
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2000;30:175–197

Process program change control
in a process environment

Shih-Chien Chou1† and Jen-Yen Jason Chen2,∗,‡

1Department of Computer Science and Information Engineering, National Dong Hwa University,
Hualien, Taiwan
2Department of Computer Science and Information Engineering, National Chiao Tung University,
Hsinchu, Taiwan

SUMMARY

Process programs may change during enactment. The change of an enacting process program should
be controlled. This paper describes process program change control in the CSPL (Concurrent Software
Process Language) environment, which consists of techniques to (1) define change plans, (2) analyze and
handle change impacts, and (3) resume process programs. Moreover, we provide an editor to guide process
program change, with which the consistency between a change plan and the actual change can be enforced.
We have used the environment in an experimental setting, and that experience shows that change control
provided by the environment depends significantly upon process programs. If the dependencies among
process components are well-specified in a process program, the change control mechanism will detect all
the affected components when the process program is changed. Copyright 2000 John Wiley & Sons, Ltd.

KEY WORDS: Process-centered Software Engineering Environment (PSEE); software process; process
evolution; process program change control; impact analysis

INTRODUCTION

A software processis a partially ordered set of activities to develop software [1,2]. Activities are
assigned to roles (played by developers) to develop products (software products, including documents
and program code). Therefore, activities, roles and products are primary components in a process.

Software processes are becoming more and more complicated. Process-centered Software
Engineering Environments (PSEEs) have thus been developed [3–17] to facilitate controlling
processes. A PSEE is normally composed of a process language and an environment. The language
is used to model processes asprocess programs, which can then be enacted in the environment.

∗Correspondence to: Jen-Yen Jason Chen, Department of Computer Science and Information Engineering, National Chiao Tung
University, 1001 Ta Hsuch Road, Hsinchu 30050, Taiwan.
†E-mail: scchou@csie.ndhu.edu.tw
‡E-mail: jychen@csie.nctu.edu.tw

Received 6 May 1999
Copyright 2000 John Wiley & Sons, Ltd. Revised 19 October 1999

Accepted 28 October 1999



176 S.-C. CHOU AND J.-Y. J. CHEN

Software processes may evolve [18–23]. Process evolution support is thus essential in a PSEE.
Generally, process evolution can be accomplished through meta-process [18,21] or process program
change [21]. This paper focuses on process program change, which corresponds to online process
change as described in Reference [20].

In changing a process program, all process components are subject to change. Since there are
relationships between process components, changing a component may affect others. For example,
changing an activity may affect the product it produced. As another example, changing a product
may affect the products dependent upon it, which should be changed accordingly to keep product
consistency [24]. Therefore, process program change may significantly affect process enactment.
Handling that change may thus consume much manpower. Although that handling can be delayed
using a lazy change policy [20], it does, however, need to be handled sooner or later.

To improve efficiency, changing a process program should be controlled. First, a change plan should
be defined. Secondly, change impacts (i.e. effects of change) should be analyzed. Thirdly, time and
developers needed in the change should be estimated. If that change costs too much, a new change
plan should be defined. Fourthly, the process program should be changed according to the change
plan. Finally, change impacts should be handled and the process program should be correctly resumed.
According to the above description, issues in process change control are (1) defining change plans,
(2) analyzing change impacts, (3) changing process programs, (4) handling change impacts, and (5)
resuming process programs. A PSEE that controls process program change should provide solutions to
the above issues.

Many PSEEs support process evolution [18,19,21,25–31]. However, most PSEEs do not facilitate
controlling process program change. It is developers’ responsibility for that control. Manually
controlling process program change by developers, however, may cause problems. First, change
impacts for large projects may be too complicated to analyze. An improper impact analysis may
underestimate change efforts and result in an inappropriate change plan. Secondly, the actual change
may be inconsistent with the change plan, which may in turn result in an incorrect process program.
Thirdly, improper handling of change impacts may result in incorrect processes, product inconsistency,
or garbage products.

We have developed a PSEE called the CSPL (Concurrent Software Process Language) environment
[3,32–34] which supports process evolution [21]. From past experience, however, we found that its
impact analysis technique is insufficient. Moreover, it does not facilitate controlling process program
change. We thus enhanced CSPL to control the change. This paper describes process program change
control in CSPL. In the remainder of this paper, an overview of the CSPL environment is first given.
Then, CSPL process program change control is described.

CSPL OVERVIEW

CSPL is a Unix-based PSEE. It has been ported onto a PC, and will finally be ported onto the Internet.
CSPL environment is composed of the CSPL language, a CSPL compiler, a CSPL server, an Object
Management System (OMS) server, multiple CSPL clients, and multiple OMS clients. Figure1 shows
the CSPL architecture.

The CSPL language is used to develop process programs. The CSPL compiler translates process
programs for enactment. During process enactment, the CSPL server interacts with CSPL clients to

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



PROCESS PROGRAM CHANGE CONTROL 177

Figure 1. CSPL environment architecture.

Figure 2. CSPL process program structure.

assign work to developers, and accesses objects (products) and their relationships via the OMS server.
In the following sections, the CSPL language and process evolution support are described.

CSPL language

The CSPL language models software process components including roles, tools, products, packages,
tasks, exceptions, and so on. The general structure of a CSPL process program is shown in Figure2, in
which packages are composed of their specifications and bodies.

Tool definitions define tools to be used. Role definitions define roles played by developers. Figure3
shows some tool and role definitions. Note that in the figure, bold face words denote CSPL keywords.

Package specificationsdefineproduct typesandoperation interfaces, where two kinds of operations,
namely procedures and functions, can be defined. Figure4 is a package specification defining the
product types ‘Requirement’ and ‘Specification’, the procedure interface ‘GenSpec’, and the function
interface ‘ReviewSpec’. Those types inherit the built-in type ‘DocType’ and add new attributes. Product

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



178 S.-C. CHOU AND J.-Y. J. CHEN

Figure 3. Tool and role definitions.

Figure 4. Package specification.

types defined in a package specification can be instantiated. For example, the following statement
instantiates the product ‘specification’ from the type ‘Specification’:

specification: Specification := ”spec.doc”;

where ‘spec.doc’ is the name of the file for storing the product ‘specification’.
Package bodiesspecify operation details. Figure5 shows a package body. The most important

statement used in a package body is the work assignment statement (i.e. the ‘edit’ statement), where
each statement defines an activity. A work assignment statement assigns work to developers, binds
tools, indicates product(s) for reference, and requires the developers to create a product. An example
work assignment statement is as follows:

2 analyst edit specification referring to requirement using AnalysisTool;

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



PROCESS PROGRAM CHANGE CONTROL 179

Figure 5. Package body.

Figure 6. CSPL task.

A CSPL task groups related activities that are enacted sequentially. Generally, activities are
accomplished by calling operations defined in package bodies. Activities, however, can also be
accomplished by using work assignment statements. Figure6 depicts a CSPL task.

Exceptionsand their handlers, which are defined in tasks, are used to model activities that
cannot be regularly controlled. The following statements depict the handler of the exception
‘RequirementChange’:

exception
when RequirementChange =>

output “Requirement change, redo the analysis work!!”;
SysAnalysis.start;

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



180 S.-C. CHOU AND J.-Y. J. CHEN

Figure 7. Process program enactment tree.

Process evolution support

CSPL supports process evolution through meta-process and process program change [21]. A meta-
process is a process that creates and enacts other processes. CSPL uses the statements ‘edit’ and
‘enact’ to define meta-processes. The statement ‘edit’ informs a developer to create a process program,
while the statement ‘enact’ enacts that newly created process program. With meta-process support,
highly uncertain processes, such as processes that are currently unclear and those that will be enacted
a long time later, need not be defined during project planning. They can be defined by enacting meta-
processes when the uncertainty is resolved. Figure6 depicts the use of meta-process, in which the task
‘RequirementAnalysis’ contains the analysis work and a meta-process. The analysis work includes two
activities: ‘sysanalysis.GenSpec’ and ‘sysanalysis.ReviewSpec’, while the meta-process creates and
enacts ‘DesignProcess’.

In addition to meta-process, CSPL also supports process evolution through changing an enacting
process program. To manage the change, CSPL records process program states during process
enactment. When a process program is changed, CSPL analyzes and handles change impacts using
the program’s state. After change, CSPL resumes the process program. Process program state, impact
analysis and handling, and process program resumption are respectively described below:

(i) Process program states are for identifying the affected process components during process
program change. Since a process program may have created other process programs through
meta-processes, changing a process program may affect the process programs it created.
Moreover, since a process program will produce products, changing a process program may
affect the products it produced. Therefore, process program states should facilitate identifying the
affected process programs and products. To address these needs, CSPL recordsprocess program
enactment trees(see Figure7) and relationships between process programs and products (see
Figure8) as the process program state. The former is for identifying affected process programs,
and the latter for identifying affected products.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



PROCESS PROGRAM CHANGE CONTROL 181

Figure 8. Relationship between process programs and products.

(ii) In analyzing change impacts, the state of the process program being changed is used. That
is, CSPL identifies affected process programs by tracing process program enactment trees
(Figure7), and identifies affected products by tracing relationships between process programs
and products (Figure8). The affected components are then reported to CSPL users, who should
decide upon the handling of the affected components. In handling the affected products, CSPL
removes those that should be deleted, and informs developers to change those that should be
changed. In handling the affected process programs, CSPL informs developers to change those
that should be changed, and stops those that should be killed. CSPL also removes the products
produced by the process programs that have already been killed.

(ii) To resume a changed process program, CSPL language provides aresume blockfor indicating
which activities should be enacted after resumption. As shown in Figure9, a resume block starts
and ends with the statements ‘resume block is’ and ‘end resume block’, respectively. Statements
inside resume blocks will be enacted after process resumption.

CSPL PROCESS PROGRAM CHANGE CONTROL

CSPL controls process program change by automatically enacting the following process. Note that
the role ‘project manager’ in the following process can be replaced by a developer responsible for the
change.

Step 1:CSPL suspends the process program to be changed and records the program’s state in its
Object Management System (OMS) for impact analysis.
Step 2:CSPL guides the project manager to define a change plan.
Step 3: CSPL, together with the project manager, analyzes change impacts according to the
change plan.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



182 S.-C. CHOU AND J.-Y. J. CHEN

Figure 9. Process program with resume block.

Step 4: The project manager estimates the efforts needed for the change, and then decides
whether the change plan is acceptable. If not, go back to Step 2. Otherwise, proceed to the
next step.
Step 5: CSPL guides process programmers to change the process program according to the
change plan.
Step 6:CSPL guides developers to handle the change impacts.
Step 7:CSPL resumes the changed process program.

Although process program states and the technique for analyzing and handling change impacts have
been defined in CSPL [21], they are insufficient for controlling process program change. For example,
changing a product may affect other products. This effect cannot be identified from Figures7 or 8.
Therefore, we have redefined process program state, and redesigned the technique for impact analysis
and handling. In the following sections, process program change control in CSPL are respectively
described, including (1) the newly defined process program state, (2) change plan definition and impact
analysis, (3) changing process program according to a change plan, and (4) impact handling. As for
process program resumption, it is controlled by CSPL resume block described near the end of the
previous section.

Process program state

Process program states are used to identify affected process components when a process program
is changed. This identification can be accomplished through tracing relationships among process
components. For example, tracing dependency relationships can identify the affected design document
and program code when a specification is changed. Therefore, a process program state is composed

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



PROCESS PROGRAM CHANGE CONTROL 183

of process components linked by relationships. Generally, all CSPL process program constructs (see
Figure2) should be included in a process program state, because they are all subject to change. Effects
of changing CSPL process program constructs are described below:

(i) Changing roles or tools will affect activities, because they are involved in activities to accomplish
work. Moreover, since a product developed by a tool is bound to that tool, changing a tool may
affect products developed by the tool.

(ii) A package specification is composed of product types and operation interfaces. Therefore,
changing a package specification may affect its product types and operation interfaces. Product
types are used to instantiate products, which will be used in activities. Therefore, changing a
product type may affect products instantiated from it, and may also affect activities using those
products. As for operation interfaces, changing them may affect their operation details specified
in package bodies. Moreover, since an operation may be invoked by tasks or other operations,
changing an operation interface may affect tasks and operation details invoking that operation.

(iii) A package body is composed of operation details. Therefore, changing a package body may
affect its operation details. Since operation details are composed of activities, changing operation
details may affect activities, which are represented in work assignment statements. A work
assignment statement assigns work to roles, binds tools, indicates product(s) for reference,
and requires the roles to create a product under possible schedule and/or budget constraints.
Therefore, changing a work assignment statement (activity) may affect roles, tools, products and
constraints. Moreover, an affected product may in turn affect other products because of possible
dependency relationships among products [3].
Since a work assignment statement may create a process program (that is, the statement together
with an ‘enact’ statement” constitute a meta-process), changing a work assignment statement
may also affect other process programs.

(iv) Tasks, like package bodies, are also composed of activities. Therefore, changing a task and
changing a package body have the same effect.

According to the above description, a process state is composed of the following components
and their relationships: role, tool, package specification, product type, product, operation interface,
package body, operation details, task, activity, constraint, and process program. Figure10shows those
components linked by ‘affect’ relationships. Arrows in the figure show the affecting direction. For
example, an arrow from ‘Product type’ to ‘Product’ means that changing a product type will affect the
products instantiated from it.

During process enactment, CSPL keeps in its OMS a state for each enacting process program.
Process program states can be examined to analyze the impact when an enacting process program
is interrupted for change. Figure11 shows the state for the process program in Appendix I when
the statement ‘enact DesignProcess’ is enacting. Note that in the figure, rectangles represent process
components and arrow-headed lines represent ‘affect’ relationships. The lines are used to identify
affected process components. For example, if ‘package body: sysanalysis’ in Figure11 is changed,
then ‘operation detail: GenSpec’ and ‘operation detail: ReviewSpec’ will be directly affected. By
following the ‘affect’ relationships linked to the latter two components, those that will be indirectly
affected can also be identified.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



184 S.-C. CHOU AND J.-Y. J. CHEN

Figure 10. Components and relationships in a process state.

Figure 11. Process program state example.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



PROCESS PROGRAM CHANGE CONTROL 185

Figure 12. Window for overall program structure.

Change plan definition and impact analysis

To facilitate defining the change plan, CSPL displays the process program structure to guide the project
manager. For example, to define a plan to change the process program in Appendix I, the program
structure is shown in the window of Figure12. When a construct in the window is selected to be
changed, its components will be displayed for further selections. For example, Figure13 shows the
window displayed after ‘packagebody sysanalysis’ in Figure12 is selected. The iterative selection
procedure goes on until all components that should be changed have been selected. The selected
components constitute the primary part of a change plan. To support this selection procedure, the
CSPL compiler constructs a process program structure for each process program. The structure looks
like that in Figure14, where arrow-headed lines represent composition relationships.

After a change plan is defined, the CSPL environment interacts with the project manager to
analyze change impacts. In that analysis, CSPL traces the process program’s state (see Figure10)
to automatically identify the process components that may be affected, and then reports them to the
project manager, who should determine which of them are indeed affected. The analysis begins with
identifying the inherently affected components, which include the components to be changed and
the activities that are enacting when the process program is interrupted for change. For example,
if ‘operation detail: ReviewSpec’ in Figure11 is to be changed, then it is an inherently affected
component.

Starting from the inherently affected components, CSPL traces the ‘affect’ relationships in the
process program state to identify process components that may be directly affected. For example, with
the process program state in Figure11, suppose that ‘operation detail: ReviewSpec’ is an inherently
affected component. Then, ‘activity: reviewspecification’ may be directly affected.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



186 S.-C. CHOU AND J.-Y. J. CHEN

Figure 13. Window for sub-program structure of ‘packagebody sysanalysis’.

Figure 14. Process program structure.

Having identified those that may be directly affected, CSPL reports them to the project manager, who
should determine which are indeed affected. CSPL then identifies those that may be indirectly affected
by tracing ‘affect’ relationships linked to the affected components. For example, in Figure11, suppose
that the project manager determines that ‘activity: reviewspecification’ is indeed affected. Then,
CSPL identifies that ‘product: sysrequirement’ and ‘product: sysspecification’ may be indirectly
affected. Those that may be indirectly affected will then be reported to the project manager, who
should again determine which ones are affected. The identification by CSPL and determination by the

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



PROCESS PROGRAM CHANGE CONTROL 187

Figure 15. Editor for process program change.

project manager constitute an impact analysis process, which iterates until all of the affected process
components are identified.

Having identified all of the affected process components, the project manager estimates the budget
and schedule needed in changing the affected components. If the schedule or budget of the project do
not allow for the change, CSPL guides the project manager to define a new plan and then analyzes
the change impacts again. The change plan definition and impact analysis procedure iterates until an
acceptable change plan is obtained.

Changing process program

Changing an enacting process program may affect the following components: (1) process program
constructs such as activities, tools, and so on; (2) products that have been produced or are being
produced; and (3) process programs that have been created by the changed process program through
meta-processes. Handling of the second and third items above will be described in the next section.
To handle the first item above, which corresponds to changing the program, CSPL provides an
editor to guide the change. Figure15 shows a window of that editor, in which a process program
construct to be changed (the part that is affected) is enclosed with the marks ‘<<<<<<<<<<’ and
‘>>>>>>>>>>’. Only statements between those marks are allowed to change.

Impact handling

Impact handling refers to handling the affected components in a process program change. As stated
before, the affected components may be (1) process program constructs, (2) products that have been

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



188 S.-C. CHOU AND J.-Y. J. CHEN

produced or are being produced, and (3) process programs that have been created. The handling of
affected program constructs, which corresponds to changing the process program, has been described
in the previous section. As for the affected products, CSPL interacts with developers to decide upon
the handling. Generally, an affected product should be deleted or changed. For a product that should be
deleted, CSPL removes it from the OMS. For a product that should be changed, CSPL first identifies
the developers responsible for the product and the tool bound to the product. It then tells the developers
to change the product using the tool.

To handle the affected process programs, CSPL interacts with developers to decide upon the
handling. Generally, an affected process program should be killed or changed. For an affected process
program that should be killed, CSPL removes the products it produced. If the process program is still
enacting, CSPL tells developers to stop the program immediately. For an affected process program that
should be changed, CSPL guides developers to change it by following the change process described in
this section.

AN EXAMPLE

The process program in Appendix I is used as an example. It is composed of an analysis process and
a meta-process for creating a design process (see the task body ‘RequirementAnalysis’). The analysis
process is composed of an activity to generate a specification (which is accomplished by calling the
operation ‘sysanalysis.GenSpec’) and an activity to review the specification (which is accomplished
by calling the operation ‘sysanalysis.ReviewSpec’). Details of the operations are specified in the
package body ‘sysanalysis’. Here the specification is verified by a formal review.

Suppose that when the statement ‘enact DesignProcess’ near the end of the process program is
enacting, the project manager finds that errors exist in the specification. He/she then justifies that the
situation occurs because the customer ‘syjan’, who is not a computer expert, has trouble with following
the formal review process. The project manager thus decides to change the review approach from
formal review to rapid prototyping. This causes the enacting process program to be changed.

To change the process program, CSPL saves its state (as shown in Figure11). It then shows the
process program’s structure for guiding the project manager to define a change plan. CSPL first
displays the window in Figure12. The project manager then selects the ‘packagebody sysanalysis’
to change. CSPL then displays the contents of the package body in the window of Figure13. At this
time, the project manager selects the ‘operationdetail ReviewSpec’. CSPL then displays the contents
of the operation details in the window of Figure16. Here, the project manager selects the ‘activity
review specification’ to change, because the review approach should be changed. After the selection,
CSPL re-displays the window in Figure12 for selecting another process component to change. By
following a similar procedure, the project manager selects the package specification ‘sysanalysis’
and the task ‘RequirementAnalysis’ to change. The former should be changed because a product type
‘RapidPrototype’ should be added. The latter should be changed because a resume block should be
added to direct process program resumption. After the selection procedure above, the change plan
has been defined, in which the activity ‘reviewspecification’, the task ‘RequirementAnalysis’ and the
package specification ‘sysanalysis’ are required to be changed.

According to the change plan, CSPL interacts with the project manager to identify the
affected process components. First, the inherently affected process components are identified. They

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



PROCESS PROGRAM CHANGE CONTROL 189

Figure 16. Window for sub-program structure of ‘operationdetail ReviewSpec’.

are (see Figure11): ‘package specification: sysanalysis’, ‘task: RequirementAnalysis’, ‘activity:
review specification’, and ‘activity: enactDesignProcess’, in which the first three are planned to be
changed and the last one is an activity that is enacting when the process program is interrupted. The
impact analysis procedure starts with the above four components. Tracing the ‘affect’ relationships
will identify those that may be affected. Those that may be affected are then reported to the project
manager, who should determine which are indeed affected. After the impact analysis procedure, the
process components ‘product: sysspecification’ and ‘process program: DesignProcess’ are identified
as affected.

After impact analysis, suppose that the project manager accepts the change plan. Then, according
to the change plan, CSPL uses an editor to guide the change. Figure15 shows the window for the
editor, in which ‘activity: reviewspecification’ is enclosed with the marks ‘<<<<<<<<<<’ and
‘>>>>>>>>>>’ for change.

Having changed the process program, CSPL interacts with the project manager to handle the affected
process components (i.e. ‘product: sysspecification’ and ‘process program: DesignProcess’). CSPL
then resumes the process program by enacting the statements inside resume blocks. For example,
suppose that the task ‘RequirementAnalysis’ has been changed as shown in Figure17. Then, the
activities ‘sysanalysis.ReviewSpec’, ‘edit DesignProcess’, and ‘enact DesignProcess’ will be enacted
after process resumption.

EXPERIENCES

Some experiences obtained are discussed in this section. To prevent possible confusion, we clarify
that the CSPL environment has been upgraded to the third version. The first CSPL version does not
support process evolution. The second CSPL version supports process evolution through meta-process

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



190 S.-C. CHOU AND J.-Y. J. CHEN

Figure 17. Editor window.

and process program change [21]. However, it does not control process program change. The third
CSPL version controls process program change as described in this paper.

Since the development of the first CSPL version, we have required our students to use it on their
term projects. From their usage, we can see that the processes of student projects change frequently,
which seems to be caused by poor project planning. Although commercial software processes may
not change as frequently, we do believe that processes will change according to schedule or budget
overrun, requirement change, and so on.

In handling process program change, we found that heavy human engagement is unavoidable. In
that change, developers are involved in defining a change plan, estimating change efforts, analyzing
impacts, changing the process program, handling change impacts, and resuming the process program.
In the first CSPL version, no process evolution support is available, therefore developers have to
manually do all the work just mentioned to change a process program. We thus upgraded CSPL to
the second version, which supports process evolution. From the use of the second CSPL version, we
found that impact analysis and handling, and the process of change play important roles in process
program change, as described below.

(i) Impact analysis, as stated before, identifies the process components affected when an enacting
process program is changed. To analyze change impacts, the second CSPL version identifies
process programs created and products produced by the changed process program. This support,
however, is insufficient, because impact analysis may be incomplete. For example, one of
our students developed a Computer-Aided Instruction (CAI) system using CSPL. After the
implementation process started for a period of time, he identified that the analysis process was

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



PROCESS PROGRAM CHANGE CONTROL 191

incorrect. He thus decided to change that process. In this case, the CSPL environment informed
him that the CAI specification, which was created by the analysis process, was affected. With
this information, he modified the specification. However, apparently, the design document and
program code were also affected, because they were produced based on the specification. These
effects were not identified by the second CSPL version, and therefore resulted in an incomplete
impact analysis.
Since impact analysis results are used to estimate process change efforts, an incomplete impact
analysis may underestimate change efforts. With the underestimated efforts, an incorrect change
plan may be defined. Moreover, an incomplete impact analysis may also cause incomplete
impact handling, and other problems. For example, as just mentioned, CSPL informed the
student who developed the CAI system to change the CAI specification when the analysis
process was changed. CSPL, however, did not tell him to change the corresponding design
document and program code. If the student did not change the design document and program
code, inconsistency between products will result.

(ii) As to the process of change, we found that the actual change may be inconsistent with the
change plan, because the second CSPL version does not control the change. For example,
four students cooperated to develop an inventory management system on the Internet. They
originally decomposed the system into a client subsystem and a server subsystem. During
process enactment, they decided to decompose the system into more detail and then develop the
subsystemsin parallel. One student was assigned to change the process program. He, however,
incorrectly changed the process program to require developers to develop the subsystemsin
sequence. The change was apparently inconsistent with the change plan, and thus resulted in
an incorrect process. In addition to inconsistency, an uncontrolled change may cause other
problems. For example, in changing a process program, some students did not define a change
plan, and some did not handle change impacts. Changing process programs in this uncontrolled
manner may result in incorrect processes, product inconsistency, budget or schedule overrun,
and so on.

The experiences obtained from the second CSPL version stated above motivated the development of
the third CSPL version, which controls process program change. The change control is accomplished
through providing tools to (1) analyze and handle change impacts, (2) facilitate defining change
plans, (3) guide process program change, and (4) resume process programs. We expect that problems
encountered in the second CSPL version will be solved in the third CSPL version. Currently, we
have required our students to use the third CSPL version, from which we found that the change
control support in this CSPL version is as good as the process program itself. That is, if some
dependencies are not specified in the program, the change control mechanism will not automatically
detect such dependencies. For example, suppose that the dependency between a specification and a
design document is not specified in the process program. Then, when the specification is changed, the
change control mechanism will not detect that the design document should be changed accordingly.

RELATED WORK

Process change is a kind of process evolution [21]. Therefore, this section discusses related work in
process evolution. Generally, process evolution research can be roughly classified into two categories:

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



192 S.-C. CHOU AND J.-Y. J. CHEN

(1) those collecting and analyzing data, and then evolving processes according to analysis results
[35–40]; and (2) those supporting process program evolution during enactment [18,19,21,25–31,41].
Process change support in CSPL belongs to the second category. Therefore, only research in this
category is discussed.

EPOS provides a reflective, rule-based process language called SPELL [6]. During process
enactment, EPOS stores meta-classes, classes, and instances of process models in a database called
EPOSDB [19]. All the contents in EPOSDB are subject to change. Changing meta-classes, classes
or instances of process models results in process evolution. In a change, the Process Model (PM)
manager is responsible for controlling the change. First, the PM manager checks whether the change is
allowed. If so, the PM manager analyzes the change impacts and then interacts with users to handle the
impacts. According to the above survey, we identify that EPOS supports impact analysis and handling.
Regarding change plan definition and change process control, EPOS does not provide such support.

PROSYT [30,31] allows the observed process to diverge from the modeled process. By tolerating
process deviation, minor process evolution can be accomplished. In the environment, a process
enactment is associated with preconditions and constraints. An enactment fulfilling its preconditions
corresponds to a process that does not diverge. An enactment that fails to meet its preconditions
corresponds to a process that diverges. For a diverged process, if the constraints are not violated,
the deviation is tolerable. Otherwise, the deviation is intolerable. The occurrence of an intolerable
deviation will trigger a ‘pollution analysis’ activity to discard garbage data (products). Here the activity
is similar to impact analysis. From this survey, we can see that PROSYT does not allow process change
during enactment. Instead, it tolerates minor process evolution and analyzes impacts when intolerable
deviations occur.

SPADE [18] provides a reflective, Petrinet-based process language called SLANG [25,26], and uses
multiple process engines to enact a process model. Before enacting an activity, an active copy of the
activity should be prepared. The environment thus allows late binding between activity definitions and
invocations. With the late binding feature, process evolution in SPADE is accomplished by changing
active copies of activities. From the survey of SPADE we identify that the environment, like the
second CSPL version, just supports process evolution. As for the issues of change plan definition,
impact analysis and handling, and process program change control, SPADE does not provide solutions.
SPADE, however, is not the only PSEE that does not provide solutions to those issues. The following
paragraphs describe process evolution support in some PSEEs that also do not provide solutions to the
issues.

Process Weaver [8] allows process models (process programs) to be instantiated into process
instances. The environment provides a mechanism for dynamically changing the process models being
enacted. With the mechanism, the process instances that are scheduled for future enactment can be
changed through the late binding feature. Accordingly, a process model need not be completely defined
before enactment. Instead, the model can be changed dynamically during enactment to complete the
definition of the model.

In OPSIS [28], process models are decomposed into views such as role, product, and so on. It
provides techniques to extract views from a process model and compose views. Process evolution in
OPSIS focuses on views instead of on the whole process model. Evolving processes on views seems
more accurate and convenient than on the whole process model, as the authors stated.

In the OBM environment [29], processes operating on a product are defined as the product’s
methods. Products in the environment are instantiated from product types, which are modeled as

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



PROCESS PROGRAM CHANGE CONTROL 193

abstract objects. Process evolution is accomplished by changing the methods of abstract objects.
Method change is accomplished by invoking the method ‘changeself’. The OBM language can thus be
considered a reflective language that facilitates process change.

Tempo [41] models processes as types for instantiating. Process evolution is thus accomplished
through late binding. Tempo uses a lazy change policy [20], which means that the process instances
being enacted will not be affected by the change. Tempo also supports process evolution through
dynamically changing role during enactment. Since different roles perform different activities on the
same product, changing role corresponds to changing process.

The Agile Software Process (ASP) model is composed of a number of lightweight processes [42].
With them, an ASP model can quickly adapt the change in requirements, therefore ASP does not really
support process evolution. However, it reduces the need for process evolution.

As stated in this paper, CSPL supports the process program change by facilitating change plan
definition, analyzing change impacts, controlling process program change, handling change impacts,
and resuming process programs. Comparing the CSPL approach with the PSEEs discussed above, we
have the following findings:

(i) It seems that none of the above PSEEs controls process program change; it is developers’
responsibility. Therefore, a change process may take much time, and even worse, the change
may be out of control.

(ii) It seems that only EPOS and PROSYT support impact analysis and handling. Without impact
analysis, the cost of change may be underestimated. Without impact handling, garbage products
may exist and products may become inconsistent.

(iii) It seems that none of the above PSEEs facilitates defining a change plan; it is the project
manager’s responsibility. An ill-defined change plan may be costly or may be incorrect.

(iv) It seems that none of the above PSEEs guides developers in changing process programs, which
may result in inconsistency between a change plan and the actual change.

CONCLUSIONS AND FUTURE WORK

This paper proposes a technique to control process program change in the CSPL (Concurrent Software
Process Language) environment. The technique records a state for each enacting process program,
which is composed of process components linked by ‘affect’ relationships. When a process program is
changed, CSPL traces the program’s state to analyze the impacts of change (i.e. to identify the process
components affected). From the results of impact analysis, a change plan can be defined. According
to the plan, a project manager estimates the change efforts. If the change costs too much, the change
plan should be modified through the assistance of impact analysis. If the plan seems appropriate, an
editor guides users to change the process program. CSPL then guides users to handle the affected
process components and resumes the changed process program. According to the above description,
CSPL controls process program change by (1) facilitating defining change plans, (2) analyzing change
impacts, (3) guiding process program change, (4) handling change impacts, and (5) resuming process
programs.

In the proposed technique, process program change follows a process controlled by the CSPL
environment. This relieves the load of the project manager, because he/she no longer needs to

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



194 S.-C. CHOU AND J.-Y. J. CHEN

Figure A.1.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



PROCESS PROGRAM CHANGE CONTROL 195

coordinate developers for the change. The proposed change control technique offers the following
features:

(i) Process program states facilitate impact analysis, from which the affected components can be
identified to estimate change efforts. Process program states (and hence impact analysis) are
thus helpful in planning a change. Moreover, if a change plan is decided, impact analysis results
indicate which process components should be handled.

(ii) The program structure of an enacting process program guides the project manager to identify
process components that should be changed. Process components to be changed are then
collected to form the primary part of a change plan.

(iii) An editor is provided for changing process programs, in which process program constructs
that should be changed are marked. Only the marked parts are allowed to change. Therefore,
consistency between a change plan and the actual change can be enforced.

(iv) The change process is controlled by the CSPL environment, which coordinates developers and
the necessary activities. This approach decreases the probability of errors, and relieves the load
of the project manager.

As stated in the ‘Experiences’ section, we found that processes change frequently during enactment.
We also found that process program change requires heavy human engagement. Although the CSPL
environment controls process program change, the change is still costly. Therefore, in future we will
provide a mechanism to reduce the frequency of change and justify whether a change is necessary. To
reduce the frequency of change, CSPL will be enhanced to tolerate minor evolution. For example, the
change of tools or roles will be tolerated by the enhanced CSPL version, so no process program change
will be needed. To justify a change, we will identify proper metrics to evaluate process enactment.
According to the evaluation, a poorly performing process should be changed. On the other hand, a
normal or well-performing process need not be changed.

APPENDIX I: EXAMPLE CSPL PROCESS PROGRAM

See FigureA.1.

ACKNOWLEDGEMENT

This research is sponsored by the National Science Council in Taiwan under grant number NSC88-2213-E-009-
012.

REFERENCES

1. Garg PK, Jazayeri M.Process-Centered Software Engineering Environments; IEEE Press, 1996; 17.
2. Feiler PH, Humphrey WS. Software process development and enactment: concepts and definitions.Proc. 2nd Int. Conf.

Software Process, Los Alamitos, CA, 1993; 28–40.
3. Jason Chen J-Y. CSPL: An Ada95-like, Unix-based process environment.IEEE Transactions on Software Engineering

1997;23:171–184.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



196 S.-C. CHOU AND J.-Y. J. CHEN

4. Belkhatir N, Melo WL. Supporting software development process in Adele 2.The Computer J.1994;37:621–628.
5. Chen JY, Hsia P. MDL (Methodology Definition Language): A language for defining and automating software development

processJ. Comput. Lang.1992;17:199–211.
6. Conradi R, Jaccheri ML, Mazzi C, Aarsten A and Nguyen MN. Design, use and implementation of SPELL, a language

for software process modeling and evolution.Proc. Second European Workshop on Software Process Technology, 1992;
167–177.

7. Doppke JC, Heimbigner D, Wolf AL. Software process modeling and execution within virtual environments.ACM Trans.
on Software Engineering and Methodology1998;7:1–40.

8. Fernstrom C. Process Weaver: Adding process support to Unix.Proceedings of the 2nd International Conference on the
Software Process; IEEE Press, 1993; 12–26.

9. Iida H, Mimura K, Inoue K, Torii K. Hakoniwa: Monitor and navigation system for cooperative development based on
activity sequence model.Proceedings of the 2nd International Conference on the Software Process; IEEE Press, 1993;
64–74.

10. Heimann P, Krapp C-A, Westfechtel B. Graph-based software process management.Int. J. Software Eng. Knowledge Eng.
1997;7:431–455.

11. Holtkamp B, Weber H. Kernel/2r – A software infrastructure for building distributed applications.Proc. 4th Int. Conf. on
Future Trends in Distributed Computing Systems, Lisbon, September 1993.

12. Huff KE. Probing limits to automation: towards deeper process models.Proc. 4th Int. Software Process Workshop, New
York, NY, 1988; 79–81.

13. Katayama T. A hierarchical and functional approach to software process description.Proc. 4th Int. Software Process
Workshop, New York, NY, 1989; 87–92.

14. Perry DE. Policy-directed coordination and cooperation.Proc. 7th Software Process Workshop, Yountville, CA, October
1991; 111–113.

15. Perry DE. Enactment control in interact/intermediate.Proc. 3rd European Workshop on Software Process, EWSPT 94,
Villard de Lans, France, February 1994.

16. Peuschel B, Schafer W. Concepts and implementation of rule-based process engine.Proc. 14th Int. Conf. Software
Engineering, 1992; 262–279.

17. Sutton Jr. SM, Heimbigner D, Osterweil LJ. APPL/A: A language for software process programming.ACM Trans. Software
Engineering and Methodology1995;4:221–286.

18. Bandinelli SC, Fuggetta A, Ghezzi C. Software process model evolution in the SPADE environment.IEEE Trans. Software
Engineering1993;19:1128–1144.

19. Jaccheri ML, Conradi R. Techniques for process model evolution in EPOS.IEEE Trans. Software Engineering1993;
19:1145–1156.

20. Bandinelli S, Nitto ED, Fuggetta A. Policies and mechanisms to support process evolution in PSEEs.Proceedings of the
Third International Conference on the Software Process, Los Alamitos, CA, 1994; 9–20.

21. Chou S-C, Chen J-YJ. Process evolution support in concurrent software process language environment.Information and
Software Technology1999;41:507–524.

22. Ambriola V, Conadi R, Fuggetta A. Assessing process-centered software engineering environments.ACM Trans. Software
Engineering and Methodology1997;6:283–328.

23. Conradi R, Fernstrom C, Fuggetta A. Concepts for evolving software processes.Software Process Modeling and
Technology; Research Studies Press: Taunton, 1994; 9–31.

24. Chen J-YJ, Chou S-C. Consistency management in a process environment.J. Systems and Software1999;47:105–110.
25. Bandinelli S, Fuggetta A, Grigolli S. Process modeling in the large with SLANG.Proc. 2nd Int. Conf. Software Process,

Berlin, 1993; 75–83.
26. Bandinelli S, Fuggetta A. Computational reflection in software process modeling: the SLANG approach.Proceedings of

the 15th International Conference on Software Engineering, 1993; 144–154.
27. Nguyen MN, Wang AI, Conradi R. Total software process model evolution in EPOS experience report.Proceedings of the

19th International Conference on Software Engineering, 1997; 390–399.
28. Avrilionis D, Cunin P-Y, Fernstrom C. OPSIS: a view mechanism for software processes which supports their evolution

and reuse.Proceedings of the 18th International Conference on Software Engineering, 1996; 38–47.
29. Greenwood RM, Warboys BC. Cooperating evolving components – a rigorous approach to evolving large software systems.

Proceeding of the 18th International Conference on Software Engineering, 1996; 428–437.
30. Cugola G, Di Nitto E, Ghezzi G, Mantione M. How to deal with deviations during process model enactment.Proceedings

of the 17th ICSE, 1995; 265–273.
31. Cugola G. Tolerating deviations in process support systems via flexiable enactment of process models.IEEE Trans.

Software Engineering1998;24:982–1001.
32. Chen J-Y, Tu C-M. An Ada-like software process language.J. System and Software1994;27:17–25.
33. Chen J-Y, Tu C-M. CSPL: a process-centered environment.Information and Software Technology1994;36:3–10.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197



PROCESS PROGRAM CHANGE CONTROL 197

34. Chen J-YJ, Chou S-C. Enacting object-oriented methods by a process environment.Information and Software Technology
1998;40:311–325.

35. Basili V, Green S. Software process evolution at the SEL.IEEE Software1994;11:58–66.
36. Basili V, Weiss DM. A methodology for collecting valid software engineering data.IEEE Trans. Software Engineering

1984;10:728–738.
37. Basili V, Rombach HE. The TAME project: towards improvement-oriented software environment.IEEE Trans. Software

Engineering1988;14:758–773.
38. Kellner MI, Briand L, Over JW. A method for designing, defining, and evolving software processes.Proceedings of the

4th International Conference on Software Process, Los Alamitos, CA, 1996; 37–48.
39. Bhandari I, Halliday M, Tarver E, Brown D, Chaar J, Chillarege R. A case study of software process improvement during

development.IEEE Trans. Software Engineering, 1993;19:1157–1170.
40. Basili VR, Rombach HD. Tailoring the software process to project goals and environments.Proceedings of the 9th

International Conference on Software Engineering, 1987; 345–357.
41. Belkhatir N, Melo WL. Evolving software processes by tailoring the behavior of software objects.Proceedings of

International Conference on Software Maintenance, 1994; 212–221.
42. Aoyama M. Agile software process and its experience.Proceedings of the 20th International Conference on Software

Engineering, 1998; 3–12.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;30:175–197


	INTRODUCTION
	CSPL OVERVIEW
	CSPL language
	Process evolution support

	CSPL PROCESS PROGRAM CHANGE CONTROL
	Process program state
	Change plan definition and impact analysis
	Changing process program
	Impact handling

	AN EXAMPLE
	EXPERIENCES
	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	APPENDIX I: EXAMPLE CSPL PROCESS PROGRAM

