concurrent paths obviously. Thus, as long as we can identify
the concurrent paths from Cartesian product we can acquire
all concurrent paths. The key of identification results from
each member of Cartesian product can be treated as a
simplified CFSM system and can be executed. If it is not
a concurrent path, it does not denote a real execution beha-
vior and its execution must be blocked at an intermediate
global state and render an anomaly of error. (If it can finally
reach the terminal global state, it denotes a behavior of
terminated execution sequence and is a concurrent path.)
Thus, for each member with a blocking global state, if this
blocking state is a real one (i.e. no transitions in the original
system can release this blocking), it is a concurrent path;
otherwise, it is not. We will describe the detail of identifica-
tion in the next section.

The second advantage is obvious. The original system is
now divided into a set of concurrent paths, each of which
denotes a partial behavior of and is smaller than the original
system. As stated before, each of them can be executed and
thus verified independently using the algorithm of the reach-
ability analysis to enumerate the potential execution
sequence(s). With these potential execution sequences, we
can check the required properties against them. Since each
concurrent path is smaller than the original system, the
memory requirement of the reachability analysis is also
much smaller. Therefore, the state explosion problem is
alleviated.

Furthermore, the conventional parallel verification algo-
rithm of Stern and Dill [26] relies on the message passing or
shared memory mechanism to build the image of the whole
reachability graph. It has from time to time to exchange the
newly generated global state among the parallel computers
to maintain the consistency of the reachability graph. Thus,
a great cost of communication is required. Our approach
allows each concurrent path to be verified independently
and naturally in parallel. All the information to be
exchanged is the verification result of each concurrent
path and thus the cost of communication is very low.

In the following sections, we formally define the concur-
rent path and propose the path-based verification underlying
the concept of concurrent path.

3. Definition and generation of concurrent path

3.1. Definition of concurrent path

The concept of concurrent path has been used in the
verification and testing of concurrent programs [15,27,35].
The concurrent path defines the execution behavior of
concurrent programs by separately specifying the execution
path of the execution unit that can execute in parallel, such
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as the task in Ada [18]. Similar to the definition of the
concurrent path in concurrent programs [15,35], we define
the concurrent path prescribing the execution behavior of
the CFSM model followed by the definition of paths of a
module in the succeeding context.

In order to define the concurrent path of a CFSM system,
we first define themodule path, or briefly path.

Definition 1. Within a systemP, a finite pathpa in module
ma of length k (k $ 0) is defined as follows:pa � �s1; �;
denoted as1a if k � 0, or pa � �s1; s2;…sk21; t1; t2;…; tk�
otherwise, where,s1 � Oaandsk11 � Za; andti is the transi-
tion from si to si11, i.e.D�si ; l�ti�� � si11; 1 # i # k:

The empty path denoted as1a; is also considered as a path
and exists only when the initial and terminal states are the
same.

Definition 2. Within a systemP, an infinite pathpa in
module ma is defined as followspa � �s1;…; si ; si11;…;

t1;…; ti ;…�; wheres1 � Oa; and ti is the transition fromsi

to si11:

In addition to the definitions of paths, we further define the
subpaths that are infixes of paths, and prefixed as follows:

Definition 3. An infix or subpathua of pa of modulema is
defined asua � �si ; si11;…; sj11; ti ; ti11;…tj� if its length is
j 2 i 1 1 . 0 or [si ;] if it is empty, where 1# i # j # k:

A nonempty path/subpath�si ; si21;…; sj11; ti ; ti1!;…; tj� is
written �ti ; ti2!;…; tj� for short.

Definition 4. A prefix xa of pa is a p‘s subpath whose
heading state is the same withpa and is said to beincluded
by pa; i.e. pa � xa·ua; where “·” is the concatenation opera-
tor upon the subpaths andua is a subpath ofpa. If ua is
empty,xa is denoted as a pure prefix.

Since the number of states and transitions are finite, there
must exist cyclic structure inP so that they can appear more
than once. Thus, we can introduce the positive closure used
in the regular expression [14] to represent the loops the path
follows, instead of that in Definition 2.

Definition 5. Within a systemP, a nonempty cyclic path
pa in modulema is defined aspa � �s1;…; �si ;…sj�p;…sk11;

t1;…; �ti ;…; tj21�p;…; tk�; wheres1 � Oa; sk11 � Za andti is
the transition from si to si11 (i $ 1). The subpath
�si ;…; sj ; ti ;…tj21� is the loop ofpa.

To differentiate the paths of the above definitions, the paths
following Definitions 1 or 2 are calledsimple paths, and that
following Definition 5 arecomplex paths. If a simple path
does not include any cycle, i.e. for alli ± j�1 # i; j�; si ± sj ;

it is calledpure simple path.
To define the concurrent path in a CFSM system, we

examine the RG and the execution sequences as follows.
The finite execution sequences in the RG are divided into
two sorts:terminatedand non-terminated. The terminated
execution sequence ranges from the global initial state to the
global state in which every module state is at its terminal
state, such ases1 andes6 in Fig. 2. According to the seman-
tics defined in the CFSM model, in a CFSM system withn
modulesm1;m2;…; and mn; with respect to a terminated
execution sequenceesterm of length l �l $ 1� : g1 ) g2 )
…gl ; each global transition from one global state to its
succeeding one, saygi ) gi11 �1 # i # l 2 1�; requires
the execution of only one module transition, saytaiki

which is a transition indexed byai in certain modulemki

�1 # ki # n�: Thus, we can annex the global transition with

the module one asg)
tai ki

gi11 and rewrite theesterm as
g1)

xi
g2)

x2 …)xl 2 1
gl , wherexi � taiki

�1 # i # l 2 1�:
For eachesterm, we can collect the transitions of the

module mk to a transition sequencetsk each member of
which belongs tomk; i.e. tSk � �ta1k; ta2k;…; taxk�; where
taik �1 # i # x� is the transition ofmk; x is the number of
mk‘s transitions inesterm. Thetsk is also a path because of the
following reasons:

1. The transitiontai21k must be the succeeding transition of
taik �1 # i # x�: This holds because only the transitions
starting from the tail state of the last executed transition
are possibly executable with respect to the succeeding
global state and the module state in the global state
remains unchanged until any transition from the same
module is executed.

2. The starting state ofta1k and the tail state oftaxk are the
initial and terminate states ofmk; respectively, because
theesterm starts and ends at the global initial and terminal
states, respectively.

There is, however, one extreme case that certain module is
not involved in the execution ofesterm, i.e. it always stays at
its initial state. Since the null transition sequence1p is also
considered a path, every modulemi �1 # i # n� must have
the corresponding pathpi for esterm. (pi is tsi if tsi exists;
otherwise,pi is 1p�: From the module point of view,pi could
be seen as the result of projecting the transition sequence in
theesterm over the transitions ofmi to denote the correspond-
ing behavior ofesterm in mi in terms of paths. Alongpi ; each
transition is associated with an execution condition to be
satisfied, i.e. expecting to send or receive a message. Only
when satisfied, the transition is executed and the module is
transferred to the tail state.

The complete behavior of the system, in terms ofesterm, is
achieved via the cooperation of allpi ’s. On cooperation to
renderesterm, the execution condition of every transition inpi

W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 229–244234



will be satisfied, be executed and let the modulemi transfer
to its tail state so that the succeeding one will wait for
execution. After a series of transitions’ executions,mi

finally reaches its terminal state, which is the tail state of
the last transition. The system being simplified in a way that
every module has only one path, its execution will at least
exhibit the execution behavior of theesterm. (The behavior of
some other execution sequences may emerge because the rela-
tive execution speeds of modules are not fixed.) The simpli-
fied system is now just a combination of path {p1, p2,…,pn}
that includes the execution behavior ofesterm from the system
point of view. This combination is denoted as aconcurrent
path for a terminated execution sequence or brieflycpterm.

The other sort of finite execution sequence is thenon-
terminated execution sequence, esnterm. This has at least
one module not reaching its terminal state, i.e. it must be
a faulty execution sequence. As done to theesterm, we could
collect transitions in theesntermfor eachmk; but there are two
situations in the collecting process as follows:

1. If mk can reach its terminal state inesnterm, the transition
sequence collected is a path as in the case ofesterm,

2. If not, the sequence is a pureprefixof a path instead of a
path.

In situation (2), the execution condition associated with the
succeeding transition of the tail state of the last transition in
the prefix is not satisfied because of the fault embedded in
esnterm. Hence, the system cannot terminate normally in the
global terminal state and the transition sequence ofmk is just
a pure prefix. If the notation similar toesterm is to include the
execution behavior ofesnterm, the result is a combination of
prefixes {s1, s2,…,sn} ; wheresi is a prefix ofmi �1 # i # n�;
and at least onesi is a pure prefix rather than a path. This
combination is still a simplified CFSM system yet with the
terminal state of certain module not reachable. If the system
is executed, it is also blocked at some global state other than
global terminal one.

However, this combination of prefix does not conform to
the definition ofcpterm, but it is reasonable to assume that
every state in the original module can reachzk through a
sequence of transitions; that is,zk could be reachable in the
simplified system by adding some transitions between the
tail state oftaxk andzk: These added transitions have the only
function to make thezk reachable from the syntax point of
view, but they will never be executed from a semantic point
of view. In other words, the exhibited behaviors of the two
systems are the same. Therefore, with respect to the prefix
combination {s1, s2,…,sn} ; a pathpi ; i.e. the path in the
modulemi of new simplified system, can be found to include
prefix si for everysi ; and the concurrent path {p1, p2,…,pn} ;
denoted ascpnterm, instead is used to include the behavior of
esnterm.3 The transitions inpi but not insi �1 # i # n�; if any,

will not be executed and do not influence the behavior of
esnterm.

Another sort of execution sequence we have not consid-
ered yet is the infinite one. An infinite execution sequence
must imply that there exists cyclic structure in it since the
number of global states is finite. Thus, an infinite execution
sequence g1 ) g2 )…gi )…gj…�1 # i # j� can be
represented byg1 )…�gi )…gj�p )…gz �1 # i # j�; or
g1 )…�gi )…gz�p �1 # i # j�; wheregz is the last global
state reached assuming once the terminal global state is
reached no further exploration is allowed. Thus, the infinite
execution sequence can also be classified into terminated
and non-terminated, and we can follow the discussions of
esterm or esnterm to conclude that can be represented bycpterm

or cpnterm, respectively.
As discussed above, no matter whetheresterm or esnterm

(finite or infinite), its execution behavior is included by
the concurrent path (cpterm or cpnterm) that is a collection of
paths such that there is exactly one path per module in this
collection. Expanding this representation of execution beha-
vior, we can define a more general representation form of
execution behavior, theconcurrent path, as follows.

Definition 6. Within a systemP, a concurrent pathis
defined as an ordered set of paths {p1, p2,…,pn} ; wherepi

is a path ofmi :

The concurrent path denotes the execution behavior in a
partial-order manner, whose ordering relationship is impli-
citly defined by the precedence of sending and correspond-
ing receiving transitions, and is explicitly by the sequential
ordering among the transitions in a path [27]; the execution
sequence does in a total-order manner, whose ordering rela-
tionship is explicitly defined by the relation of global states.
It should be noted that both notations exhibit the same
“happen-before” relation of the transitions’ execution [20].
The notation of concurrent path has the advantage over that
of execution sequence that it can be generated in the magni-
tude of module rather than the RG. Therefore, as long as we
can show the behavior of all execution sequences within a
RG can be equivalently represented by a set of concurrent
paths, and we can generate such a set of concurrent paths
algorithmically, we can use the notation of concurrent path
to verify completely the protocol with smaller complexity.

In the remaining subsection, we annotate the correspon-
dence relations among both representations to underlie the
verification underlying the concept of concurrent path. A
concurrent path is said tocorrespondwith an execution
sequence, and vice versa, if they demonstrate the same
execution behavior. The correspondence is notified in
Theorem 1.

Definition 7. Given a concurrent pathcp, the behaviour
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set, denoted asB�cp�; is a set of all the execution sequences
in the reachability graph ofcp.

Definition 8. A concurrent pathcp is said to correspond to
an execution sequenceses, if es[ B�cp�; denoted ascp!
es:

Lemma 1. Given a CFSM system P and an execution
sequence es, there exists a concurrent path, say cp, so that
cp corresponds to es, denoted as es! cp.

Proof. The proof has been informally shown in Subsec-
tion 2.2, so we omit it here. A

Lemma 2. For every execution sequence es and concur-
rent path cp, es[ B (cp) if es! cp.

Proof. Let estravels the transitionst1, t2,…,tn in sequence.
An es[ B(cp) if

1. all the transitionst1, t2,…, andtn are in the union of the
transitions of all the paths incp;

2. the sequencet1, t2, …,tn is possible to be executed; and
3. the projection ofesinto the domain of a module is equal

to the corresponding path incpof that module. For exam-
ple, amongt1, t2,…,tn �n�10�; only t2, t4, t10 are of module
mi ; the projection fromes to the domain ofmi is the
sequence oft2, t4, t10.

As cp is defined by Definition 7, the conditions (i)–(iii) must
be satisfied. A

Theorem 1. For any execution sequence es, there exists a
concurrent path cp such that es corresponds to cp and vice
versa, denoted as es$ cp.

Proof. By Lemma 1, a concurrent pathcp does exist for
any execution sequencees, andes! cp: By Lemma 2,es[
B�cp�: By Definition 7, cp! es: Hence, we can find a
concurrent pathcp for any execution sequencees such
that es! cp andcp! es: A

Since every execution sequence has a corresponding
concurrent path, the complete execution behavior is conven-
tionally denoted by the set of all execution sequences and
now by the set of all concurrent paths according to Corollary
1 shown below. We can examine all possible execution
behaviors by examining all concurrent paths. Once we can
generate all concurrent paths, the protocol can be

completely verified by being inspected with all the execu-
tion sequences of their behavior sets. In the next subsection,
we show the method to generate all concurrent paths.

Definition 9. Given a concurrent pathcp, the behavior set,
denoted asB�cp� is a set of all execution sequences corre-
sponding tocp.

Corollary 1. All execution sequences are included by the
union of the behavior sets of all concurrent paths.

Proof. ; execution sequencees, by Theorem 1,' a
concurrent pathcp, es! cp: By Lemma 2,es[ B�cp�: A

3.2. Generation of concurrent paths

The purpose of verification is to examine thoroughly the
complete behavior of a system against the desired proper-
ties. The complete behavior is originally denoted by RG or
the set of all execution sequences, and now by the set of all
concurrent paths. Ideally, all concurrent paths should be
generated for verification. The number of this set of execu-
tion sequences following Definition 5 is finite, and so does
the corresponding concurrent paths to include these execu-
tion sequences by Theorem 1. It is possible to generate all
the concurrent paths to represent the complete execution
behavior with respect to the issue of number.

One approach to generate all the necessary concurrent
paths is the reachability analysis, but obviously is infeasible
in its complexity, i.e. confronts the state explosion problem.
A new method to reduce the complexity of generation
results from the representation of concurrent path. The
concurrent path specifies the path that the module will
traverse if the CFSM system is performing the correspond-
ing behavior rather than the execution sequences directly
specifies the path in the execution space represented by
the RG. This gives an idea to generate the concurrent
paths from the modules instead of the RG. The representa-
tion of concurrent path shows that all concurrent paths are
included by the Cartesian product of all the paths of the
constituent modules; we can acquire all the concurrent
paths from the Cartesian product. (The method to generate
paths is available in the area of software testing [1] and is
not discussed here.)

However, there are members in the Cartesian product but
not having the corresponding execution sequences. A
member is denoted as aconcurrent path candidate, or
candidatefor short. Take the protocol in Fig. 1 as an exam-
ple. There are at least two paths for each module. The
modulem1 has the following two paths:

p11 � �t11; �t31�p; t21�
p21 � �t51; t41�;
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and the modulem2 has:

p12 � �t12; t22�;

p22 � �t52; �t42�p; t32�:
The number of candidates will be four, but there are only six
execution sequences in the RG as shown in Subsection 2.1.
Thus, we must decide the correspondence between concur-
rent path candidates and execution sequences, if available.
A candidate is said to bevalid if there is at least one execu-
tion sequence corresponding to it; otherwise, it isinvalid.
Consider the candidate {p21, p12} and take it as a simplified
system. Its execution is always blocked at the global state of
ks0; s0; 1; 1l because the execution condition oft12 or t51 is
not satisfied with respect to this global state. Nevertheless,
t11 ort52 can shift the original system from the blocked global
state to the new oneks1; s0; 1; reql or ks0; s2; alarm; 1l; thus,
this candidate is invalid since the candidate cannot render a
valid execution but an anomaly of unspecified reception. As
for the concurrent path {p11, p22}, it can reach the global
stateks1; s2; 1; 1l via four different execution sequences and
thus a valid concurrent path.

In general, when the execution condition of a transition
cannot be satisfied within the candidate but that of another
transition can within the original system, the execution of
the candidate will render an anomaly of deadlock, or unspe-
cified reception, which will never happen in the real execu-
tion. This candidate is classified as an invalid one. The
appearance of such invalid candidates comes from those
candidates that are arbitrary combinations of paths. The
invalid candidate is the combination corresponding to
non-real behavior. The invalid candidates raise two issues
to be solved:

1. If we directly apply the verification to all candidates, we
cannot determine whether it has an anomaly or a real
error.

2. The number of candidates is tremendous because it is the
product of the numbers of modules’ paths, and the veri-
fication of each candidate is quite time-consuming via
the technique similar to the reachability analysis. If the
invalid candidate can be excluded efficiently, the perfor-
mance of verification will be improved.

Hence, it is necessary to develop a procedure to efficiently
remove these invalid candidates. In this subsection, we
discuss the removing method and leave the performance
issue in Section 5.

Since, a candidate is a CFSM system yet simplified, and
according to the semantics of the CFSM model, it can be
executed via the reachability analysis to examine whether it
renders a real execution. (Reachability analysis technique is
adopted because of its simplicity and its capacity to accom-
modate most protocol underlying models although it is not
efficient enough, but the efficiency will be improved later.)
A non-real execution must be blocked at some global state
that is not a global terminal one and not a blocked one in the

system. The blocked state denotes an anomaly of error, and
there exists at least one transition in the CFSM system but
not the succeeding transition in the candidate to release this
blocking situation. By checking the validity of blocking
state, we can determine whether a candidate is a concurrent
path or not.

The removal of invalid candidates underlies the reach-
ability analysis, and the verification can be embodied into
the removal process directly. Therefore, we only need a
complement checking procedure into the removal process
to complete the entire verification process.

4. Verification in terms of concurrent paths

Based on the idea of concurrent path, we propose a new
approach, called thepath-based approachfor the protocol
verification based on the CFSM model. This approach
involves three steps:

1. enumerate the paths for individual modules;
2. compose the concurrent path candidates; and
3. remove invalid candidates through the reachability

analysis and perform the verification.

The first step is to generate the paths of module. The
general algorithms to generate the paths can, for example,
be found in Refs. [1,20]. In our case, the generation could
logically be divided into two phases. At first, two types of
the subpaths are generated, the pure simple path and the
loops around the loop states. Then, according to the above
recommendation, the generated paths are the pure simple
ones and complex paths. In Ref. [6], Chang detailed the
generation of paths along with the algorithm.

When all the paths are available, the concurrent path
candidates are generated through the Cartesian product of
all the paths of the constituent modules because the concur-
rent path candidate is a combination of the paths of the
constituent modules. In this subsection, we present a simu-
lation method to determine the validity of candidate.

The simulation follows the semantics of the CFSM
defined in Subsection 2.1. Candidates are analyzed with
the full search reachability analysis. Since the number of
transitions in a path is finite, the simulation of a concurrent
path candidate always terminates and has the following
results:

1. It is terminated, if all transitions on the paths are
executed and the last reached global state is the global
terminal state.

2. It is improperly terminated, if all transitions on the paths
are executed, but the last global state is not the global
terminal state.

3. It isblocked, if there exists at least one transition in a path
that cannot be executed because it is a sending transition
and the associative channel has reached its capacity, or it
is a receiving transition and the heading message in the
associative channel is not the necessary one. The global
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state that the system reaches when the blocking occurs is
called theblocked global state, and the transitions in the
candidate that cannot occur from the blocked global state
are collected into a set, calleddisabled set.

4. It is lively locked, if there exist loops in the paths and
cycle in the corresponding execution sequence.

Both the terminated and improperly terminated candi-
dates are obviously valid. The execution of the terminated
one does not contain any actual errors other than the tempo-
blocking. The tempo-blocking occurs when there are global
states occurring more than once in the corresponding execu-
tion sequence. That of the improperly terminated, one must
contain the unspecified reception, if we demand that no
further execution for each module is allowed when that
module reaches its terminal state. The messages yielding
the unspecified reception are those remaining in the last
reached global state. As for the blocked candidate, it corre-
sponds to either the invalid or the valid with errors depend-
ing on the reason of blocking. To distinguish them, we can
check the blocked global state with the CFSM system to
identify the reason. If the global state is also blocked in
the CFSM system, i.e. no transition in the system can be
enabled from the global state, the candidate is also valid but
with errors. For further checking to identify the type of
error, the transitions in the system that are also not execu-
table are inserted into the disabled set of the candidate. The
error could be one of the following:

1. an unspecified receptionif there are remaining
message(s) in the blocked global state and there is no
sending transition in the disabled set; or

2. adeadlockif there is no message in the channels and no
sending transition in the disabled set.

If there exist at least one transition in the system to occur
from the global state (these transitions are collected into a
set, calledenabled set), there are the following possibilities:

1. It is a livelock if every transition in the enabled set has
been traveled in current searching execution sequence
and is the entry to the cycle in it.

2. It is aninvalid candidate otherwise because the blocked
global state is impossible to occur in the actual execution,
i.e. it will leave through any transitions of the enabled set.

It should be noted that the livelock and the tempo-blocking
might render a channel overflow when the corresponding
cyclic sequence always increases the number of messages
in the channel after each cycle.

Take the protocol in Fig. 1 as an example again. The
modulem1 of the protocol in has three paths,

p11 � �t11; �t31�p; t21�;

p21 � �t41; t51�;
andm2 does:

p12 � �t12; t22�;

p22 � �t32; �t42�p; t52�:
Thus, there will be four concurrent path candidates. The last
reached global states and the results of the analysis are listed
in Fig. 3. A deadlock is detected in this simple protocol (the
third candidate).

The simulation method to perform validity analysis of a
candidate is formally described in Algorithm A1. This algo-
rithm contains two procedures: analyze_cp and check_live-
lock. Analyze_cp first applies the reachability analysis to
find the last global state, and determines the type of candi-
date following the aforementioned discussion. During the
reachability analysis, some necessary global states are kept
into the variableq and four sets, i.e. visited state setQ,
working state setW, current pathP and cycle setC. With
the depth-first strategy,q keeps the next global state to be
reached. The set ofWandQ keeps the states being visited on
backtracking and visited, respectively. All visited global
states along the current searching path are kept in the set
of P to determine whether there is a cycle in the current
path. When the execution enters a cycle, a global state along
its incoming transition is collected into the set ofC. When
all concurrent paths are analyzed, an addition procedure
check_livelock is used to identify the livelock in the system
using this cycle setC.

Algorithm A1: Validity Analysis
Input : p1,…,pN /ppi denote a path of modulemi

p/
Output : valid, invalid
Description: The algorithm analyzes every concurrent
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path candidate {p1,…,pN} and categorize it into two
classes: valid and invalid.
Steps:
Validty_Anlyze();
C � {};/ p cycle set: a global variable shared to both
functionp/
begin

for every concurrent path candidate {p1,…,pN} do

Analyze_CP(p1,…,pN)
Check_Livelock();

end;
Analyze_CP(p1,…,pN)
begin
g � global_initial_state;
P � {}; / p current search pathp/
W� { g}; / p working setp/
Q � {}; / p visited state setp/
valid � False;

/p reachability analysis upon the candidatep/
repeat

popq from W;
/p on reaching the terminal state, check the tempo-
blocking and unspecified receptionp/
ifq is the terminal statethen

ifC is not emptythen/p at least one cycle is reachedp/
report the candidate as valid w.r.t. current pathP

(tempo-blocking);
else

report the candidate as valid w.r.t. current pathP;
valid � True;

if all module states inq are terminal states of modules
&& some channel contents are not emptythen

report the candidate as valid w.r.t. current pathP
(unspecified reception);

valid � True;
/p check ifq is a visited or to be visited statep/
ifq is in Q or W then

break
updateP with respect toq;/p update the path withq p/
insertq into Q;/p insertq into visited state setp/
/check the execution is blockedp/
if no executable transition inp1 < ::: < pN then
/p the execution for current path is blockedp/

collect all executable transitions inm1 < ::: < mN into
the setE
if any t in E is not a transition in�p1 < ::: < pN� then

report the candidate as invalid w.r.t. current pathP;
else if any transition whose heading state is inq is a
sending transitionthen

report the candidate as valid w.r.t. current pathP
(channel overflow)

valid � True;
else ifany channel ofq is not emptythen

report the candidate as valid w.r.t. current pathP
(unspecified reception)

valid � True;
else

report the candidate as valid w.r.t. current pathP
(deadlock)

valid � True;
/p explore new global statep/
for each executablet in pi1 < ::: < piN do

ifq is in P and (q, t) is not inC then /p a new exit to the
cycle existsp/

insert�q; t� into C;/p save this cycle and its entering
transitionp/
Let g as the global state fromq after t; /p q)t g p/
pushg into W

until W is empty/p no executable states availablep/
if valid � Falsethen

classify this candidate as invalid;
else

classify this candidate as valid;
end.
Check_Livelock()
begin

for each distinctq in C do

collect all executable transitions inm1 < ::: < mN into
the setE
if (q, t) is in C for every transitiont in E do

report the candidate containingq has a livelock;
end.

The above analysis always terminates, because of the
finite number of transitions in a path. Assume there aren
modules, each of them has at mostm paths whose lengths
arek in average. The time and memory complexity to check
all concurrent paths isO�mn × nn×k� andO�kn�; respectively.

This algorithm performs the analysis sequentially, but it
is worthy of note that the simulation of a candidate is
completely independent of that of one another so that the
simulations of different candidates can proceed in parallel,
which is discussed later.

5. Performance improved techniques

The performance of the above method largely depends on
the number of concurrent path candidates to be checked and
the checking time for each candidate. However, a candidate
is an arbitrary combination of module paths and checked for
its validity independently by simulation. If we can record
some useful information about the relation of different
candidates to eliminate unnecessary simulation, the perfor-
mance can be improved. In Section 5.1, we observe there are
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candidates being invalid for the same reason, and, once a
candidate is identified as invalid, all the other candidates
with the same invalid behavior are not necessary to be
checked again. Thus, the number of candidates to be
checked is reduced. In Section 5.2, we observe that, in the
case of a system with several modules having the same FSM
behavior, the behavior rendered by the permutation of these
modules are de facto equivalent. Thus, all candidates with
such equivalent relation have to be checked representatively
by any one of them to save the checking effort of the others.
In addition, to reduce the number of candidates to be
checked, as each candidate is checked independently, we
can also use the parallel verification technique to improve
the performance as shown in Section 5.3.

5.1. Avoid duplicated checking of invalid candidate

Although, the simulation is an effective method to deter-
mine the validity of the candidates as well as to detect
errors, a potential drawback is about the efficiency of veri-
fication because the candidate is an arbitrary combination of
paths, and the invalid may occupy a large percentage of all.
In the previous method, each candidate is analyzed indepen-
dently, but there are invalid candidates that result from the
same reason. However, on the detection of an invalid candi-
date, if we can directly find out other candidates that will
also be invalid due to the same reason and mark them inva-
lid immediately, when these candidates are encountered in
succeeding analysis, the redundancy to determine their
validity is eliminated. Therefore, in this subsection, we
present a method accelerating the removal of the invalid
candidates by reducing such redundancy.

Consider an invalid candidatecp� { p1;p2;…;pn} of a
CFSM system withn modules blocked at a non-terminal
global stateg� ks1; s2;…; sn; c11;…; cnnl. Let t be one of
the succeeding transitions fromg of some modulemi

whose execution condition is not satisfied due to the inva-
lidity and mj be the corresponding module with respect tot
(i.e. if t is a sending or receiving transition,mj is the desti-
nation or source module oft, respectively). The following
observations will help eliminate the redundant simulation
by giving special marks to the candidates unnecessary to be
simulated, denoted asredundant candidates:

1. The invalidity results from the relation ofmi andmj : Any
candidatecp0 is also invalid if it also containspi andpj as
cp, and the execution can makemi andmj reach the state
si andsj ; respectively. If these candidates are blocked at
some other global state earlier thang, they may be valid
(but with errors) rather than invalid, but this error will
ultimately be detected in the analysis of the candidate
that satisfy the execution condition oft. Hence, all
suchcp‘s can be marked and ignored directly without
affecting the result of verification.

2. The invalidity results from the blocking position in
module mj and mj : Let ti and tj be any transitions
whose heading state issi and sj in modulemi and mj ;

respectively, not executable fromg. Let t be the transi-
tion that concludecp‘s invalidity because it is executable
but not included incp. Let the subpathqi and qj be
included bypj and pj ; and haveti and tj as their last
transition, respectively. Any candidatescp0 �
{ p01;p

0
2;…;p0n} whosep0i andp0j includeqi andqj ; respec-

tively, it will also be marked because as long as the
execution ofcp0, if possible, reachessi andsj in module
mi andmj ; respectively, the contents of channels between
them are the same ascij andcji ; andti andtj are thus not
executable butt is; that is,cp0 is invalid. If they can not
reach these two states, as in observation (1), the error
must be detected in the analysis of other candidates.

Therefore, according to the above two observations, when
an invalid candidatecp is detected, any candidatecp0 is
redundant and marked ifcp0 includes the pathsp0i and p0j ,
p0i andp0j are defined as observation (2).

To incorporate these two observations into the verifica-
tion method,C(n, 2) two-dimensional (2D) matrixes are
necessary to keep these marks, whereC is the combination
function. Each matrixmij hasni rows andnj columns, where
ni andnj is the number paths in modulemi andmj ; respec-
tively. The marks with respect tocp0 is marked in the entry
�z�p0i�; z�p0j�� of matrix mij ; wherez�p� denotes the index of
pathp in its module. A new candidate {p001;p

00
2;…;p00n} will

be simulated if the entry�z�p00i �; z�p00j �� of matrix mij is yet
not marked, for eachi and j �1 # i , j # n�:

It is difficult to estimate how efficiently the method helps
remove the invalid candidates. To one extreme, it may
provide no help when the paths of a module are completely
independent with other. However, our experiment on the
verification of the X.21 protocol shows that, 57% of candi-
dates are marked in advance before they are analyzed.

To improve the efficiency of verification, we make some
trade-off on the memory requirement in this performance
improvement technique. The original memory requirement
is used to keep the global states on the current search trace
and the set of cycle entering state, which depends on the
length of path. Currently, we add the additional memory
requirement on the matrixes to keep the marks on the redun-
dant candidates. Since each entry in the matrix occupies
only 1 bit, the total memory to these table areC�n;2� × p2

bits, wheren is the number of modules andp is the number
of paths in a module on the average. Assume there are 16
mega bytes of memory available. To an extent, one can at
most verify a protocol with 100 modules each of which has
at most 160 paths, or, to the other extent, with two modules
each of which has at most 4000 paths. When the number of
paths exceeds this limit, the technique of parallel verifica-
tion (discussed below) can be used.

However, the size of required memory is computed in
advance as long as the paths of modules are enumerated.
When the memory requirement exceeds the limit of physi-
cally available memory, the paths of each module can be
split into k independent sets (k . 1), each of which includes
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1=k portions of paths in the module so that the memory
requirement for each verification is down to 1=k2

: The
value ofk is chosen to satisfy the available memory capa-
city. kp verifications are necessary for every possible combi-
nation of the sets of different modules. However, the
memory requirement isk2 times smaller than the original
one.

5.2. Symmetric verification

One reason to increase the verification time is the huge
number of concurrent path that is the product of the numbers
of paths of all modules. In the case of replicated modules
(the entities that are represented by the same finite state
machine), the concept of symmetric verification [17] is
helpful in improving the efficiency of verification. The
symmetric verification aims to exploit the structural symme-
try in the protocol. The structural symmetries induce an
equivalence relation between states. Thus, for each equiva-
lence set induced by symmetry, only one state has to be
explored and the number of states to be explored is reduced
greatly.

To apply this concept, we must define the symmetry with
respect to concurrent paths (or candidates). The symmetry
results from the permutation of the paths from the identical
modules. (A module is said to be identical to the other if
their corresponding finite state machines are the same.) A
concurrent path may be almost the same with the other
except for some paths from the identical modules are in
different order. In this case, they are symmetric and corre-
spond to the same behavior. For example, for the concurrent
pathcp� { p1;…;pi ;…;pj ;…;pn} and cp0 � { p1;…;p0i ;…;

p0j ;…; pn} ; if mi andmj are the identical modules,pi andp0j
are the same paths, andpj andp0i are two concurrent paths
that are symmetric. Thus, for the set of symmetric concur-
rent paths, we only have examined any one of them instead
of all.

Formally, a concurrent pathcp� { p1;p2;…;pn} is said to
be symmetric to anothercp0 � { p01; p

0
2;…;p0n} ; denoted as

cpt cp0; if, for eachi �1 # i # n�; pi and p0i are either the
same or there must exist anotherj (1 # j # n and j ± i)
such that

1. mi andmj are identical, and
2. pi andp0j are the same paths.

To explain how to do this, we first assume only the firstm
�1 , m , n� modules that are identical, and the order of
index to the paths in these identical modules are the same
(i.e. a pathpi are the same of another pathpj iff the z�pi� �
z�pj�; i.e. the index ofpi is equivalent to that ofpj). Thus the
set of symmetric concurrent paths with respect to a concur-
rent path {p1;…;pn} can be denoted as

{{ p01;…;p0m;…;p0n} uz�p01;…;p0m� [ p�z�p1;…; pm��}
where z is an extension of the original definition of the
index functionz to map the order set of path to its order

set of path index, i.e.z�p1;…; pm� � �z�p1�;…z�pm��; andp
denotes a permutation function over the order set
z�p1;…pm�; that is z�p01;…;p0m� [ p�z�p1;…; pm�� iff for
eachi, there existj �j ± i� such thatz�pi� � z�p0j�.

Then, for the set of symmetric concurrent path candi-
dates, we can add the following rule to check only the
first concurrent path candidate reached among them when
checking the validity of concurrent path candidate.

Rule: A candidate {p1, p2,…,pn} has to be checked if, for
eachpi �1 , i # m�; z�pi� . z�pj� for all j , i:

In summary, with the symmetric technique, instead of
verifying all kn candidate, we only have to verify
k�n2m�p Pn2 m1 1

i�0 �k 2 i� < k�n2m11�p�n 2 m1 1� candi-
dates, (assume every module hask paths in average).

5.3. Parallel verification

One of the best features of the proposed approach is the
verification of different candidates that can be performed
independently, and the algorithm can be naturally adapted
to be parallel. For example, ifN (N(1) groups of candidates
are to be verified in parallel, the paths of the module with the
fewer number of simple paths is chosen for separation. Its
paths are divided intoN subsets so that the paths in the same
subset have the most similar prefix. Then,N groups of
candidates can be generated by the Cartesian product of
one subset and the sets of the paths of other modules.
Each verification may also maintain their own matrix used
in Subsection 5.1 considering all only the paths in its subset.
If some information sharing mechanism such as the share
memory exists, all the paths are added into the matrix to
avoid all redundancies.

6. An example: the verification of X.21 protocol

The X.21 protocol [13] shown in Fig. 4 is used to demon-
strate our approach embodied in a verification tool, called
the path-based protocol analysis tool, developed in the
environment of Windowsq 95 on IBMq PC equipped with
the CPU of Intelq Pentium and 32 MB of memory. This tool
provides the techniques of Sections 4 (verification in terms
of concurrent path), 5.1 (avoiding redundant checking) and
5.2 (symmetric verification). We also implement the
complete RA in our tool.

The X.21 protocol has two modules, called DTE and
DCE, each of which has 24 states and 61 transitions (the
number of transition is more than the visible one in Fig. 4
result from the state “all” denoting any other state in the
module). The initial state and the quasi-terminal are state 1.
(Since the protocol can repeat forever, there is no apparent
terminal state and we assume state 1 is a quasi-terminal state
that is after state 1 is reached, a new service is going to be
provided. The concept of quasi-terminal state will be
explained in more detail later.) For each module, it can be
decomposed into 53 independent complex paths, and four
loops around three distinct states. Thus, we can generate
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2809 concurrent path candidates, and only 221 are valid.
There are one deadlock, seven unspecified reception, and
12 tempo-blocking as shown in Fig. 5. The faulty global
states with the error of unspecified reception are
k16,21,1,1l, k16,21,b,ll, k116,21,b,1l, k16,21,1,ll,
k16,3,b,vl, k16,3,b,1l, k20,3,b,vl. These errors result from
the nondeterministic behavior specified in the module,
such as for a state there may be two transitions, one is visible
in the figure, and the other is to the succeeding state of state

“all.” As for the errors of tempo-blocking, they are due to
the complete matched loops between DTE and DCE
modules such as the loops between states “1” and “21”.

In comparison with the complete RA, the path-based
approach take longer time (7 s) than RA (5 s), but the
memory requirement of the former is only about 26K at
most (the memory for analyzing each concurrent path
depends on the length of paths, thus it ranges from 0.9 to
26K and the average is 5K) and that of RA is about 500K.
Furthermore, among the 2809 candidates, if we use the
technique in Section 5.1, we only have to check 479 candi-
dates actually with the efficiency improvement ratio of 82%
and the verification reduce to 2 s.

7. Discussion

7.1. Quasi-terminal state

One potential and crucial drawback is the requirement of
terminal state for each module which does not always exists
in the protocol, especially in the module that continuously
provides the service. Alternatively, there is a quasi-terminal
state where the module finishes its last service and is to
provide the new. Such state is instead used as a terminal
state to generate the paths. The problem on this is that when
the system reaches such a state, it may not shortly reach the
global terminal state but is blocked at other global state. If
this global state has at least one executable transition start-
ing from the quasi-terminal state, it does possibly not denote
an error, but the information of the previous service retains
to affect the succeeding. Therefore, in this case, when a
candidate is blocked at a global state that is not the global
terminal one but has at least one module reaching its quasi-
terminal state and any transition starting from the quasi-
terminal state is executable, further verification is required.
All such last global states are kept in a set, and another
verification process starts for each new member in this set
until no more new member is available or the new one is an
unusual state denoting potential errors. As the number of
possible last global states is finite and usually small, the
verification will finally terminate. With such a technique,
only the quasi-terminal state is required that exists in most
protocols.

7.2. Comparison with other methods

The study of protocol verification started as early as
1970s [2,24]. Many proposed approaches endeavored to
overcome the obstacle of state explosion. In addition to
the duologue approach, there are some works that also alle-
viates the state explosion problem from the memory point of
view:

1. Bounded depth-first search[12]: this is a depth-first
search with a bound on the length of the execution
sequences. Its maximum memory requirement is also
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the length of an execution sequences. It can do the
exhaustive search if the long execution time is allowed.
However, it does the double work since no searching
history of other execution sequences is kept. It is also
difficult to set an accurate upper bound for search without
exploring the unnecessary global states.

2. Protocol expression[11,23]: this approach describes the
behavior of the FSMs with an extended type of regular
expression, termed “protocol expression”. A cross
product and algebraic reduction and equivalence rules,
denoted as soundness rules, are used to analyze and
reduce the state, which can be performed either by simple
manual algebraic analysis or automated cross product
evaluator. This approach is a variation of the reachability
analysis using the soundness rule. However, the sound-
ness rule can be used only in the CFSM and is difficult to
extend to other more complex modules. Besides, the
performance, this approach depends on the application
of the operators “1 ” or “ p”. If these two operators flood,
the state space problem emerges.

3. Tree protocol[3]: this method grows the execution tree
of a module rather than the execution tree of system, thus
the memory requirement is limited to the complexity of
single modules. However, the rule to grow the tree is
quite complicated and also difficult to extend.

4. On-the-fly [7,10,30]: the on-the-fly technique use the
depth-first search technique and only keep the states
along current search path to avoid the state space
problem. Since a global state may appear in different
search paths, it also use the state cache to keep some
forgotten states to avoid wasting verification time in
checking the same global states. Thus, the performance
of this technique depends on the number of states in the
cache. However, our method requires the same amount
of memory but uses a simple and small matrix and an
efficient checking scheme to avoid redundantly checking
the same path.

Therefore, the above approaches do not completely solve
state space problem even from the memory point of view.
On the basis of Ref. [12], no current state-enumeration
approach can completely and efficiently verify the protocol
with more than 108 global states, but protocols will become
more and more complex due to the increasing demand of
protocol services. The problem will emerge largely and
become more and more difficult to be solved.

8. Conclusion

Our approach is similar to the approach of Zafiropulo [36]
but without all the limitations in his work. It underlies the
concept of concurrent path dividing the protocol into small
and independent components, the concurrent paths. The
concurrent path specifies the execution behavior in a partial
order manner, whose ordering relationship is implicitly
defined. Our approach first generates all the necessary

paths of a module, and uses the Cartesian product to gener-
ate the concurrent path candidates, then applies the reach-
ability analysis to the candidate to determine the validity of
the candidate. Within the reachability analysis of individual
candidates, all the logical errors, if any, in the protocol are
thus detected. Assume there aren modules, each of which
has at mostm paths whose lengths arek on average. The
time and memory complexity for verifying general concur-
rent paths areO�mn × nn×k� andO�kn�; respectively and can
be further reduced toO�mn × n × k� andO�n × k� for simple
concurrent paths, respectively.

To improve the efficiency of the verification, we make
some trade-off on the memory requirement to avoid redun-
dant analysis.C(n, 2) 2D matrixes are necessary to mark the
redundant candidates that will be invalid due to the same
reason of some previously analyzed invalid candidate or a
valid but erroneous candidate that will ultimately be
detected in the analysis of other candidates, wheren is the
number of modules. By eliminating the time to analyze
these redundant candidates, our experiments shows that
the efficiency is improved greatly, but the memory require-
ment is onlyO�n2 × p2�; wherep is the number of paths of a
module in average. Therefore, the state explosion problem is
completely conquered from the memory point of view with
almost the same magnitude of performance of the reach-
ability analysis. Furthermore, if the parallel verification
technique is used, our approach can be much faster than
reachability analysis.
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