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A Synchronization Scheme Using Self-Pulsating
Laser Diodes in Optical Chaotic Communication

Cheng Juang, T. M. Hwang, J. Juang, and Wen-Wei Lin

Abstract—A synchronization scheme using self-pulsating laser
diodes in optical chaotic communication is proposed. Optical
chaotic light can be obtained by injecting a sinusoidal electronic
signal into a self-pulsating laser diode. To synchronize between two
identical chaotic systems with different initial conditions, a drive
and response system model is constructed according to Pecora
and Carroll’s theory. Synchronization can be achieved for optical
simplex and duplex transmissions provided that the conditional
Lyapunov exponents for the drive and response systems are all
negative. This approach offers a key step toward realizing optical
chaotic modulation and demodulation.

Index Terms—Conditional Lyapunov exponents, optical chaotic
communication, self-pulsating laser diodes, synchronization.

I. INTRODUCTION

CARRIER synchronization (lock-in) between two chaotic
systems is the key to establishing chaotic communication

channels. The property of chaotic systems is that closely corre-
lated initial conditions have trajectories which quickly become
uncorrelated. This property would seem to defy synchroniza-
tion. However, Pecora and Carroll [1], [2] have shown that two
chaotic systems can be synchronized provided that the systems
meet the following criteria. First, the first chaotic (drive) system
transmits some of its state variable to the second (response)
system. This forces the state variables of the response system to
synchronize with the other state variables not passed to the re-
sponse system. Second, a necessary and sufficient condition for
the synchronization is that all the conditional Lyapunov expo-
nents (CLE’s) associated with the variational equation be neg-
ative. The ability to design synchronizing systems has opened
opportunities for applications of chaos to private communica-
tions [3].

In optical chaotic communications which have the potential
for high-speed communications, class B lasers (master–slave
model) have been used to achieve the synchronization and signal
transmission [4]. In this work, a drive-response model according
to Pecora and Carroll’s theory is used [1], [2]. Three issues have
to be addressed in order to apply Pecora and Carroll’s theory:
1) masking the electronic signal with optical chaotic light;, 2)
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transmitting, receiving, and coupling at least one state variable
between the drive and response systems; and 3) obtaining all the
negative CLE’s for the drive and response systems at one partic-
ular drive electronic signal. It has been known that, by injecting
a sinusoidal electronic signal to laser diodes [5], [6], and in par-
ticular, self-pulsating laser diodes [7], [8], chaotic light can be
generated in certain conditions. In this way, self-pulsating laser
diodes can be used as chaotic masking devices. In addition, a
reasonable (probably the only one) choice for this state vari-
able to be transmitted between the drive and response systems
is photon density. Note that, if all the state variables are passed
to the response system, the total system becomes trivial. Photon
density could then be received, processed, and coupled into the
response system in the form of current injection. Finally, to meet
condition 3) above, the CLE’s are calculated at this particular
electronic drive.

A synchronization scheme using self-pulsating laser diodes in
optical chaotic communications is proposed in this paper. Sec-
tion II formulates a possible drive–response system model in
optical chaotic simplex and duplex transmission according to
Pecora and Carroll’s theory. Section III plots the bifurcation di-
agram from the Poincaré map and computes the Lyapunov expo-
nents for self-pulsating laser diodes under sinusoidal electronic
drive. Synchronization of the simplex and duplex transmissions
is described in Sections IV and V, respectively. Effects of cou-
pling coefficients on the CLE’s and synchronization are studied.

II. FORMULATION

A. Drive–Response System

Considering a drive–response system using self-pulsating
laser diodes as chaotic masking devices, a drive system de-
scribed by a three-dimensional (3-D) rate equation is given by

(1)

and the appropriate response systemis given by

(2)
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TABLE I
PARAMETERS USED FORSIMULATION OF

SELF-PULSATING LASER DIODES

where is the photon density, is the electron density in the
active region, is the electron density in the saturable absorp-
tion region, is the injection cur-
rent, and is the coupling coefficient. Note thatis normalized
using a factor of , where is the active layer volume. The
nonlinear functions , and , which describe the self-pul-
sating laser diodes, are written as [9]

(3)

where
carrier lifetime;
confinement factor;
threshold gain level;
carrier time diffusion constant between the two layers;
linear approximation constant for the gain curve;
transparent level of electron density;
coupling ratio between the spontaneous field and the
lasing mode.

The subscripts 1 and 2 describe terms in the active and absorp-
tion layers, respectively.

Table I lists all the parameters of the self-pulsating laser diode
obtained from [9] used in the simulation. Increasing the bias cur-
rent yields a dramatic change in output light at 19.8 mA, which
corresponds to the threshold current of the laser. When the layer
is above threshold, the self-pulsating frequencyincreases due

Fig. 1. An optical chaotic simplex transmission block diagram.

to the increase in bias current. When mA is injected, the
corresponding is 2.28 GHz. This is used in the calculations
throughout.

B. Simplex and Duplex Transmission

Equations (1) and (2) are general forms expressing two-way
(duplex) transmission between drive and response systems. If

is zero, the system becomes one-way (simplex) transmission.
Fig. 1 illustrates a possible transmission block diagram for a
simplex system. The drive system sends to the response
system and then subtracts , which is from the monitor pho-
todetector of the identical self-pulsating laser diode in the re-
sponse system. The tunable gain stage corresponds to the cou-
pling coefficient . Mixed with the signal current again, the total
injection current becomes . Thus,
chaotic simplex transmission system can be implemented.

III. CHAOTIC MASKING USING SELF-PULSATING LASER

DIODES

By injecting a sinusoidal electronic signal into a self-pul-
sating laser diode ( ), optical chaotic light can
be obtained. In order to characterize the asymptotic behavior of
the drive system, numerical computations on Poincaré maps and
Lyapunov exponents are carried out.

A. Poincaré Map

In the 3-D phase diagram ( , and ) of the rate equa-
tions, let be a two-dimensional 2-D hyperplane through a
point (0, 0.298, 0) with the normal direction [0, 1, 0]. Con-
sider the Poincaré map defined by

, where denotes the first return point at
of the trajectory in time , which emanates from

starting at the initial time . It is known that a fi-
nite set of the trajectory intersecting a hyperplane

results in a system with a period-solution. If the points
densely fill out the closed curve, then the

solution forms a quasi-two-periodic orbit. A Poincaré map pro-
gram is written according to the pseudocode in [10].

Fig. 2 shows the bifurcation diagram of the Poincaré map with
versus for . When the system has a

quasi-two-period attractor. Whenvaries from 4 to 6, the effects
of quasi-periodicity routes to chaos are observed. The system
has a period-3 window at and period-doubling
occurs when . The phenomenon of the period-doubling
routes to chaos occurs when .
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Fig. 2. Bifurcation diagram of a Poincaré map withS(t) versusb for f =
0:3f , anda = 30 mA.

Fig. 3. The first two Lyapunov exponents of drive systems� and� versus
b for f = 0:3f anda = 30 mA.

B. Lyapunov Exponents for Self-Pulsating Laser Diodes

Lyapunov exponents are the generalization of the eigenvalues
at an equilibrium point of characteristic multipliers. They can
be used to determine the stability of quasi-periodic and chaotic
behaviors, as well as that of equilibrium points and periodic
solutions. Let be the eigenvalues of ,
which is the transition matrix for . The Lyapunov
exponents of are defined by

(4)

for , whenever the limits exist. A practical algo-
rithm was developed according to the pseudocode in [10]. This
algorithm requires more than iteration steps to compute
the Lyapunov exponents to the required degree of accuracy.

Fig. 3 shows the first two Lyapunov exponents and
versus . Note that the third Lyapunov exponents are all negative
( −5). For , , and . This implies
a nonchaotic quasi-two-period attractor which agrees with the
results from the Poincaré map. Because at least one Lyapunov
exponent of a chaotic system must be positive, chaotic behavior
can be established in regions where one positive Lyapunov ex-
ponent is shown in the figure. The system also has a period-3
window for ; therefore, in this region, there is no
positive Lyapunov exponent.

Fig. 4. The first conditional Lyapunov exponent of the drive–response system
versuŝ� for � = 0, f = 0:3f , b = 9 mA, anda = 30 mA.

IV. SYNCHRONIZATION OF SIMPLEX TRANSMISSION

When the drive system sends a chaotic state variable
( , mA, and ) to the same

response system with slightly different initial conditions
( ), synchronization between
the two state variables and can be achieved.

A. Conditional Lyapunov Exponents

According to Pecora and Carroll’s theory, synchronization
can only be achieved for all negative CLE’s. The CLE’s are
found by calculating the Lyapunov exponents for the entire
system and comparing these to the Lyapunov exponents of
the drive system. The remaining Lyapunov exponents are the
CLE’s. A simple method is to construct a difference system.
Let , and . The
difference system becomes

(5)

The real part of the eigenvalues ( , and ) of
are the CLE’s by definition. If all the CLE’s are negative,

and the two systems will be synchronized.
If there is a positive CLE, the difference system will grow
further apart as .

Fig. 4 shows the first CLE of (5) againstwhen ,
and mA. Note that the second and third Lyapunov

exponents are all negative. For , there is at least one
positive Lyapunov exponent ( ). This implies
that the difference system will grow further apart as .
For , there is no positive Lyapunov exponent (

). This implied synchronization. In between, there is
a mixed region where synchronization and nonsynchronization
can both occur.

B. Synchronization

Synchronization can also be verified by directly solving (1)
and (2). Fig. 5 shows versus for weak coupling when

, , , and mA. Drive and response
systems with closely correlated initial conditions have trajecto-
ries which quickly become uncorrelated. In this case, there is a
positive CLE. However, if the gain stage of the response system
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Fig. 5. Ŝ(t) versusS(t) for �̂ = 1, � = 0, f = 0:3f , andb = 9 mA in the
simplex drive–response system.

Fig. 6. Ŝ(t) versusS(t) for �̂ = 100, � = 0, f = 0:3f , andb = 9 mA in
the simplex drive–response system.

Fig. 7. log(Ŝ(t)=S(t)) against̂� for � = 0, f = 0:3f , andb = 9 mA in
the simplex drive–response system.

is tuned to a strong coupling ( ), synchronization occurs
as shown in Fig. 6. In this case, all CLE’s are negative.

Fig. 7 plots against for , ,
and mA. For , implies that the
drive and response systems are synchronized. When the value
of varies, the two systems are not synchronized.
In between 63 and 1.5, synchronization and nonsynchronization
can occur. This result matches well with the CLE calculations.

Fig. 8. log(Ŝ(t)=S(t)) against̂� for � = 0, f = 0:3f , andb = 9 mA in the
simplex drive–response system. The initial conditions of the response system
have been changed to (N (0) = 0:4635, N (0) = 0:2993, andS(0) =
3:9487).

Fig. 9. The first conditional Lyapunov exponent of the drive–response system
versuŝ� for �̂ = �, f = 0:3f , b = 9 mA, anda = 30 mA.

With negative CLE’s, all trajectories in the two systems ap-
proach each other asymptotically regardless of initial conditions
provided that they are in the basin of attraction. To show that
synchronization can be achieved under the worst-case initial
condition (in a practical sense), Fig. 8 repeats Fig. 7 except that
the initial conditions of the response system have been changed
to ( , , ), where

is the maximum value for any of the response system
without coupling. This result suggests that the drive and re-
sponse systems have identical chaotic behaviors independent of
initial conditions.

V. SYNCHRONIZATION OF DUPLEX TRANSMISSION

The drive system sends a chaotic state variable to the re-
sponse system. In return, the response system sends its chaotic
state variable to the drive system. Thus, duplex (two-way)
transmission can be established. Due to the exchange of state
variables between the drive and response systems, it is expected
that synchronization can be achieved more easily than in sim-
plex transmission.

A. Synchronization

Fig. 9 shows the first CLE againstwhen , ,
and mA. For (compare with 63 in the simplex
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Fig. 10. log (Ŝ(t)=S(t)) versus�̂ for �̂ = �, f = 0:3f , andb = 9 mA in
the duplex drive–response system.

Fig. 11. Synchronization threshold of�̂ and� for f = 0:3f andb = 9 mA.

transmission), there is no positive CLE. The difference system
will converge to zero and the drive and response systems will be
synchronized.

Fig. 10 plots against for , ,
and mA. and are directly solved from (1) and
(2). For , implies that the drive and
response systems are synchronized.

B. Synchronization Threshold

Fig. 11 shows the synchronization threshold ofand for
and mA. Dark points represent nonsynchro-

nization regions. Thus, the synchronization thresholds can be
approximated by a linear equation ( ). For all and

that satisfy the threshold equation, the corresponding drive
and response systems will all be synchronized. This numerical
finding has a simple explanation from (5) wherecan be ap-
proximated by the sum of the Jacobian of the uncoupled vector
field and ( ). Thus, when , the duplex system effec-
tively has double the coupling strength of the simplex system
and, hence, the ratio of the thresholds is around 2.

VI. CONCLUSIONS

Self-pulsating laser diodes can be used as chaotic masking de-
vices to change sinusoidal electronic signals into optical chaotic
light. By applying Pecora and Carroll’s theory, one state variable
(photon density) is transmitted between the drive and response

systems (one-way for simplex and two-way for duplex). For
strong coupling (all negative conditional Lyapunov exponents),
synchronization can be achieved between the drive and response
systems. Weakly coupled (one positive conditional Lyapunov
exponent) drive and response systems quickly become uncorre-
lated.
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