
Adaptive-level memory caches on World Wide Web servers

Da-Wei Chang a, Hao-Ren Ke b,*, Ruei-Chuan Chang a

a Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan, ROC
b Library, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan, ROC

Abstract

Owing to the fast growth of World Wide Web (WWW), web tra�c has become a major component of Internet

tra�cs. Consequently, the reduction of document retrieval latency on WWW becomes more and more important. The

latency can be reduced in two ways: reduction of network delay and improvement of web serversÕ throughput. Our

research aims at improving a web serverÕs throughput by keeping a memory cache in a web serverÕs address space.

In this paper, we focus on the design and implementation of a memory cache scheme. We propose a novel web cache

management policy named the adaptive-level policy that either caches the whole ®le content or only a portion of it,

according to the ®le size. The experimental results show three things. First, our memory cache is bene®cial since, under

our experimental workloads, the throughput improvement can achieve 32.7%. Second, our cache management policy is

suitable for current web tra�c. Third, with the increasing popularity of multimedia ®les, our policy will outperform

others currently used in WWW. Ó 2000 Elsevier Science B.V. All rights reserved.

Keywords: Web server; Memory cache; Cache management policy; Adaptive-level policy

1. Introduction

With the popularity of World Wide Web
(WWW), web tra�c has become the fastest
growing component among all kinds of Internet
tra�cs. However, large volumes of tra�c causes
the document retrieval latency perceived by web
users becomes longer. Many researchers notice the
problem and have made e�orts on improving
WWW latency.

Generally speaking, WWW latency comes from
two sources.
1. Network delay. In HTTP 1.0, retrieving a ®le

from a web server needs at least two round trips
between the client and the server.

2. Request processing time. For each requested ®le,
a web server has to read it from its disks into a
memory bu�er and then sends the bu�er to the
client.
Thus, to reduce document retrieval latency, we

must either reduce network delay or serverÕs re-
quest processing time.

Researches that aim at the reduction of network
delay focus on improvement of HTTP and devel-
opment of caching strategies on proxy servers and
clients. Other researches improve the web serversÕ
throughput in the following ways:
1. Cooperative servers [10]. Instead of a single web

server, multiple cooperative servers can be used
to serve users' requests.

2. Caching documents at server side [12]. In order
to cope with the high request rate, Markatos
[12] suggests caching documents in a web

Computer Networks 32 (2000) 261±275

www.elsevier.com/locate/comnet

* Corresponding author.

1389-1286/00/$ - see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 1 3 8 9 - 1 2 8 6 (9 9) 0 0 1 3 1 - 0

serverÕs address space (which is called memory
caching).
In this paper, we focus on the design and im-

plementation of memory caches in web servers. We
propose a novel web cache management policy
that is named adaptive-level policy (i.e. ®le-level as
well as chunk-level). All of the previous web cache
management policies use ®le-level caches. That is,
given a ®le, these kinds of cache policies keep all its
content or nothing of it. However, we consider the
®le size while we are caching it. If a ®le is smaller
than a chunk (i.e. a block with a prede®ned size), it
can totally be cached. Otherwise, only a chunk of
the ®le will be cached. We show that memory
caching in web servers is bene®cial since it im-
proves throughput of web servers. In addition, we
show that our cache management policy is suitable
for current web tra�c and outperforms other ex-
isting policies when accesses to large ®les become
more and more popular.

The rest of this paper is organized as follows. In
Section 2 we discuss the related works. Section 3
presents the motivation of the adaptive-level
memory cache. Section 4 shows the design and
implementation. The experiment results are pre-
sented in Section 5. Conclusions and future works
are given in Section 6.

2. Related works

There are lots of research e�orts focusing on
improving WWW latency. In general, these e�orts
fall into three categories: improvement of HTTP,
prefetching, and caching. In this section, we will
brie¯y discuss the works on these three categories.

2.1. HTTP improvement

HTTP is a simple protocol layered over TCP.
However, as shown in [16], several features of
HTTP interact badly with TCP. Two such features
are that HTTP establishes a new connection for
each request and HTTP transfers only one object
per request. Mogul [13,14] also noticed the prob-
lems and proposed two mechanisms, long-lived
connections and request pipelining, to improve
HTTP latency.

2.2. Prefetching

Instead of reducing WWW latency between
clients and servers, Padmanabhan and Mogul [15]
use prefetching to ``hide'' the latency. The bene®t
of prefetching comes from that there is a period of
time between two adjacent requests from the same
user, and this time can be used to prefetch next
document that the user wants to read. Thus, with
prefetching, when a client requests a document, it
may be already in clientÕs local cache.

2.3. Caching

The most common technique on reduction of
data retrieval time is caching. Researches on
WWW caching can be divided into three classes:
the client-side caching, the network caching (i.e.
proxy caching), and the server-side caching. In the
following, we shall brie¯y describe these WWW
caching e�orts.

2.3.1. Client-side caching
Cunha et al. [7] analyzed the access patterns of

individual users, and he found two access patterns.
The ®rst is that WWW clients tend to access small
®les. The second is that, keeping small ®les in cli-
entÕs cache is better than keeping large ones since
the former has a larger latency-savings-per-byte.
Bestavros et al. [4] compared three caching levels at
the client side: the session level, the host level, and
the LAN level. According to their experiments, the
LAN-level caching is the most cost-e�ective policy
among the three policies. This is not a surprising
result. Given a speci®c document, a LAN cache
keeps at most one copy of it. However, each session
or host cache may keep one copy of the document in
its own cache, and therefore waste the cache space.

2.3.2. Proxy caching
Abrams et al. [1] evaluated the limitations and

potentials of proxy caches and showed that the
upper bound of hit ratio of a proxy cache, re-
gardless the cache replacement policy, is only
about 30±50%. Since a basic idea for caching is to
move the data that clients need closer to them.
Some proxy-cache researches [3,9] take geographic
distribution of client requests into account.

262 D.-W. Chang et al. / Computer Networks 32 (2000) 261±275

While many researchers proposed their own
proxy caching policies, Williams et al. [19] provided
a performance comparison among these policies
and showed that the widely-used WWW caching
policy, LRU, results in poor performance. In ad-
dition to the analysis of the tra�c of WWW proxy
servers and the invention of proxy cache strategies,
there are some proxy cache implementations, such
as the CERN cache [8], the Lagoon cache [6], the
Harvest cache [5], and the Squid cache [17].

2.3.3. Server-side caching
While the purpose of caching at client-sides and

proxies is to reduce data retrieval latency caused
by the network, server-side caching strategies fo-
cus on the reduction of serversÕ response time and
the improvement of serversÕ throughput.

Arlitt and Williamson [2] analyzed access logs
from di�erent web servers and identi®ed ten in-
variance among these workloads. Kwan et al.
[10,11] described the research e�orts on web cach-
ing made by NCSA that use AFS to cache docu-
ments in web serversÕ local disks. In contrast to the
work of NCSA, Markatos [12] proposed the notion
of memory caching of web documents. The bene®t
of memory caching comes mainly from that it re-
duces the number of disk accesses. By keeping most
frequently accessed ®les in main memory, many of
the requests can be served without touching the ®le
system, and therefore the access latency is reduced.
Markatos also presented a cache replacement pol-
icy. However, he only showed the performance of
his policy in terms of hit ratio by trace-driven
simulation and no implementation results. The
improvement of serversÕ throughput contributed
by memory caching is still left unknown.

Our work di�ers from others in that, we pur-
pose and implement an adaptive-level memory
cache policy, and we also measure the performance
improvement by a popular benchmark, WebStone
[20].

3. Motivation

In this section, we describe the motivation of
memory caching in web servers and the adaptive-
level cache management policy.

3.1. Motivation of memory caching in web servers

There are fewer researches aiming at improving
web serversÕ throughput than reducing the net-
work delay. The reason is simple: the network
delay currently dominates the document retrieval
latency perceived by web users and thus reducing
network delay e�ectively shortens the document
retrieval latency. However, in contrast to most of
the related researches, we focus on improving a
web serverÕs throughput because of the following
reasons.
1. High request rate. Even with client-side and

proxy caches that reduce the amount of tra�c
coming to a web server, a previous research
[12] shows that the peak request rate for a busy
server remains high.

2. Improvement of network speed. With the fast
improvement of network speed, the situation
that network delay dominates the document
retrieval latency is changing. It is very possi-
ble that web servers will become the bottle-
neck in web document retrieval in the near
future.

3. Ratio of local to remote requests. Preliminary
data [7,12] present that the ratio of local to
remote requests is about 1:4. This means
that there are still 20% of the total requests
coming from local sites. For these requests,
the clients and the server are almost connect-
ed by high-speed network which has short
delay and high bandwidth. Therefore, im-
proving the serverÕs throughput will cause a
noticeable reduction in document retrieval la-
tency.
Due to the reasons mentioned above, we know

that it is e�ective to reduce document retrieval
latency by improving a serverÕs throughput. To
improve a serverÕs throughput, we focus on re-
ducing the number of disk accesses by maintaining
the most frequently accessed documents in a web
serverÕs address space. Generally speaking, the
operating system underlying the web server
maintains a bu�er cache and hence prevents some
®le system requests from really going to the disk.
However, we additionally maintain a separate
cache instead of only using the original bu�er
cache provided by the operating system. The

D.-W. Chang et al. / Computer Networks 32 (2000) 261±275 263

reason is that, as shown in a previous research [12],
approaches that manage bu�er caches are not
suitable for web server tra�c. Furthermore, even
with bu�er caches, web servers also need to call
read() system calls to read data from the bu�er
caches. It costs at least one kernel-to-user data
copy.

3.2. Motivation of adaptive-level caching

Previous cache implementations for WWW use
®le-level caches because the accesses for web doc-
uments are all-or-none accesses. That is, if a user
makes a request for a ®le, he or she will receive the
total content of it (if success) or nothing of it (if
some errors occur). However, there is a drawback
for this kind of caching mechanism. Since the
cache size is limited, putting a whole large ®le in
the cache may cause many other small ®les be
¯ushed out. The situation is worse especially for
web caches, because web users tend to access small
®les and therefore the ®les ¯ushed out are usually
popular ones. This will result in poor cache per-
formance.

To overcome the drawback, ®le-level caches
always equip with a threshold and never cache ®les
larger than this threshold. It avoids the situation
mentioned above. However, it causes another
problem. A large ®le will never be cached although
it may be the most popular one. This will also
degrade the performance.

Due to the above reasons, we propose the idea
of adaptive-level caching. When a ®le is to be ca-
ched, we consider its size. If it is smaller than a
threshold, we cache its total content. Otherwise,
only the ®rst chunk of it is cached. Clearly, it
avoids the ®rst problem since caching only a chunk
of a large ®le does not require too much room.
Therefore, fewer small but popular ®les will be
¯ushed out. At the same time, if a large ®le is
popular, it is better to cache a portion of it than do
nothing at all. In addition, caching the ®rst chunk
enables a server to respond to its clients quickly
since the ®rst chunk can be sent immediately from
the cache without involving disk accesses and the
server can read the rest of the ®le from the disk at
the same time.

4. Design and implementation of the memory cache

The design goals of our memory cache are to
improve the throughput of a WWW server so that
it can handle more requests concurrently and to
minimize the overhead due to the maintenance of
the memory cache. In the following two sections,
we shall present the design and implementation of
the memory cache.

4.1. Design of the memory cache

4.1.1. MIME header caching
For each client request, the web server sends a

response to the client. The response normally
contains a MIME header followed by the re-
quested ®le. This MIME header contains the re-
turn code, the information related to that server,
and the attributes of the requested ®le. Generally,
MIME headers are generated on the ¯y, which
means the server has to reconstruct the MIME
header of a ®le each time when it is requested. This
imposes overheads on a busy web server. Howev-
er, this overhead can be reduced by caching
MIME headers in advance, since they seldom
change due to the following reasons. First, most of
the ®elds (except for the ®le attributes) do not
change. Second, most web pages are seldom
modi®ed. Therefore, the ®le attributes usually re-
main unchanged, too. Third, WWW is a weakly
consistent access system.

With MIME header caching, the server does
not need any more to spend its time on dynami-
cally constructing a ®leÕs MIME header. Instead, it
can send the cached MIME header directly to the
client. This reduces some overheads that are im-
posed to the server. However, if a ®le is updated,
the server should recognize it and invalidate the
cached copy of that ®le as well as its MIME
header. This can be achieved by attaching a
timestamp to each MIME header to record the
time that the ®le is inserted into the cache. After
doing that, the server can ensure the freshness of
the cached copy of a ®le by comparing the time-
stamp with the last-modi®ed time of that ®le. If the
cached copy is not fresh, the server can just discard
it or re-load the ®le to into the cache. It should be
noted that, since WWW is a weakly consistent

264 D.-W. Chang et al. / Computer Networks 32 (2000) 261±275

system, the timestamp-comparing task does not
have to be performed frequently. Instead, servers
can perform this task during their idle periods so
that it will not degrade the performance of servers.

Currently, we do not incorporate such a time-
stamp-comparing task into our server. The reason
is that we only concern the bene®t of a memory
cache at normal and heavy server loads.

4.1.2. Adaptive-level caching
As we describe earlier, we use an adaptive-level

cache. We use a prede®ned threshold, say
MAX_FILE_SIZE, to determine if we should put
the total content of a ®le into the cache. If the total
size of a ®le and its MIME header is less than
MAX_FILE_SIZE, we cache its total content and
its MIME header (this is called completely ca-
ched). Otherwise, we allocate a cache space with
size MAX_FILE_SIZE and put the MIME header
and a portion of the ®le into the cache space (this
is called incompletely cached).

Fig. 1 illustrates the cases of completely and
incompletely cached. In the case of incompletely
cached, we cache the ®rst k bytes of the ®le where k
equals to the MAX_FILE_SIZE minus the size of
the ®le's MIME header.

4.1.3. Cache replacement policy
In addition to decide whether to cache a ®le

completely or not, we still have to determine which
®les should be removed from the cache when the
room of the cache is not enough. That is, we must
choose a cache replacement policy.

We use least frequently used (LFU) as our
cache replacement policy. The reasons are as fol-

lows. First, due to the fact that some web pages are
popular (i.e. frequently referenced) and others are
not, it is straightforward to use LFU as the cache
replacement policy. Second, previous researches
[2] show that about one-third of ®les and bytes
recorded in a web server's access log ®le are ac-
cessed only once. These ®les are seldom accessed
and therefore keeping them in cache gains almost
nothing at all. By using LFU, these ®les will not be
cached even they are referenced recently, because
the access frequencies of these ®les will generally
smaller than those of the cached ®les. Third, its
implementation is straightforward. By keeping a
reference count for each ®le in the local web site,
we can easily implement the policy.

4.1.4. Cache lookup
For each request, the server has to ®nd whether

the requested ®le is in the cache. This overhead
should be minimized since it happens frequently.
To achieve this, we use a hash table to locate ®les
in the cache. Each time when a ®le is requested, its
name is used as input of the hash function to lo-
cate the cached data.

4.1.5. Free list handling
In order to save memory space, cache bu�ers

are allocated on demand. That is, cache bu�ers are
allocated only when we need to insert data into the
cache. When we remove a ®le from the cache, its
bu�er is released immediately. However, it is
possible that a ®le is requested and inserted into
the cache soon after it has just been removed. In
this case, if we free the bu�er immediately, we have
to allocate the bu�er, copy in the ®le content and
link the bu�er into the cache again. This causes
unnecessary overheads when a ®le is needed im-
mediately after it has been removed.

Therefore, we use an alternative approach. We
maintain a free list to hold the corresponding
bu�ers for ®les removed from the cache. When we
remove a ®le, we unlink the bu�er from the cache
and link it into the free list. On the other hand,
when we try to insert a ®le into the cache, we
search for the free list ®rst. If the ®le is in the free
list, we unlink it from the list and re-link it into the
cache. Otherwise, the ®le can only be read from the
®le system.

Fig. 1. (a) The case of completely cached, and (b) the case of

incompletely cached.

D.-W. Chang et al. / Computer Networks 32 (2000) 261±275 265

Because a free list is only an auxiliary tool that
gives ®les a second chance from freeing their buf-
fers, it should not impose too much pressure to a
server. Speci®cally, it should not consume too
much memory space. In order to achieve this, we
¯ush the entire free list periodically.

4.2. Implementation of the memory cache

In this section we shall describe the implemen-
tation of the memory cache. Instead of developing
a whole new web server, we modify an existing
one. We choose a tiny web server, named Thttpd
[18], which is a freeware developed by ACME
Laboratories [18], and, for simplicity, we only
handle the ``GET'' requests. That is, the server
does not provide any other services except for
sending ®les to the clients.

In the following subsections, we shall ®rst de-
scribe Thttpd. And then, we present our modi®-

cations to it, including the data structures and the
cache maintenance procedures.

4.2.1. Overview of Thttpd
Thttpd is a tiny web server that can run on

many UNIX variants. It is a single-processed web
server and uses the select() system call to multi-
plex concurrent requests (i.e. connections). To
handle multiple connections concurrently, a ®xed-
size connection table is maintained in it. Each non-
free entry represents an active connection and re-
cords the information about that connection. The
information includes the socket ®le descriptor for
that connection, the ®le descriptor of the requested
®le, total bytes to be sent, total bytes have been
sent, etc.

Fig. 2 shows the control ¯ow of Thttpd. After
initialization, the server enters an in®nite loop. In
the loop, it ®rst calls select() to poll every con-
nections.

Fig. 2. The control ¯ow of Thttpd.

266 D.-W. Chang et al. / Computer Networks 32 (2000) 261±275

There are three sets of ®le descriptors (i.e.
FD_SETs) in select(), read, write and exception
FD_SETs. The former two FD_SETs are used in
Thttpd. The web serverÕs socket descriptor (i.e. the
WWW socket descriptor that usually listens at
port 80) is the only ®le descriptor in the read
FD_SET. It is used for accepting new connections.
In other words, there are new connections coming
to the server if the read FD_SET gets ready. For
each active connection, the server has to send the
®le to the peer client by writing data to the socket
descriptor of that connection. These socket de-
scriptors are inserted into the write FD_SET.
Therefore, if one of the ®le descriptors in the write
FD_SET gets ready, the server can write data to
that connection.

When a new connection arrives, the following
steps are taken:
1. The server ®nds a free entry in the connection

table to record the information about the new
connection.

2. The MIME header for the requested ®le is con-
structed on the ¯y and sent to the client.

3. The socket descriptor for the connection is in-
serted into the write FD_SET.

4. The control ¯ow goes back to select().
Notice that none of the ®le content has been

sent to the client yet.
After all the new connections are processed, the

server starts to send data for existing connections.
For each ready ®le descriptor in the write
FD_SET, the server reads one block of the cor-
responding ®le into a memory bu�er and then
writes the bu�er to the client. After all the ready
write ®le descriptors are served, the control ¯ow
goes back to select().

From the above description, we can see that the
server gives a higher priority to accept new con-
nections than to serve existing ones. The reason is
that, for each connection which has ®nished the
TCPÕs three-way handshaking procedure, the op-
erating system inserts an entry corresponding to
that connection into a queue. And the server
process can dequeue the entries by calling accept()
system calls. However, most operating systems
impose a limit on the length of this queue and a
new connection is dropped when the queue length
exceeds the limit. Therefore, the server gives a

higher priority to accept new connections so that it
can process the new connections as quickly as
possible and hence shortens the length of the
queue.

4.2.2. The control ¯ow of the modi®ed web server
Fig. 3 shows the control ¯ow of the web server

after our memory cache is added. Similar to the
original web server, the modi®ed version gives a
higher priority to accept new connections.

When a new connection arrives, the server ®rst
checks whether the requested ®le is cached. If it is
not cached, the server attempts to insert it. In our
current implementation, the cache space needed to
insert a ®le is the total size of its MIME header
and the ®le content or the predetermined thresh-
old: MAX_FILE_SIZE, depending on which is
smaller. If the available room of the cache is not
smaller than the needed space, the ®le can be in-
serted without removing any other ®les out of the
cache. Otherwise, the cache replacement procedure
must be taken.

If the cache insertion (or cache replacement)
procedure fails, which means that the ®le cannot
be inserted, the following steps are taken. First,
the MIME header is sent to the client. Second, the
®leÕs descriptor is inserted into the write FD_SET
and then the control ¯ow goes back to the se-
lect(). The data of the ®le will be sent in later
iterations.

If the cache insertion procedure successes or the
®le is already cached, the server checks further to
see if the ®le is completely cached or not. If it is
completely cached, the server writes the cached
data directly to the client, closes the connection
(since the request is completely served), and the
control ¯ow goes back to the select(). Otherwise,
the server ®rst writes the cached data to the client.
Then, it opens the ®le and arranges the read header
of that ®le to the beginning of the rest of the ®le
data by calling lseek() function. At last, the con-
trol ¯ow goes back to the select() again. Thus, the
rest of the data can be sent in later iterations.

4.2.3. The data structures of the memory cache
In this section we present the data structures

used in the memory cache. There are four kinds of
data structures in it: the ®le header, the hash table,

D.-W. Chang et al. / Computer Networks 32 (2000) 261±275 267

the frequency list, and the free list. Below we de-
scribe them in more detail.

4.2.3.1. The ®le header. The ®le header is the cen-
tral data structure in our web cache implementa-
tion. Each ®le that can be served by the web sever
has a corresponding ®le header which, in our
current implementation, is loaded into the memory
by the web cache initialization procedure. The
®elds of a ®le header are shown in Fig. 4. These
include:
1. state. This ®eld indicates whether the ®le is ca-

ched or not. The value of this ®eld is either CA-
CHED or NOT_CACHED.

2. ®le_name. The URL of the ®le. It is used as an
ad hoc tool for locating the ®le header that cor-
responds to a given ®le.

3. freq. The access frequency (i.e. reference count)
of the ®le. Each time when a ®le is requested, its
access frequency is increased by 1.

4. prev, next. They are two pointers linking to the
previous and the next ®le header in the frequen-
cy list or the free list. Because each ®le header is
located in at most one of the two lists, only one
pair of link ®elds is enough. The frequency list
and the free list will be described later.

5. hash_next. A link to the next ®le header in the
hash chain, which will be described later.

Fig. 3. The control ¯ow of the modi®ed Thttpd.

268 D.-W. Chang et al. / Computer Networks 32 (2000) 261±275

6. mime_header. A pointer to a bu�er that holds
the MIME header of the ®le.

7. mime_length. The length of the MIME header
corresponding to the ®le.

8. ®le_data. A pointer to a bu�er that holds the
MIME header and the content (either totally
or partially) of the ®le. The bu�er itself is the
cache space of this ®le. That is, the actual oper-
ations to insert a ®le into the cache are allocating
a bu�er to hold the ®leÕs MIME header and con-
tent (may be partially), and linking the bu�er in-
to this ®eld. The reason for putting the MIME
header in the bu�er is that the server can send
the MIME header together with the ®le content
in a single write() system call. If we do not do so,
the server has to send the MIME header and the
®le content in separate system calls, or use a
more complicated interface, writev() to send
them in a single system call.

9. total_length. The total size of the ®leÕs MIME
header and content. This ®eld is used to deter-
mine whether a ®le is, or can be, completely
cached or not. If it is larger than MAX_FILE_
SIZE, the ®le cannot be completely cached.
Otherwise, it can be cached completely.

Because each ®le served by the web server has a
corresponding ®le header, its size should be small
enough so as not to impose large space overheads
to the web server. From Fig. 4, we can see that the
size of a ®le_header entry is 40 bytes. If a web
site has one thousand ®les, the total size used by
the ®le header structures is 40 K, which is ac-
ceptable.

4.2.3.2. The hash table. Each time when a new re-
quest arrives, the ®rst task of the web server is to
see if the requested ®le is in the cache or not. It can
be done by simply checking the state ®eld of the
corresponding ®le header. To locate the corre-
sponding ®le header, a hash table is used. The key
of the hash table is the name of a ®le. All ®le
headers hashing to the same entry in the hash
table are chained by their hash_next ®elds. Al-
though they are in the same hash chain, they can
still be identi®ed easily according to their ®le_name
®elds.

Notice that the hash table is used to locate all

the ®le headers in the web server, not just the ®le
headers corresponding to the cached ®les. All the
®le headers are inserted into the hash table by the

Fig. 4. The ®le_header structure.

D.-W. Chang et al. / Computer Networks 32 (2000) 261±275 269

initialization procedure and kept there all the time
when the server executes.

4.2.3.3. The frequency list. The frequency list is an
ordered list of the ®le headers corresponding to all
the cached ®les. The ®rst ®le header of the list has
the least frequency (among all cached ®les) and the
last has the most frequency. The reason for keep-
ing a frequency order in the list is for the e�ciency
of the cache replacement procedure. Since we use
LFU, the least frequently cached ®les will be re-
moved from the cache ®rst. Thus, by keeping a
frequency order, we can easily ®nd which ®les
should be removed ®rst when we perform the
cache replacement procedure.

4.2.3.4. The free list. The free list is a doubly linked
list that starts with a pointer: free_start and stops
at another pointer: free_end. When a ®le is re-
moved from the cache, the web server ®rst removes
its ®le header from the frequency list (since it is not
cached any more). Then, the ®le header is ap-
pended into the free list. Notice that the cached

data (i.e. pointed by the ®le_data ®eld) is not re-
leased in case that the ®le may be re-inserted into
the cache soon.

When a ®le is in the free list, to re-insert it into
the cache is quite simple: removing the ®le header
from the free list, inserting it to the frequency list
and setting the state information of the ®eld
header as CACHED. It is also e�cient since the
overheads of allocating memory bu�ers and data
copy are eliminated.

Fig. 5 gives a global view of the web cache data
structures. All ®le headers can be located by the
hash table keyed on ®le names. When a ®le is in-
serted into the cache, its ®le header is inserted into
the frequency list. When it is removed from the
cache, the ®le header is moved to the free list.

To prevent the free list from growing too large,
we should ¯ush the free list periodically. In the
current implementation, we perform this task ev-
ery one hundred accesses. We choose number of
accesses, instead of absolute time, as the ¯ush pe-
riod because the memory size of the free list is
related to the former, not the later.

Fig. 5. Data structures: the hash table, the frequency list, and the free list.

270 D.-W. Chang et al. / Computer Networks 32 (2000) 261±275

4.2.4. The procedures of the memory cache
In this section we describe the procedures of our

memory cache in detail. We focus on the initial-
ization and the cache replacement procedures.

4.2.4.1. The initialization procedure. The ®rst step
of this procedure is to initialize the ®le headers of
all the ®les that can be served by the web server.
To achieve this, in our current implementation, we
use a ®le (named ®le_list) to record all the names
of those ®les. At initialization, the server reads the
®le_list, counts the number of ®les in it, and allo-
cates an array of ®le headers for these ®les ac-
cording to that number. The server then initializes
all ®le headers by constructing their MIME
headers. At last, the server constructs the hash
table and inserts all the initialized ®le headers into
hash chains.

4.2.4.2. The cache replacement procedure. The
cache replacement procedure works as follows:
1. Suppose that we want to insert a ®le, say p, into

the cache. We say that a cached ®le q can be
``removed'' by p if and only if the frequency
of p is larger than that of q.

2. We check whether the total cache space of the
smallest frequency cached ®les that can be re-
moved by p is larger than or equal to the cache
space of ®le p. If it is, the cache replacement
procedure can proceed. Otherwise, the ®le p
cannot be inserted into the cache and the proce-
dure stops.

3. Move the least frequency cached ®les to the
free list repeatedly until the accumulated cache
space of these ®les are larger than or equal to
the cache space needed by ®le p. Then, insert
the ®le p into the cache. The data of p may
come from two sources: the free list and the

disk. The server ®rst checks whether ®le pÕs da-
ta are in the free list by checking the ®le_data
®eld. If it is (i.e. the ®le_data ®eld is not null),
the server then removes pÕs ®le header from the
list and inserts it into the frequency list. Other-
wise, the server loads the data from the disk in-
to a memory bu�er, sets the ®le_data pointing
to it, and inserts the ®le header into the fre-
quency list. Notice that, the size of the bu�er
is, as we describe earlier, one of the total size
of the ®leÕs MIME header and its content, or
MAX_FILE_SIZE, depending on which is
smaller.

5. Experimental results

To evaluate the performance of our memory
cache and cache management policy, we perform
the following three experiments. First, we measure
the performance and the throughput of our
memory cache. Second, the e�ciency of MIME
header caching is evaluated. Third, we compare
the performance of our cache management policy
with others used in WWW. Below we ®rst describe
the experimental methodology, and then, the ex-
perimental results are shown.

5.1. Experimental methodology

5.1.1. The environment
The experimental environment is shown in

Fig. 6. The modi®ed web server runs on top of the
server host whose OS is FreeBSD Release 2.2.5
and has 80 Mbytes physical memory. On the cli-
ent host, a popular web performance benchmark,
WebStone [20], is used for the performance mea-
surement of our web server. It is con®gured to

Fig. 6. The experimental environment.

D.-W. Chang et al. / Computer Networks 32 (2000) 261±275 271

fork 16 child processes that access the WWW
documents on the server host simultaneously. The
client and server hosts are isolated from other
machines and connected directly with a 10 M bits/
s Ethernet.

5.1.2. The workload
The workload in our experiments was gathered

from the access log of the web site: www.bvi.-
com.tw, which has 3022 ®les and the size is 281
Mbytes in total. We collected the access log that
started at 7 July 1997 and stopped at 30 July 1997.
During this period, there were 34 372 accesses to
the server. We refer the workload as current
workload since it represents the current WWW
access pattern. Table 1 shows the distribution of
access frequency according to the ®le sizes in the
current workload.

5.2. Performance of the memory cache

In this section we present the performance of
our memory cache in terms of byte hit ratio (BHR)
and throughput. Fig. 7 shows the BHR which is
computed using the following formula:

BHR � number of bytes cached

number of bytes requested
� 100%:

Fig. 8 shows the throughput. In these experi-
ments, we set the threshold, MAX_FILE_SIZE, as
one-forth of the cache size. From these ®gures, we
can see that with a 64 Mbytes cache, the BHR is
about 70% and the throughput improvement is
about 32.7%.

5.3. E�ciency of MIME header caching

To evaluate the e�ciency of MIME header
caching, we compare the MIME header processing
time under two conditions: with and without
MIME header caching. Table 2 shows the results.
Without MIME header caching, the MIME
header processing time is used to construct the
MIME header and send it to the client. With
MIME header caching, the time is used to lookup
the MIME header and send it to the client. From
the table we can see that, MIME header caching
reduces 44.6% of the MIME header processing
time.

5.4. Comparison with other cache management
policies

In this section we compare the performance of
our cache management policy with others used in
WWW. All these policies use LFU as their cache

Table 1

The ®le sizes and their corresponding access frequencies in the

current workload

File size (bytes) Access frequency

(times)

Access

percentage (%)

0±1 K 3748 10.9

1±10 K 16 367 47.6

10±100 K 13 419 39.1

100 K±1 M 443 1.3

1±10 M 208 0.6

10 M 187 0.5

Fig. 7. The BHR of the memory cache.

Fig. 8. Throughput of the memory cache.

272 D.-W. Chang et al. / Computer Networks 32 (2000) 261±275

replacement strategy, and they are described in
Table 3.

We ®rst compare the BHR of the three policies
under the current workload. The performance
result is shown in Fig. 9. From this ®gure, we can
see that there are no obvious di�erences among
these policies. This is because the three policies
di�er only when the ®les processed are large, but
the current WWW tra�c tends to access small
®les.

Due to the improvement of network speed,
multimedia objects such as audio and video ®les,
will become more and more popular. Since these
®les are large, the increasing popularity of them
will a�ect the current WWW tra�c and may result
in performance di�erences among the three cache
management policies. In order to see how the

changing of WWW tra�c impacts the perfor-
mance of the three cache management policies, we
choose the largest three ®les in the current work-
load, increase their access frequencies, and mea-
sure the BHRs (we refer to this workload as the
modi®ed workload). The result is shown in Fig. 10.
From this ®gure, it is clear that our cache man-
agement policy noticeably outperforms others in
BHR by 15±20%.

Furthermore, because we use memory cache
and the memory size is limited, it is very possible
that a multimedia ®le is larger than the total cache
size. Thus, to investigate the performance of the
three policies under this condition, we set the cache
size as 32 Mbytes which is smaller than each of the
three largest ®les and measure the BHRs. Fig. 11
shows the experimental result. From this Figure,

Table 3

Descriptions of the three WWW cache policies

Policy Description

Total A ®le can be cached totally as long as its size is smaller than the cache size

Small A ®le can be cached only if its size is smaller than a prede®ned threshold

Adaptive This is our cache management policy. A ®le can be completely cached if its size is smaller than a threshold

(i.e. the size of a chunk). Otherwise, only a chunk of it can be cached

Fig. 9. BHR comparison of the three cache policies (current

workload).

Fig. 10. BHR comparison of the three cache policies (modi®ed

workload).

Table 2

The performance improvement of MIME header caching

MIME header processing time Performance improvement

Without MIME header caching 387.687 ls 44.6%

With MIME header caching 387.687 ls

D.-W. Chang et al. / Computer Networks 32 (2000) 261±275 273

we can see that our policy is signi®cantly better
than others since their BHRs are less than 2%
when the access frequency of the three largest ®les
is larger than 8% while the BHR of our policy
remains on 33%. Obviously, our policy outper-
forms others in this experiment. The reason is that,
other policies never caches a ®le larger than the
cache size even though the ®le is the most popular
one. However, our policy does cache a portion of
it and therefore results in a better BHR.

6. Conclusions and future works

6.1. Conclusions

Due to the large retrieval latency of WWW
documents, many researches pay attention to the
reduction of the latency by either reducing net-
work delay or improving the throughput of WWW
servers. In this paper, we use a memory cache to
improve the throughput of a web server. By
caching the most frequently accessed WWW doc-
uments in the serverÕs address space, lots of WWW
requests can be served without touching the ®le
system on the server host and hence improves the
serverÕs throughput. We implement the memory
cache by modifying an existing WWW server,
Thttpd. From the experimental results, we have
shown that the throughput improvement of our
memory cache can achieve 32.7%

In addition to the implementation of the
memory cache, we also propose a new web cache

management policy named the adaptive-level pol-
icy, which takes the ®le size into account when
caching a ®le. The policy has been proved, by our
experiments, to be suitable for current web tra�c.
Besides, with the increasing popularity of multi-
media ®les, our policy will outperform other pol-
icies that are currently used in WWW.

It should be noted that, although we chose a
tiny web server (i.e. Thttpd) for our implementa-
tion, we believe that similar results will also apply
to a practical server such as an Apache HTTP
server. This is because that Thttpd di�ers with
other popular servers only in that the latter put
more e�orts on managing and customizing them-
selves. For example, they provide APIs for users to
implement modules to extend the original servers.
This makes their servers more manageable and
¯exible. However, it has little in¯uence on the
throughput of servers.

6.2. Future works

In this paper, we add a memory cache in a web
serverÕs address space. This makes the operating
systemÕs (speci®cally, the ®le systemÕs) bu�er cache
becomes a second-level cache. We will investigate
the performance in¯uence of this two-level caching
in the future.

Moreover, Padmanabhan and Mogul [15] show
that accesses to WWW documents are predictable.
Therefore, prefetching documents into web serv-
erÕs address space may further improve the
throughput. In the future, we will evaluate the
performance bene®t of prefetching and try to de-
sign an e�ective prefetching mechanism.

Although we cache web documents in a web
serverÕs memory space, accesses to cached data may
sometimes involve disk reads, which will result in
performance degradation. This is because most
operating systems support virtual memory. All the
memory held by a web server may be paged out to
the disks at any time. In our experiments, we did
not consider the impact of the virtual memory.
Clearly, di�erent page replacement policies will
have di�erent impacts on our web server. In the
future, we will identify them on our web server.

The web server is currently a user-level process. It
requires many user±kernel data copies when serving

Fig. 11. BHR comparison of the three cache policies (when the

total cache size is smaller than a requested ®le).

274 D.-W. Chang et al. / Computer Networks 32 (2000) 261±275

requests and hence degrades the performance. In the
future, we will try to move the web server into the
kernel so as to reduce all user±kernel copies.

References

[1] M. Abrams, C.R. Standridge, G. Abdulla, S. Williams,

E.A. Fox, Caching proxies: limitations and potentials, in:

Proceedings of the Fourth International World Wide Web

Conference, Boston, December 1995.

[2] M.F. Arlitt, C.L. Williamson, Web sever workload char-

acterization: the search for invariants, in: Proceedings of

the SIGMETRICS, Philadelphia, PA, April 1996.

[3] H. Braun, K. Cla�y, Web tra�c characterization: an

assessment of the impact of caching documents from

NCSAÕs web server, in: Proceedings of the Second World

Wide Web Conference, Chicago, October 1994.

[4] A. Bestavros, R.L. Carter, M.E. Crovella, C.R. Cunha, A.

Heddaya, S.A. Mirdad, Application-level document cach-

ing in the Internet, in: Proceedings of the Second Interna-

tional Workshop on Services in Distributed and

Networked Environments (SDNEÕ95), Whistler, Canada,

June 1995.

[5] C.M. Bowman, P.B. Danzig, D.R. Hardy, U. Manber,

M.F. Schwartz, The Harvest information discovery and

access system, in: Proceedings of the Second World Wide

Web Conference, Chicago, October 1994.

[6] P.M.E. De Bra, R.D.J. Post, Information retrieval in the

world-wide web: making client-based searching feasible, in:

Proceedings of the First World Wide Web Conference,

Geneva, Switzerland, May 1994.

[7] C.R. Cunha, A. Bestavros, M.E. Crovella, Characteristics

of WWW client-based traces, Technical Report BU-CS-95-

010, Computer Science Department, Boston University,

July 1995.

[8] The CERN Proxy Cache, available at http://www.w3.org/

pub/WWW/Daemon/User/Con®g/Caching.html.

[9] J. Gwertzman, M. Seltzer, The case for geographical push-

caching, in: Proceedings of the HOTOS Conference, 1994.

[10] T.T. Kwan, R.E. McGrath, D.A. Reed, NCSAÕs world

wide web server: design and performance, IEEE Computer

28 (11) (1995).

[11] T.T. Kwan, R.E. McGrath, D.A. Reed, User access

patterns to NCSAÕs world wide web server, Technical

Report UIUCDCS-R-95-1934, Department of Computer

Science, University of Illinois, February 1995.

[12] E.P. Markatos, Main memory caching of web documents,

in: Proceedings of the Fifth International World Wide Web

Conference, May 1996.

[13] J.C. Mogul, Improving HTTP latency, in: Electronic

Proceedings of the Second World Wide Web Conference:

Mosaic and the Web, Chicago, IL, October 1994.

[14] J.C. Mogul, The case for persistent-connection HTTP, in:

Proceedings of the ACM SIGCOMMÕ95 Conference on

Communications, Architectures, and Protocols, Boston,

August 1995.

[15] V.N. Padmanabhan, J.C. Mogul, Using predictive pre-

fetching to improve world wide web latency, Computer

Communication Review 26 (3) (1996).

[16] S.E. Spero, Analysis of HTTP performance problems,

available at http://metalab.unc.edu/mdma-release/http-

prob.html, July 1994.

[17] Squid internet object cache, available at http://www.squid-

cache.org/.

[18] Thttpd software, available at http://www.acme.com/soft-

ware/thttpd/.

[19] S. Williams, M. Abrams, C.R. Standridge, G. Abdulla,

E.A. Fox, Removal policies in network caches for world-

wide web documents, in: Proceedings of the ACM

SIGCOMMÕ96 Conference, Stanford University, August

1996.

[20] WebStone benchmark, available at http://www.mind-

craft.com/benchmarks/ webstone/.

Da-Wei Chang is a Ph.D. student in
Computer and Information Science
Department, National Chiao Tung
University, Taiwan, ROC. He received
his B.S. (1995) degree and Master
(1997) degree both from the Computer
and Information Science Department,
National Chiao Tung University, Tai-
wan, ROC. His main interests are in
operating systems, embedded systems,
world-wide web, and Java.

Hao-Ren Ke was born on 29 June 1967
in Taipei, Taiwan, ROC. He received
the B.S. degree in 1989 and his Ph.D.
degree in 1993, both in Computer and
Information Science, from National
Chiao Tung University. Now he is an
associate professor in Library, Na-
tional Chiao Tung University, Taiwan,
ROC. His main interests are in digital
library, virtual reality, and knowledge
discovery.

Ruei-Chuan Chang was born on 30
January 1958 in Keelung, Taiwan,
ROC. He received his B.S. degree
(1979), M.S. degree (1981), and Ph.D.
degree (1984), all in Computer Engi-
neering from National Chiao Tung
University. Now he is a professor in
Computer and Information Science
Department, National Chiao Tung
University, Taiwan, ROC. His main
interests are in operating systems,
wireless communication, embedded
systems, world-wide web, and Java.

D.-W. Chang et al. / Computer Networks 32 (2000) 261±275 275

