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Satellite Sensor Image Classification Using Cascaded
Architecture of Neural Fuzzy Network

Chin-Teng Lin, Yin-Cheung Lee, and Her-Chang Pu

Abstract—Satellite sensor images usually contain many com-
plex factors and mixed pixels, so a high classification accuracy
is not easy to attain. Especially, for a nonhomogeneous region,
gray values of satellite sensor images vary greatly and thus, direct
statistic gray values fail to do the categorization task correctly.
The goal of this paper is to develop a cascaded architecture of
neural fuzzy networks with feature mapping (CNFM) to help the
clustering of satellite sensor images. In the CNFM, a Kohonen’s
self-organizing feature map (SOFM) is used as a preprocessing
layer for the reduction of feature domain, which combines orig-
inal multi-spectral gray values, structural measurements from
co-occurrence matrices, and spectrum features from wavelet
decomposition. In addition to the benefit of dimensional reduction
of feature space, Kohonen’s SOFM can remove some noisy areas
and prevent the following training process from being overor-
iented to the training patterns. The condensed measurements
are then forwarded into a neural fuzzy network, which performs
supervised learning for pattern classification. The proposed
cascaded approach is an appropriate technique for handling the
classification problem in areas that exhibit large spatial variation
and interclass heterogeneity (e.g., urban-rural infringing areas).
The CNFM is a general and useful structure that can give us
favorable results in terms of classification accuracy and learning
speed. Experimental results indicate that our structure can
retain high accuracy of classification (90% in average), while the
training time is substantially reduced if our system is compared
to the commonly used backpropagation network. The CNFM
appears to be more reasonable and practical than the conventional
implementation.

I. INTRODUCTION

SATELLITE sensor images for remote sensing usually con-
tain large spatial variation and interclass heterogeneity, es-

pecially in the applications of soils/cities distribution analysis
(such as the urban-rural infringing areas) for the land devel-
opment and the variation detection of clouds and volcano for
weather forecasting and precaution. To tackle such sophisticated
analysis and classification problems, it is important to combine
different types of image features, including spectral and spa-
tial data types and process these diverse features by an efficient
data-fusion and classification scheme. The aim of this paper is
to study various features of satellite sensor images and develop
a nerual fuzzy network-based system that can assist us in ana-
lyzing and classifying the information from satellite sensor im-
ages automatically.

Early investigations for satellite-sensor image classification
have employed autocorrelation functions [1], power spectra, rel-
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ative frequencies of various gray levels on the unnormalized
image [2], and the second-order gray level statistics method
[3] to obtain texture features. These applications should be ex-
tended to produce the classification with arbitrary patterns, not
just targets of selected blocks with different textures. Others
have applied Bayesian classifier [4] and Markov Random Field
[5], [6] to obtain relative frequencies of individual and neighbors
among a pixel. These structures are hard to obtain the required
results when samples are insufficient. Moreover, the consump-
tion of time to do the classification should also be one of the
considerations. Some researchers use neural networks [7]–[9]
to produce the classification. The results show that the neural
network is a feasible application to satellite sensor image clas-
sification. However, since the satellite sensor images usually
contain many complex factors and mixed pixels, a high clas-
sification accuracy is not easy to attain. Especially for a nonho-
mogeneous region, the gray values of its satellite sensor image
vary greatly and thus, the direct statistic gray values fail to do
the categorization task correctly. To handle complicated satellite
sensor image classification problems accurately and efficiently,
we first combine three types of features including original gray
values, statistically structural measurements, and spectrum fea-
tures as the inputs of a classification system. In this system, we
develop a new cascaded architecture of neural fuzzy network
with feature mapping (CNFM) to help the clustering of satellite
sensor images. In the proposed classifier architecture, CNFM,
the dimension of input feature space is first reduced by a neural
network, and then these condensed measurements are forwarded
into a neural fuzzy network for classification. The adoption of
the neural network and fuzzy logic techniques in this work is
based on the fact that the former is nonparametric and able to
handle diverse data, and the latter is good at processing uncer-
tain data and partially known information. Also, they are both
fast in the classification process after being well trained.

In the proposed CNFM, the dimension of feature space
is first reduced by the Kohonen’s self-organizing feature
map (SOFM). No matter how many features and how many
channels we used, each group of features in high dimension
can be transformed into two-dimensional (2-D) coordinates by
the 2-D Kohonen’s SOFM. Aside from the benefit of reduction
in input dimension, SOFM can remove some noisy areas and
can avoid the following training process being overoriented to
the training patterns. After the inputs have been condensed by
Kohonen’s SOFM, further classification will be performed by
a neural fuzzy network (called SONFIN [12]). This cascaded
architecture, named CNFM, is a general and effective structure
that can give us favorable results in terms of classification
accuracy and learning speed. Experimental result shows that
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Fig. 1. Functional block diagram of the proposed CNFM.

the CNFM can reach the accuracy of 96.5% with respect to all
domains of features based on the testing satellite sensor images
that we had.

Fig. 1 shows the system architecture of CNFM. There are
three types of inputs (features) that are spatial features of gray
values, statistical features from a co-occurrence matrix, and
spectral features from wavelet decomposition withchannels.
Suppose there are features in total. If we do not reduce our
dimension of feature space, our network will need
input nodes. In the proposed CNFM, the input dimension is
first reduced by the Kohonen’s SOFM and further classification
is performed by a neural fuzzy network (SONFIN). In the next
section, the acquirement, implementation, and modification
of the three groups of features are given. In Section III, the
integration of CNFM by cascading the Kohonen’s SOFM
and SONFIN is modeled. Experimental results are shown in
Section IV. Finally, some conclusions are made in Section V.

II. I NPUT ACQUISITION

The objective of this section is to clarify how the input fea-
tures are chosen and what they are actually for. These input fea-
tures are gray values, statistical features, and spectral features.
The varieties of different gray values among channels are char-
acteristics that can be used to classify the ground cover types
from data of multispectral spaces into desired clusters. How-
ever, due to the complexities, mixed pixels, and diverse types of
textures, we can make use of statistical features from a co-occur-
rence matrix and spectral features from wavelet decomposition
to improve the accuracy of classification.

A. Features from Spatial Domain by Multispectral Data

Taking the advantage of multispectral data obtained from dif-
ferent satellite sensors, we can classify the data as required.
Here, we choose the gray values as our spatial features. Since the
varieties of different gray values among channels can be served
as characteristics, they can be used to classify the ground cover
types in these multispectral spaces into desired clusters. In de-
tails, the groups or clusters of pixel points are referred to as in-
formation classes, since they are the actual classes of data that
a computer can recognize.

B. Features from Statistical Domain

1) Co-occurrence matrix:Texture is a major distinguishing
characteristic for the analysis of many types of images. On ac-
count of the multispectral properties in satellite sensor image,
texture also becomes an important characteristic for feature ex-
traction. The gray-level co-occurrence matrices, proposed by
Haralicket al. in 1973, constitute one of the basic approaches
to the statistical analysis of texture [3] [14]. By computing a
set of graytone spatial-dependence probability-distribution ma-
trices for a given image block and extracting a set of textural
features from each of these matrices, the basic model attempts
to take the variation as a function of direction of spatial dis-
tance [13]–[15]. We shall also develop some structural-statis-
tical generalizations that apply the statistical techniques to ob-
tain the structural features of satellite sensor images.

Consider the second-order histogram , where
, are gray values of pixels at distanceapart and is the

angle (usually every 45) of the line joining the centers of these
pixels. These matrices are symmetric (i.e.,

. From this matrix, a number of fea-
tures can be computed. With gray levels in the image, the
dimension of the matrix will be . The th element
of this matrix is defined by [3]

(1)

where is the frequency of occurrence of gray levelsand
separated by a distanceand direction , , , .
The summation is over the total number of pixel pairsgiven
, in the window.
We shall compute the following texture features from the

co-occurrence matrix: angular second moment (ASM), contrast
(CON), inverse difference moment (IDM), and entropy (ENT).
These features are among the most commonly used co-occur-
rence features [3], [13]–[15].

2) Simplification of Computations by Symmetric Linked-List
(SLL): Since the number of operations required to compute any
of the aforementioned features is proportional to the number
of resolution cells (gray values being used) in the image block,
co-occurrence matrices are time-consuming to compute and are
memory-intensive as well. For a typical gray-valued image, as-
suming that window size is and number of gray levels is (as
usual, we set , and then the redundancy computation
is a factor of . To overcome this problem,
we use the full 256 (8 bits) dynamic range without compression
and rely on efficiencies in our algorithm to overcome the com-
putational demands of such large (256256) matrices. This
is in contrast to Haralick’s work in [14], where the number of
gray levels was compressed to a more limited dynamic range. To
take advantage of the characteristics of overlapped windows and
symmetric property, we can construct a symmetric linked-list
(SLL) [16], which is better suited for generating co-occurrence
features than a matrix approach. Another advantage for using
a gray-level co-occurrence linked list is efficiency, because it
does not allocate storage for those gray-level pairs that have zero
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TABLE I
ORDER OF COMPLEXITY IN THE FIRST

COMPUTATION OF CO-OCCURRENCEMATRIX

TABLE II
ORDER OF COMPLEXITY AFTER THE FIRST COMPUTATION OF

CO-OCCURRENCEMATRIX

probability. Each node in SLL consists of data, data , and a
counter. Data and are indexes of the co-occurrence matrix,
and the counter is used to count the frequency of occurrence of
gray levels and . To increase the efficiency, each entry in SLL
should be sorted. Since the co-occurrence matrix is symmetric,
memory store can be reduced at least half.

The update procedure is as follows [13]–[16]. First, we con-
struct a basic co-occurrence matrix at the left-top corner of the
image and compute the required features from this matrix. Then,
we subtract elements from the last column. Second, we move
the window one column to the right. At the same time, we add
elements from the new inserted column and compute the re-
quired features. Repeat this process column by column. When
the window reaches the end of the row, we slide down to the next
row. Then, the window will move in a zigzag pattern until the
entire image has been covered. Although it is not easy to design
the SLL, it is the fastest method to calculate the co-occurrence
matrix with full color range. Moreover, this update method can
be usefully applied to other applications.

3) Order of Complexity:To calculate the order of com-
plexity, we define N to be the size of neighborhood, G to be
the number of gray levels, L1 to be the length of asymmetric
linked-list, and L2 to be the length of symmetric linked-list.
Since we use the full 256 (8 bits) dynamic range without
compression in this work, the length of symmetric linked-list
L2 is almost half (i.e., the nonredundant portion) of the
length of asymmetric linked-list L1. Also, we define Co to be
Co-occurrence matrix, Asym to be co-occurrence matrix with
Asymmetric linked-list, and Sym to be co-occurrence matrix
with Symmetric linked-list. Since the co-occurrence matrix
is updated to calculate the order of complexity of subtraction
and addition between rows (Horizontal), between columns
(Vertical), and between slant of rows and of columns, we define
H to be Horizontal, V to be Vertical, L to be slant toward Left,
and R to be slant toward Right.

Tables I and II show the order of complexity of the first it-
eration and each of the following iterations, respectively. Since
there is no other consideration in overlapping area in Co, the

complexity of Table II is the same as that in Table I. However,
for the linked-list format, the factor of is reduced to either
L1 or L2, and the factor of is reduced to either 4 or
2, correspondingly. This is because we only need to update ei-
ther two columns or two rows for the linked-list format. Further-
more, Since the length of L2 is almost half of the length of L1,
the Symmetric format has the lowest computational complexity.

4) Global Texture Features from Second-Order Histogram
Statistics: From the co-occurrence matrix, we can define the
texture features as follows [3].

a) Entropy (ENT): The entropy computed from the
second order histogram provides a standard measurement of
homogeneity and is defined as

Entropy (2)

when stands for the total levels of gray value (i.e., in our
experiment, we set ). Higher values of homo-
geneity measures will indicate less structural variations, while
lower values will be interpreted as a higher probability of tex-
tural region.

b) Contrast (CON): The contrast feature is a difference
moment of the matrix and is a standard measurement of the
amount of local variations presented in an image. The contrast
feature on the second-order histogram is defined as

Contrast (3)

The higher the values of the contrast are, the sharper the struc-
tural variations in the image are.

c) Angular Second Moment (ASM):The angular second
moment gives a strong measurement of uniformity and can be
defined as

Angular Second Moment (4)

Higher nonuniformity values provide evidence of higher struc-
tural variations.

d) Inverse Difference Moment (IDM):The inverse differ-
ence moment is a measure of local homogeneity, and is defined
as

Inverse Di�erence Moment

(5)

It is noticed that features such as correlation cannot be used,
since if the variance becomes zero, the correlation will come to
infinity.

C. Features from Spectrum Domain

The wavelet decomposition [10], [11] is a mathematical
framework for constructing an orthonormal basis for the space
of all finite energy signals. It can decompose input signals into
multiscale details, describing their power at each scale and po-
sition, so it can discriminate the local properties corresponding
to smooth and textured areas. The framework of wavelet
decomposition is based on the notion of a multiresolution
analysis, which consists of a chain of approximation vector
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spaces . In other words, just as sin and cos functions
are orthogonal, so the set of scaled and dilated wavelets forms
an orthonormal basis for [10], [11]. The first basis consists
of a set of scaling functions [10]

(6)

where is a scaling factor that forms an orthonormal
basis for . Besides, there is a corresponding set of functions,
a wavelet basis [10],

(7)

that forms an orthonormal basis for . The spaces ,
are mutually orthogonal.

In practice, the approximation and detailed projection coef-
ficients associated with and are computed from the ap-
proximation coefficients at the next higher scale using a
quadrature mirror filter pair (QMF) and a pyramidal sub-band
coding scheme. The impulse responses of the QMF pair are typ-
ically denoted by and , where is formed from the
inner product between and , and is formed
from the inner product between and , i.e.,

and (8)

(9)

The coefficients have to meet several conditions for
the set of basis functions to be unique and orthonormal. It can
be shown that a wavelet decomposition of a signal does not re-
quire the explicit forms of and , but only depends
on and sequences. Moreover, filtering operations use

and coefficients as the impulse responses corre-
sponding to low and high-pass operations, respectively. By re-
peatedly convoluting each approximation signal with and

, and decimating the outputs by a factor of two, the signal is
decomposed into frequency bands whose bandwidths and center
frequencies vary by octaves.

In this paper, we choose the quadratic spline function as the
scaling function [11], i.e.,

(10)

The Fourier transform of its corresponding wavelet is

(11)

Then we can deduce the coefficients and as fol-
lows [11], [17]:

(12)

(13)

Fig. 2. Procedure of wavelet decomposition.

Fig. 3. Result of wavelet decomposition of a channel input, where the top left
and bottom right are the result of wavelet decomposition from both low pass and
from both high pass in columns and in rows, respectively. The top right image
is from low pass in columns and high pass in rows. Conversely, the bottom left
image is from high pass in columns and low pass in rows.

where can be selected as [17]

and

for

The complete procedure is shown in Fig. 2. First, we select a
point from the left-top of the image and obtain a block from the
gray values of its neighbors. Second, we perform the wavelet de-
composition row by row, including cases of low pass and high
pass. Finally, we apply the same process column by column.
This is the 2-D wavelet decomposition [17]. For the wavelet de-
composition, we first extend the size of the selected block to be
a square block. Then, we perform the convolution and down-
sample the size of the block into half. Afterwards, we transpose
the image for the next wavelet decomposition. As an illustrated
example shown in Fig. 3, the left-top and right-bottom images
are the result of wavelet decomposition from both low pass, and
from both high pass in columns and in rows, respectively. The
right-top image is from low pass in columns and high pass in
rows. Conversely, the left-bottom image is from high pass in
columns and low pass in rows.

III. CASCADED ARCHITECTURE OFNEURAL FUZZY NETWORK

WITH FEATURE MAPPING (CNFM)

After we have obtained the features from the spatial, statis-
tical, and spectral domains, we proceed with the training of clas-
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Fig. 4. Structure of Self-Constructing Neural Fuzzy Inference Network
(SONFIN).

sification by our system, CNFM. It is composed of two cascaded
neural networks. The former one is the unsupervised Kohonen’s
SOFM and the latter is the supervised neural fuzzy network
(called SONFIN). From Fig. 4, we can see the detailed infor-
mation of the architecture. For each channel, we obtain thirteen
types of features as the inputs of Kohonen’s SOFM and get the
individual outputs, where the output of each SOFM is the 2-D
coordinates (on the x and y axes) in the map formed by the
2-D neurons (clustering units). In this way, we transform the
thirteen statistic measurements into three 2-D coordinates for
each channel. Next, we use the supervised neural fuzzy network,
SONFIN, to produce a refined classification. This complemen-
tary architecture can compensate the problems of inaccuracy
and long training time of unsupervised and supervised neural
networks, respectively. It is noticed that although the concept
of cascading a supervised neural network by an unsupervised
learning neural network is not an entirely new concept in the
neural network realm for speeding up learning, the proposed ar-
chitecture is a totally new combination. In addition to owning
the advantage of speedy learning, more importantly, the pro-
posed architecture provides a new efficient solution to the pat-
tern recognition problems containing many diverse types of fea-
tures, thus making a contribution to the domain of pattern recog-
nition in general and remote sensing classification in particular.
In more details, the most important contribution of this archi-
tecture is to improve the method of input selection. Compared
to the conventional trial and error approach, the input dimen-
sion of our system is first reduced by the Kohonen’s SOFM, and
then each group of features from a channel is transformed into
2-D coordinates. Consequently, with benefit of input dimension
reduction, Kohonen’s SOFM unsupervised neural network also
contributes to noise elimination. Next, we use SONFIN to over-
come the inaccuracy due to Kohonen’s SOFM. Hence, no matter

how many features and how many channels that we use, the
problem of big input space and long training time can be re-
moved by the proposed mechanism.

A. Reduction of Input Dimension by Unsupervised Network

This subsection introduces the 2-D Kohonen’s SOFM, which
can map high-dimensional inputs onto a 2-D map and can
filter out some noisy information [19]. In addition to mapping
high-dimensional inputs onto a 2-D map, another major goal
of Kohonen’s SOFM is to obtain a topology-preserving map
that keeps the neighborhood relations of the input patterns.
We shall also modify the Kohonen’s SOFM to make the
input clusters be normally distributed. With the benefits of
Kohonen’s SOFM, the system can be adapted to the change
of increase of both features and channels easily. Also, it can
filter out some noisy information. The most important merit is
that we can avoid taking trial and error to remove redundancy,
such as by genetic algorithm, KL expansion, and correlation

.
The 2-D SOFM, also called a topology-preserving map, as-

sumes a topological structure among the cluster units. There are
cluster units, arranged in a 2-D array in our application, the

input signals are tuples. The weight vector for a cluster unit
serves as an exemplar of the input patterns associated with that
cluster. During the self-organization process, the cluster unit
whose weight vector matches the input pattern most closely
(typically, the square of the minimum Euclidean distance) is
chosen as the winner. The winning unit and its neighboring
units (in terms of the topology of the cluster units) update their
weights. The 2-D coordinates (on theand axes) of the win-
ning unit on the 2-D map of SOFM are viewed as the output of
SOFM.

To make an unsupervised neural network utilize the informa-
tion concerning the distribution of patterns, the patterns must
be divided into clusters according to the occurrences of clus-
ters. Therefore, clusters will be sufficient enough in a high-den-
sity region, whereas the number of clusters will be reduced in a
sparse region. We apply this conscience [18] into the update of
the Kohonen’s SOFM. After the selection of a winner, i.e.,

if

otherwise,

(14)

where is the winner, is the current inputs, is the
weight vector (cluster), and instead of updating the weights as
usual, we record the usage of each cluster, i.e.,

(15)

where is the record of usage andis a step size. After the
statistics are known, the selection of the winner will be rewritten
as

if

otherwise,

(16)

where is an offset, and is a constant.
As the usage of cluster increases, its offset will de-

crease. This reduces its competitive ability. In other words, its
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conscience is increased and is persuaded to give opportunity to
other clusters.

B. Classification by Supervised Network

After the transformation of input space using Kohonen’s
SOFM has been completed, we then pass the newly composed
inputs into a supervised neural network to produce a refined
classification. This cascaded architecture has the ability to
perform the classification of satellite sensor images even
though there are very complex mixed pixels.

The neural fuzzy network that we used for satellite sensor
image classification is called the self-constructing neural fuzzy
inference network (SONFIN) that we proposed previously in
[12]. It is worth mentioning that SONFIN is a brand new idea
applied to satellite sensor image classification. The SONFIN is
a general connectionist model of a fuzzy logic system, which
can find its optimal structure and parameters automatically. The
number of generated rules and membership functions is small
even for modeling a sophisticated system. The SONFIN can
always find itself an economic network size, and the learning
speed as well as the modeling ability are all appreciated as com-
pared to normal neural networks.

The structure of SONFIN is shown in Fig. 4. The five-layered
network realizes a fuzzy model of the following form

Rule IF is and and is

THEN is

where is a fuzzy set, is the center of a symmetric mem-
bership function on , and is a consequent parameter. It is
noted that unlike the traditional TSK model [19], where all the
input variables are used in the output linear equation, only the
significant ones are used in the SONFIN (i.e., some’s in the
above fuzzy rules are zero). We shall next describe the functions
of the nodes in each of the five layers of the SONFIN.

Layer 1: This layer is an input layer

(17)

Layer 2: Each node in this layer corresponds to one lin-
guistic label (small, large, etc.) of one of the input variables in
Layer 1. With the use of the Gaussian membership function, the
operations performed in this layer are

(18)

where and are, respectively, the center (or mean) and
the width (or variance) of the Gaussian membership function of
the th term of the th input variable .

Layer 3: A node in this layer represents one fuzzy logic rule
and performs precondition matching of a rule. Here, we use the
following AND operation for each Layer-3 node

(19)

where is the number of Layer-2 nodes participating in the IF
part of the rule.

Layer 4: This layer is called the consequent layer. Two types
of nodes are used in this layer, and they are denoted as blank
and shaded circles in Fig. 4, respectively. The node denoted by
a blank circle (blank node) is the essential node representing a
fuzzy set (described by a Gaussian membership function) of the
output variable. The function of the blank node is

(20)

where the center of a Gaussian membership function.
As to the shaded node, it is generated only when necessary. The
shaded node function is

(21)

where the summation is over all the inputs, andis the cor-
responding parameter. Combining these two types of nodes in
Layer 4, we obtain the whole function performed by this layer
for each rule as

(22)

Layer 5: Each node in this layer corresponds to one output
variable. The node integrates all the actions recommended by
Layers 3 and 4 and acts as a defuzzifier with

(23)

The SONFIN can be used for normal operation at any time
during the learning process without repeated training on the
input-output patterns when online operation is required. There
are no rules (i.e., no nodes in the network except the input/output
nodes) in the SONFIN initially. They are created dynamically as
learning proceeds upon receiving online incoming training data
by performing the following learning processes simultaneously:

1) input/output space partitioning;
2) construction of fuzzy rules;
3) consequent structure identification;
4) parameter identification.

Processes 1, 2, and 3 belong to the structure learning phase, and
process 4 belongs to the parameter learning phase. The details
of these learning processes can be found in [12].

C. Cascaded Architecture of Neural Fuzzy Network with
Feature Mapping (CNFM)

This subsection gives the details of how to implement the cas-
caded architecture of the unsupervised and supervised neural
networks presented in Section III-A and III-B, respectively. The
general architecture of CNFM is set up as follows. At first, we
utilize (e.g., ), Kohonen’s SOFM’s to reduce the di-
mensions of sets of inputs. The full (three) sets of inputs that
we have here are gray values, statistical properties, and spec-
trum features from wavelet decomposition. Instead of using all
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Fig. 5. System architecture of the CNFM used in our experiment.

sets of selected features as the inputs of a supervised neural net-
work, the Kohonen’s SOFM can transform each set of features
into 2-D coordinates and use these low-dimension data as the
inputs of the supervised neural fuzzy network, SONFIN. Not
only can we get a better representation, but we can also obtain a
good meaning when the 2-D coordinates serve as the inputs of
a supervised neural network.

To go into a little more detail, Fig. 5 shows the architecture
of our system. The first set of inputs contains three gray values,
each of which comes from one of three channels and repre-
sents the features of spatial domain. The second set of inputs
consists of angular second-moment, contrast, inverse difference
moment, and entropy that come from co-occurrence matrices.
This set of inputs represents the features of statistical domain.
The last set of inputs includes energy and entropy that come
from wavelet decomposition and represents the features of spec-
tral domain. After the transformation of Kohonen’s SOFM’s,
these three sets of inputs are reduced into 2-D coordinates. How-
ever, we do not expand a gray value into 2-D coordinates be-
cause its dimension is low enough in our test examples. Also, if
we have transformed the gray values of all channels, we may re-
move the information of differences among channels. Since the
statistical and spectral features focus on local varieties, we can
apply the transformation directly and do not need to care for the
information of differences among channels. As a result, we re-
duce the input dimension from 39 features (13 features/channel

3 channels) into 15 features (5 features/channel3 chan-
nels, where each channel has one gray value and two 2-D co-
ordinates). As shown in Fig. 5, the three types of inputs are
a gray value obtained from each channel, four statistical fea-
tures from each channel, and eight spectral features from each
channel, where there are three channels totally. Hence, if we
have not reduced our dimension of inputs, there are 39 inputs
in total. It must be noted that if the number of features increase,
the number of inputs will grow terribly.

After the feature domain has been reduced and transformed
by the Kohonen’s SOFM, we pass the condensed measurements
to a supervised neural fuzzy network SONFIN. This network
can perform online input space partitioning, which creates only
the significant membership functions on the universe of dis-
course of each input variable by using a fuzzy measure algo-
rithm [12] and the orthogonal least square (OLS) method [19].
Our objective is to use SONFIN to obtain lower mean square

error (MSE) and higher learning rate. The result will be com-
pared to that of normally used statistics and backpropagation-
network schemes in Section IV.

IV. EXPERIMENTAL RESULTS

Our experiment makes use of the real High Resolution Vis-
ible (SPOT HRV) satellite sensor images provided by the Earth
Resource Satellite Receiving Station in R.O.C. The image size
of each channel is 1024 1024, with full 256 gray levels. These
images contain five classes, with respect to soil (Class 1), forest
(Class 2), sea (Class 3), city 1—residential area (Class 4) and
city 2—industrial area (Class 5). These five classes are defined
entirely based on the ground truth obtained by onsite investi-
gation. Due to the different properties of these five classes, we
believe their morphologies also differ, giving them different tex-
tures. We find that some of these classes are expected to be
highly separable from each other (i.e., soil, forest, and sea), but
the others (i.e., city 1 and city 2) are quite similar since both of
them are urban, although city 1 is the residential area and city
2 is the industrial area. The requirement of distinguishing city 1
from city 2 makes this classification problem more difficult. Our
experiment will demonstrate this phenomena and show the need
for combining diverse types of features in the proposed CNFM.
Our objective is to classify these classes from the three-channel
satellite sensor images. The results show that when we try to use
all features as inputs directly without any dimension reduction
to perform the training of classification on either a SONFIN or
a backpropagation (BP) network, the converged MSE is so large
that we cannot reduce it. Hence, we must first apply the SOFM
in our CNFM to reduce the dimension of inputs and then per-
form the training of classification.

An illustrative example for classification of the features from
a channel using CNFM is shown in Fig. 6, and it can give the de-
tails of the proposed system. First, we obtain the gray value of a
center-pixel, 186. From the neighborhood of this pixel, we then
calculate the Angular Second Moment (ASM), Contrast (CON),
Inverse Difference Moment (IDM), entropies and energies from
the co-occurrence matrices and wavelet transformations with a
neighborhood size . After we have acquired the input
features, we pass each group of the features into a Kohonen’s
SOFM. Then, each group of input features with high dimension
is reduced to 2-D coordinates. Finally, we use these 2-D coor-
dinates, combined with the coordinates from other channels, as
the inputs of the neural fuzzy network SONFIN. The result we
obtained is the desired cluster, and its name is Class 3. In our ex-
periments, the learning parameters of SOFM, including neigh-
borhood size, learning rate, and convergent rate are set as fol-
lows:

1) neighborhood size: initial value is 100 and updated by (i.e.,
the shrinkage term)

neighborhood size epoch

2) learning rate: initial value is 0.9 and updated by

learning rate epoch
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Fig. 6. Illustrative example for classification of the features from a channel
using CNFM.

TABLE III
CLASSIFICATION RESULT WITH ALL TYPES OFFEATURES

3) convergent rate: convergent rate is updated by

number of training set
total number of training set

In SONFIN, the learning rate , overlap degree
, similarity degree , forgetting factor

, threshold parameters , and are
chosen. After 50 000 time steps of training, 18 input clusters
(rules) are generated. The final converged MSE is 12.74.

Tables III–V show the results of the classification using the
proposed CNFM. Here we compared the classification accu-
racies resulting from different types of inputs. Based on the
satellite sensor images that we had, the result in Table III got
the average classification accuracy of 96.5% and was the best
among the others, because all information was used as inputs
to CNFM in this case. Table IV shows the result of classifi-
cation using only the information of gray levels and statistics

TABLE IV
CLASSIFICATION RESULT WITH GRAY VALUES AND STATISTICS FEATURES

TABLE V
CLASSIFICATION RESULT WITH GRAY VALUES ONLY

and therefore, the average classification accuracy decreased to
94.9%. We can see that the classification accuracy decreased in
each class. The last one is Table V, and the result was obtained
with three gray values only. The average classification rate be-
came 92.5%. Table V tells us that the gray levels alone are only
good at distinguishing Class 3 (sea) from the others. By com-
paring Tables IV and V, we find that the statistics features do en-
hance the discriminative power of gray levels on Class 1 (soil)
and Class 2 (forest), but not on Class 4 (city 1—residential area)
and Class 5 (city 2—industrial area). By comparing Tables III
and IV, we find that the spectrum features can further enhance
the discrimination power of gray levels and statistics features
on the two urban areas, Class 1 and Class 2. It can thus be seen
that without sufficient information, classification is difficult to
perform. Fig. 7 shows the ground truth of the satellite sensor
image and the classified image using CNFM with three types
of features. We see that CNFM can perform quite an accurate
classification.

Table VI shows the classification results of thenearest-
neighborhood (KNN) method [19], BP network [19], and the
CNFM. The inputs of BP network and CNFM are first filtered
by Kohonen’s SOFM, whereas KNN uses all features directly.
In other words, the compared BP network is actually in the same
structure as the CNFM, but the SONFIN in CNFM is replaced
by a normal BP network. We had also tried to use the normal
BP network by feeding all the 39 features (13 features for each
channel) into it directly as inputs without going through Ko-
honen’s SOFM for the reduction of feature space. However, the
learning of this BP network appeared very slow, and the MSE
was keeping at quite a high value. That is, it was stuck at a very
bad local minimum, since the network was too big. Hence, we
do not present the experimental results of this BP network here.
The BP network used has two hidden layers with 30 hidden
nodes in each layer, trained by the standard backpropagation
learning rule with momentum term, where the learning rate was
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Fig. 7. Ground truth of the satellite sensor image used in the experiment (top) and the classified result of CNFM (bottom), where industrial area, soil, sea, forest,
residential area are all denoted, the areas enclosed by squares are training patterns, and the other areas are testing patterns.

TABLE VI
COMPARISON OF THECLASSIFICATION RESULTSAMONG KNN, BP,AND CNFM

set as 0.5, the momentum parameter was set as 0.9, and the
training time was 2300 epochs (about 50 000 time steps). The
network structure, as well as the learning constants, were de-
termined after thorough trial-and-error testing for achieving the
best performance (i.e., lowest MSE). The learning was stopped
when the MSE almost kept constant. Table VI shows that the
CNFM outperforms the KNN and BP network in average clas-
sification accuracy by 16.6% and 10.8%, respectively. Fig. 8. MSE of backpropagation network against SONFIN.
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Fig. 8 shows the accuracy and MSE of BP network against
SONFIN in our CNFM. We can conclude that the BP network
is insufficient to reduce the MSE due to the complexity of the
image sources, but our system can tackle this problem success-
fully. From Tables III–VI of our experiments, we can summa-
rize that not only the proposed diverse types of features, but also
the cascaded model, CNFM, can enhance the classification ac-
curacy of satellite sensor images of the traditional approaches.
However, although the experiment based on our satellite sensor
image shows that the accuracy improvement is somewhat signif-
icant, the exact extent to which the classification accuracy can
be increased by the proposed scheme depends on the particular
satellite sensor images tested.

V. CONCLUSIONS

The major contribution of the proposed system is to pro-
vide a good solution to the problem of scaling and selection of
satellite sensor image features. Hence, in this paper, we provide
some auxiliary information to handle problems of diverse types
of textures and the varieties of neighborhood in the sophisti-
cated satellite sensor image classification problems. However,
the additional features will increase the computation complexity
a great deal and mislead the training. To overcome this problem,
we present a new cascaded system (called CNFM) that uses
Kohonen’s self-organizing feature map as the reduction mecha-
nism of input dimension. After we have obtained the condensed
measurements, a fine classification on them is performed by a
neural fuzzy network (called SONFIN).

The major contribution of the proposed system is to solve
the problem of scaling and selection of image features well.
Also, we extended the mechanism of Kohonen’s SOFM in the
sense of reducing the high input dimension rather than filtering
the training sets. Our CNFM, combining spatial, statistical,
and spectral features into one system, generalizes well and can
avoid the network parameters orienting to the training patterns.
Furthermore, we improved the computation complexity of the
co-occurrence matrix by the symmetric linked-list structure.
Our future work is to enhance our cascaded system by using
edge information. Edge information can be used as an outline
of the distribution of clusters and to improve the classification
accuracy.
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