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Satellite Sensor Image Classification Using Cascaded
Architecture of Neural Fuzzy Network

Chin-Teng Lin, Yin-Cheung Lee, and Her-Chang Pu

Abstract—Satellite sensor images usually contain many com- ative frequencies of various gray levels on the unnormalized
plex factors and mixed pixels, so a high classification accuracy image [2], and the second-order gray level statistics method
is not easy to attain. Especially, for a nonhomogeneous region, 13] tq gptain texture features. These applications should be ex-
gray values of satellite sensor images vary greatly and thus, direct L : .
statistic gray values fail to do the categorization task correctly. .tended to produce the Classn‘lcathn W'_th arbitrary patterns, not
The goa| of this paper is to deve|0p a cascaded architecture ijust tal’gets Of SeleCted blOCkS W|th dlffel’ent textures. OtheI’S
neural fuzzy networks with feature mapping (CNFM) to help the have applied Bayesian classifier [4] and Markov Random Field
clustering of satellite sensor images. In the CNFM, a Kohonen's [5], [6] to obtain relative frequencies of individual and neighbors
self-organizing feature map (SOFM) is used as a preprocessing 5 mong a pixel. These structures are hard to obtain the required
layer for the reduction of feature domain, which combines orig- . -
inal multi-spectral gray values, structural measurements from rgsults \{vhen samples are |r1§uﬁ!0|ent. Moreover, the consump-
CcO-occurrence matricesy and Spectrum features from wavelet tion Of time to dO the C|aSSIflcatI0n Should aISO be one Of the
decomposition. In addition to the benefit of dimensional reduction considerations. Some researchers use neural networks [7]-[9]
of feature space, Kohonen’s SOFM can remove some noisy areasto produce the classification. The results show that the neural
and prevent the following training process from being overor- nanyork is g feasible application to satellite sensor image clas-

iented to the training patterns. The condensed measurements ificati H . th tellit . I
are then forwarded into a neural fuzzy network, which performs ~ Sfic@tion. However, since the satellite sensor images usually

supervised learning for pattern classification. The proposed Contain many complex factors and mixed pixels, a high clas-
cascaded approach is an appropriate technique for handling the sification accuracy is not easy to attain. Especially for a nonho-
class_,ification problem in areas that exhibit Iarge_spgtie_tl variation mogeneous region, the gray values of its satellite sensor image
and interclass heterogeneity (e.g., urban-rural infringing areas). \ary greatly and thus, the direct statistic gray values fail to do
The CNFM is a general and useful structure that can give us - . .
favorable results in terms of classification accuracy and learning the catggorlzatlon tgsk Cprrectly. To handle complicated §a_ttelllte
speed. Experimental results indicate that our structure can S€nsorimage classification problems accurately and efficiently,
retain high accuracy of classification (90% in average), while the we first combine three types of features including original gray
training time is substantially reduced if our system is compared values, statistically structural measurements, and spectrum fea-
to the commonly used backpropagation network. The CNFM e as the inputs of a classification system. In this system, we
appgﬂse;?;%rr?ore reasonable and practical than the conventional develop a new cascaded architecture of neural fuzzy network
mp ' with feature mapping (CNFM) to help the clustering of satellite
sensor images. In the proposed classifier architecture, CNFM,
) ) the dimension of input feature space is first reduced by a neural
ATELLITE sensor images for remote sensing usually conyetwork, and then these condensed measurements are forwarded
ain large spatial variation and interclass heterogeneity, §gto a neural fuzzy network for classification. The adoption of
pecially in the applications of soils/cities distribution analysighe neural network and fuzzy logic techniques in this work is
(such as the urban-rural infringing areas) for the land devgjased on the fact that the former is nonparametric and able to
opment and the variation detection of clouds and volcano fggngle diverse data, and the latter is good at processing uncer-
weather forecasting and precaution. To tackle such sophisticatgdl data and partially known information. Also, they are both
analysis and classification problems, it is important to combifgst in the classification process after being well trained.
different types of image features, including spectral and spa-, the proposed CNFM, the dimension of feature space
tial data types and process these diverse features by an efficigntirst reduced by the Kohonen’s self-organizing feature
data-fusion and classification scheme. The aim of this paperrﬁ?ap (SOFM). No matter how many features and how many
to study various features of satellite sensor images and develpRnnels we used, each group of features in high dimension
a nerual fuzzy network-based system that can assist us in 8 pe transformed into two-dimensional (2-D) coordinates by
lyzing and cIa;sifying the information from satellite sensor imne 2-p Kohonen's SOFM. Aside from the benefit of reduction
ages automatically. in input dimension, SOFM can remove some noisy areas and
Early investigations for satellite-sensor image classificatiq®yy avoid the following training process being overoriented to
have employed autocorrelation functions [1], power spectra, rghe training patterns. After the inputs have been condensed by
Kohonen's SOFM, further classification will be performed by
Manuscript received October 30, 1998; revised April 29, 1999. a neural fuzzy network (called SONFIN [12]). This cascaded
_The authors are with the Department of Electrical and Control Emyrchitecture, named CNFM, is a general and effective structure
gineering, National Chiao-Tung University, Hsinchu, Taiwan (e_mallfhat can give us favorable results in terms of classification
ctlin@fnn.cn.nctu.edu.tw).
Publisher Item Identifier S 0196-2892(00)02472-4. accuracy and learning speed. Experimental result shows that
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Supervised Neural B. Features from Statistical Domain
Fuzzy Network . . L
u(zééN;,ﬁ)or 1) Co-occurrence matrix:Texture is a major distinguishing

characteristic for the analysis of many types of images. On ac-
/T\ count of the multispectral properties in satellite sensor image,

texture also becomes an important characteristic for feature ex-

Unsupervised Unsupervised Unsupervised
Neural Network Neural Network Neural Network traction. The gray-level co-occurrence matrices, proposed by
(Kohonen's SOFM) (Kohonen's SOFM) {Kohonen's SOFM) Haralick et al.in 1973, constitute one of the basic approaches
1 1 i to the statistical analysis of texture [3] [14]. By computing a
set of graytone spatial-dependence probability-distribution ma-
Spatial Statistical Spectral trices for a given image block and extracting a set of textural
Features Features Features features from each of these matrices, the basic model attempts

to take the variation as a function of direction of spatial dis-
tance [13]-[15]. We shall also develop some structural-statis-
tical generalizations that apply the statistical techniques to ob-
tain the structural features of satellite sensor images.
the CNFM can reach the accuracy of 96.5% with respect to allConsider the second-order histograns- f(4, j, d, ), where
domains of features based on the testing satellite sensor imagesare gray values of pixels at distandeapart andd is the
that we had. angle (usually every 4% of the line joining the centers of these
Fig. 1 shows the system architecture of CNFM. There agixels. These matrices are symmeti¢d) = P(6 + ) (i.e.,
three types of inputs (features) that are spatial features of gmyi, j, d, 6) = P(j,4,d, ). From this matrix, a number of fea-
values, statistical features from a co-occurrence matrix, atites can be computed. Wit gray levels in the image, the
spectral features from wavelet decomposition Witkthannels. dimension of the matrix will b& x G. The(4, j)th element?;;
Suppose there a®/ features in total. If we do not reduce ourof this matrix is defined by [3]
dimension of feature space, our network will neggd * V)

Fig. 1. Functional block diagram of the proposed CNFM.

input nodes. In the proposed CNFM, the input dimension is fidj’ﬂ

first reduced by the Kohonen’s SOFM and further classification e S @)
is performed by a neural fuzzy network (SONFIN). In the next Z Zfi“

section, the acquirement, implementation, and maodification P

of the three groups of features are given. In Section lll, the (
integration of CNFM by cascading the Kohonen's SOFNNhereffj’” is the frequency of occurrence of gray levendy
and SONFIN is modeled. Experimental results are shown $eparated by a distandeand directiory = 0°, 45°, 90°, 135°.
Section IV. Finally, some conclusions are made in Section V.The summation is over the total number of pixel paifgiven
d, in the window.

We shall compute the following texture features from the
co-occurrence matrix: angular second moment (ASM), contrast
(CON), inverse difference moment (IDM), and entropy (ENT).

The objective of this section is to clarify how the input feaThese features are among the most commonly used co-occur-
tures are chosen and what they are actually for. These input fegiice features [3], [13]-[15].
tures are gray values, statistical features, and spectral featureg) Simplification of Computations by Symmetric Linked-List
The varieties of different gray values among channels are chésLL): Since the number of operations required to compute any
acteristics that can be used to classify the ground cover tygéghe aforementioned features is proportional to the number
from data of multispectral spaces into desired clusters. Ho@f resolution cells (gray values being used) in the image block,
ever, due to the complexities, mixed pixels, and diverse typesas-occurrence matrices are time-consuming to compute and are
textures, we can make use of statistical features from a co-ocoemory-intensive as well. For a typical gray-valued image, as-

rence matrix and spectral features from wavelet decompositi&ming that window size i& and number of gray levels & (as
to improve the accuracy of classification. usual, we se? = 256), and then the redundancy computation

is a factor ofG x G— N(N —1) x 2. To overcome this problem,
we use the full 256 (8 bits) dynamic range without compression
and rely on efficiencies in our algorithm to overcome the com-
Taking the advantage of multispectral data obtained from djfutational demands of such large (256256) matrices. This
ferent satellite sensors, we can classify the data as requinedn contrast to Haralick’'s work in [14], where the number of
Here, we choose the gray values as our spatial features. Sincepttagy levels was compressed to a more limited dynamic range. To
varieties of different gray values among channels can be servakie advantage of the characteristics of overlapped windows and
as characteristics, they can be used to classify the ground casgnmetric property, we can construct a symmetric linked-list
types in these multispectral spaces into desired clusters. In (iLL) [16], which is better suited for generating co-occurrence
tails, the groups or clusters of pixel points are referred to as ii@atures than a matrix approach. Another advantage for using
formation classes, since they are the actual classes of data ¢hgtay-level co-occurrence linked list is efficiency, because it
a computer can recognize. does not allocate storage for those gray-level pairs that have zero

Il. INPUT ACQUISITION

A. Features from Spatial Domain by Multispectral Data



LIN et al: SATELLITE SENSOR IMAGE CLASSIFICATION USING CASCADED ARCHITECTURE 1035

TABLE |

ORDER OF COMPLEXITY IN THE FIRST
COMPUTATION OF CO-OCCURRENCEMATRIX

complexity of Table Il is the same as that in Table I. However,
for the linked-list format, the factor o2 is reduced to either
L1 or L2, and the factor o2(N — 1) is reduced to either 4 or

First Time H v R L 2, correspondingly. This is because we only need to update ei-
ther two columns or two rows for the linked-list format. Further-
Co 2AN-1)NG? 2N -1)%eG? . )
( ) ) ) more, Since the length of L2 is almost half of the length of L1,
Asym 2IN-D)Ne L} 2N-1) L1 the Symmetric format has the lowest computational complexity.
Sym WN-DNeL2 YN-1 12 4). Qlobal Texture Features from Secpnd—Order HisFogram
Statistics: From the co-occurrence matrix, we can define the
texture features as follows [3].
TABLE I a) Entropy (ENT): The entropy computed from the

ORDER OF COMPLEXITY AFTER THE FIRST COMPUTATION OF

Co-OCCURRENCEMATRIX

second order histogram provides a standard measurement of
homogeneity and is defined as

After the first time H v R L Ent zn: zn: ( ')1 ( ( )) @)
niropy = — ple,7)logiple,7)).
Co AN -1)N G* UN-1?eG? 5 ’ ’
Asym 4N e L1 4(N-1)e L1 whenn stands for the total levels of gray value (i.e., in our
Sym N e LD 2N -1 L2 experiment, we set = 2° = 256). Higher values of homo-
geneity measures will indicate less structural variations, while

lower values will be interpreted as a higher probability of tex-

probability. Each node in SLL consists of datalataj, and a tural region.

counter. Data andj are indexes of the co-occurrence matrix, ~b) Contrast (CON): The contrast feature is a difference
and the counter is used to count the frequency of occurrencé®®ment of the/> matrix and is a standard measurement of the
gray levels andj. To increase the efficiency, each entry in SLIamount of local variations presented in an image. The contrast
should be sorted. Since the co-occurrence matrix is symmetfgature on the second-order histogram is defined as

memory store can be reduced at least half. o>

The update procedure is as follows [13]-[16]. First, we con- Contrast = > (i — §)*p(i, 5) 3)
struct a basic co-occurrence matrix at the left-top corner of the )
image and compute the required features from this matrix. Théie higher the values of the contrast are, the sharper the struc-
we subtract elements from the last column. Second, we mdwéal variations in the image are.
the window one column to the right. At the same time, we add  €) Angular Second Moment (ASMYhe angular second
elements from the new inserted column and compute the Faoment gives a strong measurement of uniformity and can be
quired features. Repeat this process column by column. WHégfined as
the window reaches the end of the row, we slide down to the next "L & o
row. Then, the window will move in a zigzag pattern until the ~ A7gular Second Moment = Z Z Gy @
entire image has been covered. Although it is not easy to design ) ) Sl )

gggher nonuniformity values provide evidence of higher struc-

the SLL, it is the fastest method to calculate the co-occurren

matrix with full color range. Moreover, this update method cafyral variations. - _ _
be usefully applied to other applications. d) Inverse Difference Moment (IDM)The inverse differ-

3) Order of Complexity:To calculate the order of com- €nce moment is a measure of local homogeneity, and is defined

plexity, we define N to be the size of neighborhood, G to K&°

the number of gray levels, L1 to be the length of asymmetric Inverse Difference Moment

linked-list, and L2 to be the length of symmetric linked-list. n.on 1

Since we use the full 256 (8 bits) dynamic range without => > mp(i,j)- (5)

compression in this work, the length of symmetric linked-list ) J

L2 is almost half (i.e., the nonredundant portion) of thé# is noticed that features such as correlation cannot be used,

length of asymmetric linked-list L1. Also, we define Co to b&ince if the variance becomes zero, the correlation will come to

Co-occurrence matrix, Asym to be co-occurrence matrix withfinity.

Asymmetric linked-list, and Sym to be co-occurrence matrix )

with Symmetric linked-list. Since the co-occurrence matrik- Features from Spectrum Domain

is updated to calculate the order of complexity of subtraction The wavelet decomposition [10], [11] is a mathematical

and addition between rows (Horizontal), between columifimmework for constructing an orthonormal basis for the space

(Vertical), and between slant of rows and of columns, we defird all finite energy signals. It can decompose input signals into

H to be Horizontal, V to be Vertical, L to be slant toward Leftmultiscale details, describing their power at each scale and po-

and R to be slant toward Right. sition, so it can discriminate the local properties corresponding
Tables | and Il show the order of complexity of the first itto smooth and textured areas. The framework of wavelet

eration and each of the following iterations, respectively. Sinceecomposition is based on the notion of a multiresolution

there is no other consideration in overlapping area in Co, thealysis, which consists of a chain of approximation vector
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Do wavelet

spaces’; j € Z. In other words, just as sin and cos functions| cetihe powardte | [ ovmele | [ unen e
are orthogonal, so the set of scaled and dilated wavelets forr| pointin sl neighbors |5 fWbYrow L ST L endof the

Low Pass +

. . . . deri fr image is
an orthonormal basis fak [10], [11]. The first basis consists | ““"® the point HighPass | | LowPas reached
of a set of scaling functiong(x) [10] P N

{21/ ¢(2J$ - 7’L)|7’L € Z} (6) Extend the
size of the [ —p . [ ) .
. . . C 1 Dy ]
wherej < 0 is a scaling factor that forms an orthonormal Selected envelution onsamping Transpose

basis forV;. Besides, there is a corresponding set of functions
a wavelet basig (x) [10],

{27292 x —n)n € Z} 7

that forms an orthonormal basis fdf;. The space¥;, j ¢ Z
are mutually orthogonal.

In practice, the approximation and detailed projection coe
ficients associated with; andW; are computed from the ap- §&
proximation coefficients at the next higher sc&lg., using a
guadrature mirror filter pair (QMF) and a pyramidal sub-ban

Fig. 2. Procedure of wavelet decomposition.

ically denoted by:(n) andg(n), whereh(n) is formed from the
inner product betweeg(z) and¢(2z — n), andg(n) is formed
from the inner product betweef(z) andy(2z — n), i.e.,

$(z) =V2 Y h(n)¢(2z —n) and )

P(x) =v2 Y g(n)ip(2z —n). ©

The CoeﬁiCi_ents{h(?l)} have to meet several conditions forFig. 3. Result of wavelet decomposition of a channel input, where the top left
the set of basis functions to be unique and orthonormal. It cami bottom right are the result of wavelet decomposition from both low pass and
be shown that a wavelet decomposition of a signal does not friam both high pass in columns and in rows, respectively. The top right image

. h licit form nd but onlv d nd is from low pass in columns and high pass in rows. Conversely, the bottom left
quire the explicit forms ofp(z) a ¢($)1 ut only depends jmage is from high pass in columns and low pass in rows.
onh(n) andg(n) sequences. Moreover, filtering operations use
{h(n)} and{g(n)} coefficients as the impulse responses corrgz o .
sponding to low and high-pass operations, respectively. By re-
peatedly convoluting each approximation signal with) and ~ ¢(0) = 1.909686, (1) = 1.215350, ¢(2) = 0.344046,

g(n), and decimating the outputs by a factor of two, the signal isc(3) = 0.122197, ¢(4) = 0.028610, and
decompqsed into frequency bands whose bandwidths and centg(rn) —0.0, forn>5.
frequencies vary by octaves. ) o )
In this paper, we choose the quadratic spline function as thel he complete procedure is shown in Fig. 2. First, we select a

(n) can be selected as [17]

scaling function [11], i.e., point from the left-top of the image and obtain a block from the
I gray values of its neighbors. Second, we perform the wavelet de-

~ sin — composition row by row, including cases of low pass and high
Plw) = wz . (10) pass. Finally, we apply the same process column by column.

2 This is the 2-D wavelet decomposition [17]. For the wavelet de-

composition, we first extend the size of the selected block to be
a square block. Then, we perform the convolution and down-
¢in ¢ sample the size of the block into half. Afterwards, we transpose

P(w) = jw | —5 ) (11) the image for the next wavelet decomposition. As an illustrated
3 example shown in Fig. 3, the left-top and right-bottom images
. are the result of wavelet decomposition from both low pass, and

Then we can deduce the coefficieris(n)} and{g(n)} asfol- 5y poth high pass in columns and in rows, respectively. The

lows [11], [17]: right-top image is from low pass in columns and high pass in

The Fourier transform of its corresponding wavelet is

; 1 [sinw(n+3)  sinw(n—3) rows. Conversely, the left-bottom image is from high pass in
W(n) =8 a2 a(n—3) columns and low pass in rows.
sinm(n + %) sinm(n — %)
= 2 } (12) Ill. CASCADED ARCHITECTURE OFNEURAL FUZzY NETWORK
m(n+3) m(n—3) WITH FEATURE MAPPING (CNFM)

3 . .
g(n) = Z 2e(u) [Sln(” +u+1)r  sin(n - “)W} (13) After we have obtained the features from the spatial, statis-
(n+u+1)r (n —w)mw tical, and spectral domains, we proceed with the training of clas-
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how many features and how many channels that we use, the
problem of big input space and long training time can be re-
moved by the proposed mechanism.

Layer § A. Reduction of Input Dimension by Unsupervised Network

This subsection introduces the 2-D Kohonen’s SOFM, which
can map high-dimensional inputs onto a 2-D map and can
filter out some noisy information [19]. In addition to mapping
high-dimensional inputs onto a 2-D map, another major goal
of Kohonen’'s SOFM is to obtain a topology-preserving map
that keeps the neighborhood relations of the input patterns.
We shall also modify the Kohonen's SOFM to make the
input clusters be normally distributed. With the benefits of
Kohonen’s SOFM, the system can be adapted to the change
of increase of both features and channels easily. Also, it can
filter out some noisy information. The most important merit is
that we can avoid taking trial and error to remove redundancy,
such as by genetic algorithm, KL expansion, and correlation
(=T 0)/[(=] @) (T vl

The 2-D SOFM, also called a topology-preserving map, as-
sumes a topological structure among the cluster units. There are
m cluster units, arranged in a 2-D array in our application, the
Fig. 4. Structure of Self-Constructing Neural Fuzzy Inference Networiﬁput signals arextuples. The weight vector for a cluster unit
(SONFIN). serves as an exemplar of the input patterns associated with that

cluster. During the self-organization process, the cluster unit
sification by our system, CNFM. Itis composed of two cascadadhose weight vector matches the input pattern most closely
neural networks. The former one is the unsupervised Kohonefgpically, the square of the minimum Euclidean distance) is
SOFM and the latter is the supervised neural fuzzy netwogkosen as the winner. The winning unit and its neighboring
(called SONFIN). From Fig. 4, we can see the detailed infownits (in terms of the topology of the cluster units) update their
mation of the architecture. For each channel, we obtain thirteegights. The 2-D coordinates (on theandy axes) of the win-
types of features as the inputs of Kohonen’s SOFM and get thieg unit on the 2-D map of SOFM are viewed as the output of
individual outputs, where the output of each SOFM is the 2-BOFM.
coordinates (on the x and y axes) in the map formed by theTo make an unsupervised neural network utilize the informa-
2-D neurons (clustering units). In this way, we transform thé#on concerning the distribution of patterns, the patterns must
thirteen statistic measurements into three 2-D coordinates fsr divided intom clusters according to the occurrences of clus-
each channel. Next, we use the supervised neural fuzzy netwdeks. Therefore, clusters will be sufficient enough in a high-den-
SONFIN, to produce a refined classification. This complemesity region, whereas the number of clusters will be reduced in a
tary architecture can compensate the problems of inaccursparse region. We apply this conscience [18] into the update of
and long training time of unsupervised and supervised neuta¢ Kohonen’s SOFM. After the selection of a winner, i.e.,

Layer 4

Layer 3

Layer 2

Layer 1

*y *2

networks, respectively. It is noticed that although the concept 1, if || X (&) — W)
I 1 i m
of ca_scadlng a superwsgd neural netyvork by an unsupgrwsed y; = — win]| X(¢) — W; ()| (14)
learning neural network is not an entirely new concept in the =1
neural network realm for speeding up learning, the proposed ar- 0, otherwise,

chitecture is a totally new combination. In addition to owning/herey; is the winner,X () is the current inputsi¥’;(#) is the
the advantage of speedy learning, more importantly, the pigeight vector (clustey), and instead of updating the weights as
posed architecture provides a new efficient solution to the paisual, we record the usage of each cluster, i.e.,
tern recognitioq problems_coqtaining many diyerse types of fea- preY = p;ld + By; — p;ﬂd% j=1,,m (15)
tures, thus making a contribution to the domain of pattern reco\%— . . .
L . e : herep; is the record of usage an#lis a step size. After the

nition in general and remote sensing classification in particular. . . . ) .

. . A . statistics are known, the selection of the winner will be rewritten
In more details, the most important contribution of this archg
tecture is to improve the method of input selection. Compare _
to the conventional trial and error approach, the input dimen- 1 i [lXE) — W@l — by
sion of our system is first reduced by the Koh(_)nen’s SOFM, gnd Y = = Igfnnx(t) —Wi(t)]| — b (16)
then each group of features from a channel is transformed into =1
2-D coordinates. Consequently, with benefit of input dimension
reduction, Kohonen’s SOFM unsupervised neural network alatereb; = v((1/m) — p}“*) is an offset, angl is a constant.
contributes to noise elimination. Next, we use SONFIN to over- As the usage; of cluster; increases, its offsdt; will de-
come the inaccuracy due to Kohonen’s SOFM. Hence, no matteease. This reduces its competitive ability. In other words, its

0, otherwise,
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conscience is increased and is persuaded to give opportunity thayer 4: This layer is called the consequent layer. Two types

other clusters. of nodes are used in this layer, and they are denoted as blank
o _ and shaded circles in Fig. 4, respectively. The node denoted by
B. Classification by Supervised Network a blank circle (blank node) is the essential node representing a

After the transformation of input space using Kohonen®izzy set (described by a Gaussian membership function) of the
SOFM has been completed, we then pass the newly compo8géput variable. The function of the blank node is
inputs into a supervised neural network to produce a refined
classification. This cascaded architecture has the ability to a = Zu]@ * ao; (20)
perform the classification of satellite sensor images even J
though there are very complex mixed pixels. . ] )
The neural fuzzy network that we used for satellite sensBf1€reao; = mo; the center of a Gaussian membership function.
image classification is called the self-constructing neural fuz?ﬁ to the shaded node, it is generated only when necessary. The
inference network (SONFIN) that we proposed previously ifhaded node function is
[12]. It is worth mentioning that SONFIN is a brand new idea @ @
applied to satellite sensor image classification. The SONFIN is a = Z jiLy - U (21)
a general connectionist model of a fuzzy logic system, which i
can find its optimal structure and parameters automatically. Th

number of generated rules and membership functions is snY&?lere the summation is over all the inputs, angis the cor-

even for modeling a sophisticated system. The SONFIN ¢ %sponding parameter. Combining these two types of nodes in
yer 4, we obtain the whole function performed by this layer

always find itself an economic network size, and the learni
speed as well as the modeling ability are all appreciated as co each rule as
pared to normal neural networks.
The structure of SONFIN is shown in Fig. 4. The five-layered a® = Zaﬁwj +a,; o (22)

network realizes a fuzzy model of the following form ; ‘

Rulei: IF z; is A;; and - - - andx,, is A;,, h nod his | q

: ‘ o Layer 5: Each node in this layer corresponds to one output
THEN ylIs mo; + ajiz; + variable. The node integrates all the actions recommended by
whereA;; is a fuzzy setmn,; is the center of a symmetric mem-Layers 3 and 4 and acts as a defuzzifier with

bership function ory, anda;; is a consequent parameter. It is

poted tha}t unlike the trad!t|onal TSK mgdel [19], where all the ) — Z e Z o 23)

input variables are used in the output linear equation, only the i P

significant ones are used in the SONFIN (i.e., sanés in the i i

above fuzzy rules are zero). We shall next describe the functlonsl.he SONFIN can be used for normal operation at any time

of the nod'es n each o_f the flve layers of the SONFIN. during the learning process without repeated training on the
Layer 1: This layer is an input layer input-output patterns when online operation is required. There
@ ) arenorules (i.e., no nodes in the network except the input/output
o = = T (17)  nodes) inthe SONFIN initially. They are created dynamically as
learning proceeds upon receiving online incoming training data
Layer 2: Each node in this layer corresponds to one lirby performing the following learning processes simultaneously:
guistic label (small, large, etc.) of one of the input variables in 1y jnput/output space partitioning;
Layer 1. With the use of the Gaussian membership function, the) construction of fuzzy rules:

operations performed in this layer are 3) consequent structure identification;
- L. 4) parameter identification.
a® — (i =mi)?/ely) (18) Processes 1, 2, and 3 belong to the structure learning phase, and

process 4 belongs to the parameter learning phase. The details
wherem;; ando;; are, respectively, the center (or mean) an@f these learning processes can be found in [12].

the width (or variance) of the Gaussian membership function of ) i
the jth term of theith input variabler;. C. Cascaded Architecture of Neural Fuzzy Network with

Layer 3: A node in this layer represents one fuzzy logic rulEeature Mapping (CNFM)
and performs precondition matching of a rule. Here, we use theThis subsection gives the details of how to implement the cas-

following AND operation for each Layer-3 node caded architecture of the unsupervised and supervised neural
networks presented in Section Ill-A and IlI-B, respectively. The
al® — H“z@ (19) general architecture of CNFM is set up as follows. At first, we
; utilize k£ (e.g.,k = 3), Kohonen’s SOFM'’s to reduce the di-

mensions of; sets of inputs. The full (three) sets of inputs that
wheren is the number of Layer-2 nodes participating in the Ilve have here are gray values, statistical properties, and spec-
part of the rule. trum features from wavelet decomposition. Instead of using all
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error (MSE) and higher learning rate. The result will be com-
3 ets of 2D coordinat 3 sets of 2D coordinates pared to that of normally used statistics and backpropagation-
(6 values) yalues) network schemes in Section IV.

ﬁrm SOFM [V. EXPERIMENTAL RESULTS
-

Our experiment makes use of the real High Resolution Vis-
G vhiues) ible (SPOT HRV) satellite sensor images provided by the Earth
Resource Satellite Receiving Station in R.O.C. The image size

SONFIN

o of each channel is 1024 1024, with full 256 gray levels. These
statistical features 3 gray values 24 spectral features . L . g

from (one for cach from images contain five classes, with respect to soil (Class 1), forest
co-occurrence matrix channel) wavelet decompostition . . .
(4 for each channel) (8 for each channel) (Class 2), sea (Class 3), city 1—residential area (Class 4) and

city 2—industrial area (Class 5). These five classes are defined
entirely based on the ground truth obtained by onsite investi-
gation. Due to the different properties of these five classes, we

. . believe their morphologies also differ, giving them different tex-
sets of selected features as the inputs of a supervised neural 185s. We find that some of these classes are expected to be
work, the Kohonen's SOFM can transform each set of featurg; hly separable from each other (i.e., solil, forest, and sea), but

!nto t2-Df(i[(t)10rd|nates_ andd use t??se Iow-?lmessg)g,\(ljﬁm a;{ others (i.e., city 1 and city 2) are quite similar since both of
mplu s orine sgpe;)rv;tse neura tuzt_zy ng vtvor ’ | .bt em are urban, although city 1 is the residential area and city
only can we get a betler representation, but we can aiso oblalla e inqystrial area. The requirement of distinguishing city 1

good meaning when the 2-D coordinates serve as the Inputy,Q city 2 makes this classification problem more difficult. Our
a supervised neural network.

Fig. 5. System architecture of the CNFM used in our experiment.

. . - . experiment will demonstrate this phenomena and show the need
To go into a little more det"’.‘”’ Fig. 5 shgws the arch|tectur]%r combining diverse types of features in the proposed CNFM.
of our system. The first set of inputs contains three gray Valu%ur objective is to classify these classes from the three-channel
each of which comes from one Of. three channels and rePtellite sensor images. The results show that when we try to use

sents the features of spatial domain. The second set of NPSeatures as inputs directly without any dimension reduction

consists of angular second-moment, contrast, inverse d'ﬁere?&%erform the training of classification on either a SONFIN or

mqment, and entropy that come from co-occurrence mat'”C'?:isoackpropagation (BP) network, the converged MSE is so large
This set of inputs represents the features of statistical dom t we cannot reduce it. Hence, we must first apply the SOFM

The last set of inputs includes energy and entropy that COMEsur CNFM to reduce the dimension of inputs and then per-
from wavelet decomposition and represents the features of SR

fin the training of classification.
tral domain. After the transformation of Kohonen's SOFM’s 9

. . ) ' An illustrative example for classification of the features from
these three sets of inputs are reduced into 2-D coordinates. H%W:hannel using CNFM is shown in Fig. 6, and it can give the de-

ever, we d9 hot gxpgnd agray val'ue into 2-D coordinates b[ ils of the proposed system. First, we obtain the gray value of a
cause its dimension is low enough in our test examples. AlsoC nter-pixel, 186. From the neighborhood of this pixel, we then
we have tr.ansform.ed the gray values of all channels, we may I8y |ate the Angular Second Moment (ASM), Contrast (CON),
move the information of differences among channels. Since t erse Difference Moment (IDM), entropies and energies from

statistical and spectral features focus on local varieties, we Ga ¢ occyrrence matrices and wavelet transformations with a
apply the transformation directly and do not need to care for tlﬂ%ighborhood sizeV — 7. After we have acquired the input

information of differences among channels. As a result, we "Ratures, we pass each group of the features into a Kohonen's

duce the input Qimension from 39 features (13 features/chang FM. Then, each group of input features with high dimension
X |3 chﬁnnels) 'T}to #5 fealtﬁres G features/lchanndé cha2r1-D is reduced to 2-D coordinates. Finally, we use these 2-D coor-
nedg, W ere:ach N an'neF. asson: grr?y value an ft_vvo "L Giffiates, combined with the coordinates from other channels, as
ordinates). As shown in Fig. 5, the three types of inputs Afre inputs of the neural fuzzy network SONFIN. The result we

a gray value obtained from each channel, four statistical fe@Iitained is the desired cluster, and its name is Class 3. In our ex-

tures from each channel, and eight spectral features from e ‘él?iments, the learning parameters of SOFM, including neigh-

channel, where there are thre_e cha.nnels totally. Hence,_ i Grhood size, learning rate, and convergent rate are set as fol-
have not reduced our dimension of inputs, there are 39 iNpYIS o

in total. It must be noted that if the number of features increas
the number of inputs will grow terribly.

After the feature domain has been reduced and transformed
by the Kohonen’s SOFM, we pass the condensed measurements
to a supervised neural fuzzy network SONFIN. This network neighborhood size /(0.4 = epoch /1000.0 4 1);
can perform online input space partitioning, which creates only
g(l)irsslgn(;?c;lr::thr?r?mbershlp functlons on the universe of dls(z;) learning rate: initial value is 0.9 and updated by

put variable by using a fuzzy measure algo-

rithm [12] and the orthogonal least square (OLS) method [19].
Our objective is to use SONFIN to obtain lower mean square learning rate * exp(—0.3 * epoch /50);

f} neighborhood size: initial value is 100 and updated by (i.e.,
the shrinkage term)
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gray valuesof (x,y) | y=1}y=2|y=3 TABLE IV
x=1 205 | 205 | 205 CLASSIFICATION RESULT WITH GRAY VALUES AND STATISTICS FEATURES
X=2 186 186 186 Class 1 Class2 | Class3 | Class4 | Class 5 Overall | Average
Xx=3 205 186 186 C(lsa;sl)] 490 0 0 7 3 98 %
Class 2 .
ASM | CON | IDM [ ENT Fomet 0 512 0 0 0 100 %
0.458]84.49]0.998] 0. 433 C(‘;‘::; 0 0 470 0 0 100% | 94.9%
186 Class 4 %
LL LH | HL | HH (City 1) 9 0 0 416 37 90.3 %
Energy| 40207]9. 27811609} 1.417) 27 | 4 8 s 16 | 4 | s61%
Entropy 0. 9521 0. 597]0. 713| 0. 69
TABLE V
v | SOFM l SOFM CLASSIFICATION RESULT WITH GRAY VALUES ONLY

PD coordinates] PD coordinates
Class 1 Class2 | Class3 | Class4 | Class 5 QOverall Average
Class 1
C (Soil) 462 0 3 23 12 92.4%
C Class 2 s
(Forest) 9 477 5 10 11 93.2%
(:(1;::)3 0 0 470 0 0 100% | 92.5%
Class 4 o
¢ ¢ (City 1) 17 7 3 384 51 83.1%
Neural Fuzzy Network, SONFIN (Cclatsys 25) 21 7 1 9 649 | 937%
1!

v

Class 3 and therefore, the average classification accuracy decreased to
94.9%. We can see that the classification accuracy decreased in
Fig. 6. lllustrative example for classification of the features from a chann@laCh class. The last one is Table V, and the result was obtained

using CNFM. with three gray values only. The average classification rate be-
came 92.5%. Table V tells us that the gray levels alone are only
TABLE Il good at distinguishing Class 3 (sea) from the others. By com-
CLASSIFICATION RESULT WITH ALL TYPES OFFEATURES paring Tables IV and V, we find that the statistics features do en-
ST Toms Tom T ot T oo T vl T overnes hance the discriminative power of gray Igvels on C.:Iassll (soil)
Class 1 495 o . . 1 0% and Class 2 (forest), but not on Class 4 (city 1—residential area)
C(lsa*:;l)z and Class 5 (city 2—industrial area). By comparing Tables IlI
(Forest) 0 S12 0 0 0 100 % and IV, we find that the spectrum features can further enhance
C(';zzf 0 0 470 0 0 100% | 965% the discrimination power of gray levels and statistics features
Class 4 on the two urban areas, Class 1 and Class 2. It can thus be seen
(City 1) ! > ' i * 2% that without sufficient information, classification is difficult to
(Ccl;s;;) 25 5 0 13 462 91.5% perform. Fig. 7 shows the ground truth of the satellite sensor
image and the classified image using CNFM with three types
of features. We see that CNFM can perform quite an accurate
3) convergent rate: convergent rate is updated by classification.
Table VI shows the classification results of thenearest-
number Of training set neighborhood (KNN) method [19], BP network [19], and the
 total number of training set CNFM. The inputs of BP network and CNFM are first filtered

by Kohonen's SOFM, whereas KNN uses all features directly.
In SONFIN, the learning ratg = 0.001, overlap degree Inotherwords, the compared BP network is actually in the same
£ = 0.25, similarity degreep = 0.6, forgetting factorA = structure as the CNFM, but the SONFIN in CNFM is replaced
1, threshold parametets;,, = 0.04, andF,,;, = 0.025 are by a normal BP network. We had also tried to use the normal
chosen. After 50000 time steps of training, 18 input clusteBP network by feeding all the 39 features (13 features for each
(rules) are generated. The final converged MSE is 12.74.  channel) into it directly as inputs without going through Ko-
Tables IlI-V show the results of the classification using theonen’s SOFM for the reduction of feature space. However, the
proposed CNFM. Here we compared the classification acdearning of this BP network appeared very slow, and the MSE
racies resulting from different types of inputs. Based on theas keeping at quite a high value. That is, it was stuck at a very
satellite sensor images that we had, the result in Table Il goad local minimum, since the network was too big. Hence, we
the average classification accuracy of 96.5% and was the b@stot present the experimental results of this BP network here.
among the others, because all information was used as inplite BP network used has two hidden layers with 30 hidden
to CNFM in this case. Table IV shows the result of classifirodes in each layer, trained by the standard backpropagation
cation using only the information of gray levels and statistidearning rule with momentum term, where the learning rate was
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denotes industrial area
denotes soil

denotes sea

denotes forest

denotes residential area

and the areas enclosed by squares are training patterns, and the other areas are testing

patterns.
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Fig. 7. Ground truth of the satellite sensor image used in the experiment (top) and the classified result of CNFM (bottom), where industriabasgdpssst,
residential area are all denoted, the areas enclosed by squares are training patterns, and the other areas are testing patterns.

TABLE VI
COMPARISON OF THECLASSIFICATION RESULTSAMONG KNN, BP,AND CNFM

KNN BP CNFM

Class 1 (Soil) 7% 88% 99 %
Class 2 (Forest) 82% 85% 100 %
Class 3 (Sea) 97.5% 100% 100 %
Class 4 (City 1) 73% 78.5% 92.2 %
Class 5 (City 2) 70% 77% 91.5%
Average 79.9% 85.7% 96.5%

set as 0.5, the momentum parameter was set as 0.9, and 1
training time was 2300 epochs (about 50 000 time steps). Th
network structure, as well as the learning constants, were di
termined after thorough trial-and-error testing for achieving the
best performance (i.e., lowest MSE). The learning was stoppe
when the MSE almost kept constant. Table VI shows that th
CNFM outperforms the KNN and BP network in average clas-

sification accuracy by 16.6% and 10.8%, respectively. Fig. 8. MSE of backpropagation network against SONFIN.
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Fig. 8 shows the accuracy and MSE of BP network against[e]
SONFIN in our CNFM. We can conclude that the BP network
is insufficient to reduce the MSE due to the complexity of the 7]
image sources, but our system can tackle this problem success-
fully. From Tables 1lI-VI of our experiments, we can summa-
rize that not only the proposed diverse types of features, but aIsJ)S]
the cascaded model, CNFM, can enhance the classification ac-
curacy of satellite sensor images of the traditional approached?®l
However, although the experiment based on our satellite sensor
image shows that the accuracy improvement is somewhat signifto]
icant, the exact extent to which the classification accuracy can
be increased by the proposed scheme depends on the partichla%ll

satellite sensor images tested.
[12]

V. CONCLUSIONS [13]

The major contribution of the proposed system is to pro-
vide a good solution to the problem of scaling and selection oft4!
satellite sensor image features. Hence, in this paper, we provigg;
some auxiliary information to handle problems of diverse types
of textures and the varieties of neighborhood in the sophisti-le]
cated satellite sensor image classification problems. Howeve[r,
the additional features will increase the computation complexity
a great deal and mislead the training. To overcome this problenﬁl,”
we present a new cascaded system (called CNFM) that uses
Kohonen's self-organizing feature map as the reduction mech#ts]
nism of input dimension. After we have obtained the condense
measurements, a fine classification on them is performed by a
neural fuzzy network (called SONFIN).

The major contribution of the proposed system is to solvd20!
the problem of scaling and selection of image features well.
Also, we extended the mechanism of Kohonen’s SOFM in the
sense of reducing the high input dimension rather than filtering
the training sets. Our CNFM, combining spatial, statistical,
and spectral features into one system, generalizes well and can
avoid the network parameters orienting to the training patterns.
Furthermore, we improved the computation complexity of the
co-occurrence matrix by the symmetric linked-list structure
Our future work is to enhance our cascaded system by us
edge information. Edge information can be used as an outli
of the distribution of clusters and to improve the classificatio
accuracy.

9]
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