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Journal of Applied Statistics, Vol. 27, No. 3, 2000, 321± 336

Bayesian analysis of a general growth curve
model with predictions using power
transformations and AR(1) autoregressive
dependence

JACK C. LEE & KUO-CHING LIU, Institute of Statistics, National Chiao Tung

University, Hsinchu, Taiwan

ABSTRACT In this paper, we consider a B ayesian analysis of the unbalanced ( general)

growth curve model with AR(1) autoreg ressive dependence, while applying the B ox ± Cox

power transformations. We propose exact, simple and Markov chain Monte Carlo

approximate parameter estimation and prediction of future values. Numerical results are

illustrated with real and simulated data.

1 Introduction

The main purpose of this paper is to address the problem of analyzing growth

curve data from a Bayesian point of view, using an unbalanced growth curve model

with AR(1) autoregressive dependence and with the Box± Cox power transforma-

tions applied to the observations. It has been observed in the literature, such as

Lee (1988), Lee and Lu (1987) and Keramidas and Lee (1990), that the data of

biological growth and technological substitutions tend to exhibit a strong correlation

across diþ erent time periods. In Lee and Lu (1987), tremendous improvement was

found in predictive accuracy using the data-based transformation models for

technology substitutions. This is primarily because of the fact that the linearity

assumption for the growth function can be enhanced signi® cantly with the Box± Cox

power transformation, along with incorporating into the model the proper depend-

ence structure among the observations. Keramidas and Lee (1990) combined the

concepts of power transformation and a generalized growth curve model with

serial structure for forecasting technological substitutions based on the maximum-

likelihood (ML) method when repeated measurements of short time series are

available. Instead of the balanced case, we will address the problem of a growth
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322 J. C. Lee & K.-C. Liu

curve when unbalanced repeated-measures data are available. This is apparently

more general and of more practical importance.

The unbalanced repeated-measures growth curve model with the Box± Cox

power transformations is de® ned as

Y
( k a )
i 5 X i s a + e i , i 5 1, 2, . . . , N *a ; N *a 5 N 1 + . . . + N a ; a 5 1, . . . , r (1)

where s a is an unknown m 3 1 vector of regression coeý cients of group a, and X i

is a known design matrix of rank m , where 2 < m < p i , and N 5 N 1 + . . . + N r . The

disturbance terms e i are independent p i-variate normal with mean vector 0 and

covariance matrix R i . In general, p i is the number of time (or spatial) points

observed on measurement i; m and r, which specify the degree of polynomial in

time (or space) and the number of distinct groups, respectively, are assumed

known. The power transformations of Box and Cox (1964) are de® ned as

Y
( k a )
i j 5 {(Y i j + y i j)

k a 2 1

k a

, if k a ¹ 0

log(Y i j + y i j), if k a 5 0

(2)

where y i j is a known constant such that Y i j + y i j > 0 for all i, j and Y i 5 (Y i1 , . . . ,

Y ipi
)Â . In practice, y i j 5 0 if all Y i j terms are positive. Without loss of generality, we

will assume y i j 5 0 for the rest of the paper, because y i j is assumed known. The conven-

tion Y
( k )
i 5 (Y

( k )
i1 , . . . , Y

( k )
ip )Â is adopted throughout the paper. Also, k a is unknown.

If all the p i are equal, i.e. balanced repeated measurements, then equation (1)

can be written as the generalized growth curve model with Box± Cox power

transformations. The generalized growth curve model, when no power transforma-

tions are applied, is de® ned as

Y
p 3 N

5 X
p 3 m

s
m 3 r

A
r 3 N

+ e
p 3 N

(3)

where Y 5 (Y1 , . . . , YN ), e 5 ( e 1 , . . . , e N ) and s 5 ( s 1 , . . . , s r) is unknown, X and A

are known design matrices of ranks m < p and r < N respectively. Furthermore, the

columns of e are independent p-variate normal with mean vector 0 and common

covariance matrix R . The model was ® rst proposed by Potthoþ and Roy (1964),

and subsequently considered by many authors, including Rao (1967, 1987), Khatri

(1966), Grizzle and Allen (1969), Geisser (1970, 1980), Lee and Geisser (1972,

1975), Fearn (1975), Lee (1988), Jennrich and Schluchter (1986) and Von Rosen

(1991). Lee (1988) studied equation (3) when R has AR(1) dependence, while

Keramidas and Lee (1990) incorporated into the model the Box± Cox power

transformations in the forecast of technology substitutions.

Lee (1988), Lee and Lu (1987) and Keramidas and Lee (1990) demonstrated

repeatedly the importance of AR(1) dependence, or serial covariance structure, for

the covariance matrix for equation (3). Applying the AR(1) dependence to the

covariance matrix R i for equation (1), we have

R i 5 r
2
C i (4)

where C i 5 ( q
½ d 2 dÂ ½ ); d, dÂ 5 1, 2, . . . , p i ; and r

2 > 0 and 2 1 < q < 1 are unknown.

The estimation of parameters and prediction of future values for equations (3)

and (4) have been studied using the ML method by Lee (1988). The purpose of

this paper is to consider equation (1) from a Bayesian point of view. The results

using the ML method are also included in the appendices.
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B ayesian analysis of general growth curve model 323

We will consider two types of prediction problem for unbalanced growth curve

models with power transformations as speci® ed by equations (1), (2) and (4). For

the ® rst type of prediction, let V be a set of p 3 1 future measurements of group a,

assumed to have been drawn from equation (1); i.e., the set of future values of

group a is such that, given the parameters s a and R , we have

E(V
( k a) ) 5 X s a (5)

where E( ) denotes the expected value, X is a known p 3 m matrix and V
( k a ) is a

multivariate normal with the covariance matrix R . We address the prediction of V

given Y 5 (Y1 , . . . , YN ), the unbalanced repeated-measures data, as the sample. It

is noted that Y is no longer p 3 N , because Y i is p i 3 1.

The second type of prediction problem is concerned with predicting the future

values of the observed sample. Let y j be a future q-dimensional vectoral measure-

ment of group a. We are interested in predicting y j given Y. This is a time series

prediction, so is important in practice. This type of prediction is called extended

prediction of y j , because the prediction is made beyond the observed time range

of the sample. It is noted that extended prediction is identical to conditional

prediction as studied in Lee and Geisser (1972, 1975), Fearn (1975), and Lee

(1988) when using the model speci® ed by equations (1) and (4).

In this paper, Bayesian inference by means of numerical integration, the Markov

chain Monte Carlo (MCMC) method, and some simple approximations are studied

for equation (1) with AR(1) dependence. In recent years, statisticians have been

increasingly drawn to MCMC methods, especially the Metropolis± Hastings (MH)

algorithm (Metropolis et al., 1953; Hastings, 1970) and the Gibbs sampler (Geman

& Geman, 1984; Gelfand & Smith, 1990). They have emerged as extremely

popular tools for the analysis of complex statistical models. While they have been

most widely used in Bayesian analysis, they have also been employed by frequentists

in missing and dependent data settings, where the likelihood itself involves compli-

cated high-dimensional integrals (see, for example, Gelfand & Carlin, 1993).

Excellent tutorials on the methodology have been provided recently by Casella and

George (1992) and Gilks et al. (1996).

In Section 2, Bayesian estimation of parameters is considered for the model. In

Section 3, two types of prediction problem are presented. In Section 4, Bayesian

inference by means of MCMC methods is studied with a non-informative joint

prior for the parameters. The results developed in this paper are illustrated in

Section 5, with real and simulated data. Finally, some concluding remarks are

presented in Section 6.

2 Bayesian estimation of parameters

Combining the likelihood function of r
2 , s 1 , . . . , s r , k 1 , . . . , k r and q with the non-

informative prior (Zellner & Tiao, 1964), i.e.

P ( s , r
2 , q , k )µ r

2 2 (6)

and integrating with respect to r
2 and s 1 , . . . , s r , we have

P ( q , k ½ Y) µ (1 2 q
2 ) 2 (n 2 N) /2 ½ J ½ B

2 (n 2 mr) /2
P

r

a 5 1 | R
N *

a

j 5 N *
a 2 1 + 1

XÂ i C
2 1
pi X i |

2 1/2

(7)
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324 J. C. Lee & K.-C. Liu

where

B 5 R
r

a 5 1
R
N *

a

i 5 N *
a 2 1 + 1

(Y
( k a)
i 2 X i s Ã a )Â C

2 1
i (Y

k a )
i 2 X i s Ã a ), k 5 ( k 1 , k 2 , . . . , k r )Â

Y 5 (Y 1 , . . . , YN1
, YN1 + 1 , . . . , YN *

r
), N *0 5 1

J 5 P
r

a 5 1
P
Na

i 5 N *
a 2 1 + 1

P
pi

j 5 1

Y k a 2 1
i j , n 5 R

N

i 5 1

p i , N 5 R
r

a 5 1

N *a

Also, a simple approximation is

P ( s a ½ Y) 5 Ç P ( s a ½ q Ã , k Ã , Y) (8)

where ( q Ã , k Ã ) is the mode of P ( q , k ½ Y), if P ( q , k ½ Y) is concentrated and nearly

symmetric, as pointed out by Ljung and Box (1980). Thus, we have the following

posterior distribution of s a , for a 5 1, . . . , r:

s a ½ Y ~ Ç Tm ( s Ã a ,[BÃ /(n 2 mr)] 2 1

R
N *

a

i 5 N *
a 2 1 + 1

XÂ i CÃ
2 1
i X i , n 2 mr) (9)

where

s Ã a 5 ( R
N *

a

i 5 N *
a 2 1 + 1

XÂ i CÃ
2 1
i X i )

2 1

R
N *

a

i 5 N *
a 2 1 + 1

XÂ i CÃ
2 1
i Y

( k Ã a )
i

CÃ i 5 ( q Ã ½ d 2 dÂ ½ ), d,dÂ 5 1, . . . , p i

BÃ is the value of B evaluated at k 5 k Ã and q 5 q Ã , with q Ã , k Ã maximize P ( q , k ½ Y), as

given in equation (7).

It is noted that, for a p 3 1 vector y, we say that y ~ Tp( l , R , m ), the multivariate

T-distribution, if its density is

f (y) 5 K( m , p) ½ R ½ 2 1/2 [1 + m
2 1(y 2 l )Â R 2 1(y 2 l )] 2 (p + m ) /2

where

K( m , p) 5 C (p + m

2 )/ C ( m

2 ) ( m p )p /2

Similar to equation (8), we have

r
2 ½ Y ~ Ç IG(n 2 mr

2
,

BÃ

2 )
where IG( m 1 , m 2 ) is the inverse gamma distribution with parameters m 1 and m 2 .

To compute the posterior region for s a of group a, for a 5 1, . . . , r, let F1 2 a ( m 1 , m 2 )

be the upper 100 a per cent point of the F distribution. Then, we have that

BÃ
2 1( s a 2 s Ã a )Â ( R

N *
a

i 5 N *
a 2 1 + 1

X iCÃ
2 1
i X i ) ( s a 2 s Ã a ) <

m

n 2 mr
F1 2 a (m , n 2 mr) (10)

which will provide a 1 2 a posterior region for s a .
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B ayesian analysis of general growth curve model 325

3 Prediction

Two types of prediction for the model speci® ed by equations (1), (2) and (4) will

be considered in this section.

3.1 Prediction of the future values V of g roup a

The prediction of the future vectoral measurement V 5 (V1 , . . . , Vp )Â given the

sample Y is considered here. The density function of V
( k a) given s a , r

2 , q and k a is

f (V
( k a ) ½ s a , r

2 , q , k a )µ ½ r 2
C p ½ 2 1/2 exp [ 2 1

2 r
2

(V
( k a ) 2 X s a )Â C

2 1
p (V

( k a ) 2 X s a ) ] (11)

Upon combining equation (11) with the joint posterior density of s , r
2 , q and k

given Y and integrating out r
2 , s 1 , . . . , s r and V

( k a ) , we obtain

P1 ( q , k ½ Y) µ (1 2 q
2 ) 2 [n + p 2 (N + 1)]/2 ½ J ½ ½ Q 2 1/2 ½ M ½ 2 1/2

(12)

P
r

k ¹ a| R
N *

k

i 5 N *
k 2 1 + 1

XÂ i C
2 1
i X j |

2 1/2

B
2 (n 2 mr) /2

where J and B are de® ned in equation (7), and

Q 5 Q 1 + Q 2 , Q 1 5 R
N *

a

i 5 N *
a 2 1 + 1

XÂ i C
2 1
i X i , Q 2 5 XÂ C

2 1
p X

M 5 C
2 1
p X(XÂ C

2 1
p X ) 2 1

Q 1 Q
2 1

Q 2 (XÂ C
2 1
p X ) 2 1

XÂ C
2 1
p + Z(ZÂ C p Z) 2 1

ZÂ

With arguments similar to equation (9), we obtain the following approximation for

the predictive distribution of V
( k a ) :

V
( k a ) ½ Y ~ Ç T p (X s Ã a1 ,[BÃ /(n 2 mr)] 2 1

MÃ , n 2 mr) (13)

where

s Ã a1 5 ( R
N *

a

i 5 N *
a 2 1 + 1

XÂ j CÃ
2 1
j X j )

2 1

R
N *

a

i 5 N *
a 2 1 + 1

XÂ j CÃ
2 1
j Y

( k Ã a )
j

BÃ , MÃ , QÃ and CÃ i are B , M , Q and C i evaluated at q 5 q Ã and k 5 k Ã , with q Ã , k Ã

maximize P1( q , k ½ Y), as given in equation (12).

Next, from equation (13) and from the de® nition of the power transformation

in equation (2), we can obtain the following approximate predictive density of V,

when k Ã a ¹ 0:

P (V ½ Y) 5 Ç Cv [BÃ + (V
k Ã a 2 1

k Ã a

2 X s Ã a1 )Â CÃ
2 1
p (V

k Ã a 2 1

k Ã a

2 X s Ã a1 )] 2 (n + p 2 mr) /2

½ Jv ½ (14)

where

C v 5 {[ ò [BÃ + (V
( k a) 2 X s Ã a1 )Â CÃ 2 1

p (V
( k a) 2 X s Ã a1 )] 2 (n + p 2 mr) /2 dV

( k a ) } 2 1

½ Jv ½ 5 P
p

k 5 1

V
k Ã a 2 1
k
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326 J. C. Lee & K.-C. Liu

Therefore, when k Ã a ¹ 0, we can predict V by the approximate predictor

VÃ 5 (1 + k Ã a X s Ã a1 )1/ k Ã a (15)

Similar to equation (10), when k Ã a ¹ 0, we have a 1 2 a prediction region for V by

the inequality

BÃ
2 1(V

k Ã a 2 1

k Ã a

2 X s Ã a1 )Â CÃ
2 1
p (V

k Ã a 2 1

k Ã a

2 X s Ã a1 ) <
p

n 2 mr
F1 2 a ( p, n 2 mr) (16)

For the case when k Ã a 5 0, the results are similar, so are omitted here.

3.2 Prediction of future observations when their past is available

We next consider prediction of y j , a future q-dimensional value of Y j , given

the observed unbalanced repeated measurements Y 5 (Y j , Y ( j ) ), where

Y ( j ) 5 (Y1 , . . . , Y j 2 1 , Y j +1 , . . . , YN ) and j 5 1, . . . , N*a ; a 5 1, . . . , r. This is a time

series prediction which is of practical interest for many types of growth curve data.

To make this type of prediction, the covariance structure generally has to be

extendable to the future values of the individuals observed. The AR(1) dependence

satis ® es this requirement.

Let xj , q 3 m , be a design matrix corresponding to y j ; Y j is in group a. Also,

E(Y
( k a)Âj , y

( k a )Âj )Â 5 (XÂ j , xÂ j )Â s a and R 5 Cov(Y
( k a )Âj , y

( k a )Âj )Â 5 r
2
C 5 r

2(C i j), i, j 5 1,2,

where C 5 ( q ½ d 2 dÂ ½ ), d, dÂ 5 1, . . . , (p j + q), C 11 is p j 3 p j, C12 is p j 3 q, C22 is q 3 q,

and C21 5 CÂ 12 .

Let Y
( k a )*

j 5 (Y
( k a )Âj , y

( k a )Âj )Â , X* 5 (XÂ j , xÂ j )Â . Arguments similar to those in Section

3.1 lead to the following approximate predictive density of y j :

P (y j ½ Y) 5 Ç C y [BÃ 1 + (y
k Ã a
j 2 1

k Ã a

2 l
( k Ã a)
y )Â GÃ 22 (y

k Ã a
j 2 1

k Ã a

2 l
( k Ã a )
y )] 2 (n + q 2 mr) /2

½ Jy ½ (17)

where

Cy 5 { ò [BÃ 1 + (y
( k a )
j 2 l ( k Ã a)

y )Â GÃ 22 (y
( k a)
j 2 l ( k Ã a)

y )] 2 (n + q 2 mr) /2 dy
( k a)
j } 2 1

½ Jy ½ 5 P
q

k 5 1

y
k Ã a 2 1
jk

GÃ 5 CÃ 2 1
X*(X*Â CÃ 2 1

X*) 2 1
QÃ *1 QÃ * 2 1

QÃ *2 (X*Â CÃ 2 1
X*) 2 1

X*Â CÃ 2 1 + Z*(Z*Â CÃ Z*) 2 1
Z*Â

5 (GÃ 11 GÃ 12

GÃ 21 GÃ 22 )
Q*1 5 R

N *
a

k 5 N *
a 2 1 + 1

k ¹ j

XÂ k C
2 1
k Xk , Q*2 5 X*Â C

2 1
X*, Q* 5 Q*1 + Q*2

GÃ 11.2 5 GÃ 11 2 GÃ 12 GÃ 2 1
22 GÃ 21 , l Ã ( k Ã a)

y 5 x s Ã *a1 2 GÃ 2 1
22 GÃ 21 (Y

( k Ã a)
j 2 X j s Ã *a1 )

BÃ 1 5 BÃ + (Y
( k Ã a)
j 2 X j s Ã *a1 )Â GÃ 11.2(Y

( k Ã al)
j 2 X j s Ã *a1 )
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B ayesian analysis of general growth curve model 327

s Ã *a1 5 ( R
N *

a

i 5 N *
a 2 1 + 1

i ¹ j

XÂ i CÃ
2 1
i X i )

2 1

R
N *

a

i 5 N *
a 2 1 + 1

i ¹ j

XÂ i CÃ
2 1
i Y

( k Ã a )
i

Z*, ( p j + q) 3 ((p j + q) 2 m), such that X*Z* 5 0, and q Ã , k Ã maximize

P2 ( q , k ½ Y)µ (1 2 q
2 ) 2 (n + q 2 N) /2 ½ J ½ ½ QÂ * ½ 2 1/2 ½ G 22 ½ 2 1/2 P

r

i ¹ a | R
Ni

j 5 1

XÂ j C
2 1
pj X j |

2 1/2

B
2 (n 2 mr) /2
1

(18)

Therefore, we can predict y j by the approximate predictor

yÃ j 5 (1 + k Ã a l
( k Ã a )
y )1/ k Ã a (19)

and a 1 2 a predictive region for y j from the inequality

BÃ
2 1
1 (y

k Ã a
j 2 1

k Ã a

2 l
( k Ã a )
y )Â GÃ 22 (y

k Ã a
j 2 1

k Ã a

2 l
( k Ã a )
y ) <

q

n 2 mr
F1 2 a (q, n 2 mr) (20)

Another approximate posterior density is the Rao ± Blackwellization approximation

P (y j ½ Y) > 1

L R
L

s 5 1

P (y j ½ Y, q
(s) , k

(s) ) (21)

where q
(s), k

(s) are drawn from P2( q , k ½ Y). Using this method, we can obtain the

approximate predictor and predictive region of y j as well.

We can also obtain the following joint density of q , k and y j :

P (y j , q , k ½ Y) 5 C *y (1 2 q
2 ) 2 (n + q 2 N) /2 ½ J ½ ½ Q* ½ 2 1/2

(22)

P
r

k ¹ a | R
N *

k

j 5 N *
k 2 1 + 1

XÂ j C
2 1
j X j |

2 1/2

B
2 (n + q 2 mr) /2
2 ½ Jy ½

where

B 2 5 B + (Y
( k a )
j 2 X j s *a1 )Â G 11.2 (Y

( k a )
j 2 X j s *a1 ) + (y

k a
j 2 1

k a

2 l
( k a )
y )Â G 22 (y

k a
j 2 1

k a

2 l
( k a )
y )

l ( k a )
y is l ( k Ã a )

y with k Ã a replaced by k a , and s *a1 is s Ã *a1 with k Ã a and q Ã replaced by k a and

q , respectively, and C *y is a normalized constant.

From equation (22), we can obtain the following exact predictive density of y j :

P (y j ½ Y) 5 ò ò P (y j , q , k ½ Y) d q d k (23)

4 Bayesian inference via MCMC sampling

The MH algorithm is an extremely powerful method that can be used in conjunction

with the Gibbs sampler to extract marginal distributions of interest. Some details

can be found in Chib and Greenberg (1995).
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328 J. C. Lee & K.-C. Liu

4.1 Model and algorithm

In this section, we will outline an MCMC sampling procedure with equation (1).

From the joint posterior density of s , r
2 , q , and k given the sample Y, the MCMC

sampling proceeds as follows

(1) Generate s a given r
2 , q , k a and Y from

Nm ( s Ã a , r
2( R

N *
a

j 5 N *
a 2 1 + 1

XÂ j C
2 1
j X j )

2 1

) (24)

(2) Generate r
2 given s , q , k and Y from the inverse gamma distribution

IG (n

2
,

S( s , q , k , Y)

2 ) (25)

where

S( s , q , k , Y) 5 R
r

a 5 1
R
N *

a

i 5 N *
a 2 1 + 1

(Y
( k a )
i 2 X i s a )Â C

2 1
i (Y

( k a)
i 2 X i s a )

(3) Generate q given s , r
2 , k and Y using the MH algorithm from

f ( q ) µ (1 2 q
2 ) 2 (n 2 N) /2 exp [ 2

S( s , q , k , Y)

2 r
2 ] (26)

(4) Generate k a given s a , q , r
2 and Y using the MH algorithm, where

f ( k a )µ ½ Ja ½ exp [ 2
1

2 r
2 R

N *
a

j 5 N *
a + 1

(Y
( k a)
j 2 X j s a )Â C

2 1
j (Y

( k a)
j 2 X j s a ) ] (27)

with

Ja 5 P
N *

a

j 5 N *
a + 1

P
pj

k 5 1

Y k a 2 1
jk (28)

To elaborate on the MH algorithm in step (3), let us assume that the prior on q is

uniform over ( 2 1, 1). We can transform q to q Â Î ( 2 ` , ` ) by

q Â 5 log
1 + q

1 2 q

Then, we apply the MH algorithm to the function

g( q Â )µ
exp[ q Â (n + 2 2 N) /2]

(1 + exp( q Â ))n + 2 2 N
exp [ 2

SÂ ( s , q Â , k , Y)

2 r
2 ] (29)

where SÂ ( s , q Â , k , Y) is obtained from S( s , q , k , Y) with q replaced by [exp( q Â ) 2 1] /

[exp( q Â ) + 1]. We also need to specify r q Â in the transition kernel. The quantity

r q Â is usually chosen to re¯ ect the conditional standard deviation of q Â given

s , r
2 , k , Y. We use the following method to estimate the variance r

2
q Â .

From equation (29), let l( q Â ; s , r
2 , k , Y) 5 log[ g( q Â ; s , r

2 , k , Y)]. Then, from this,
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B ayesian analysis of general growth curve model 329

invert the sample information given the q Â value in the MCMC sampling to obtain

the preliminary variance estimates of q Â , and put it into the MCMC procedure.

Having obtained q Â from the MH algorithm, we transform q Â back to q by

[exp( q Â ) 2 1] /[exp( q Â ) + 1]. The same operation can also be applied to the variate

k a with the prior on k a being uniform over ( 2 4, 4).

4.2 Forecast

Having obtained the posterior distribution of the unknown parameters from the

above MCMC samples, we can use it to predict the future values V of group a and

extended future q-dimensional values y j of group a. We will illustrate the process

of ® nding the functional, such as predictive density, estimator and intervals and

quantiles of the future values y j .

From Section 3.2, we obtain

f (y
( k a )
j ½ h , Y j) 5 Const exp [ 2 1

2 r
2 (y

( k a )
j 2 1

k a

2 l 2.1 )Â C
2 1
22.1 (y

( k a )
j 2 1

k a

2 l 2.1 )] (30)

where h 5 ( s a , r
2, q , k a), l 2.1 5 x s a + C 21C

2 1
11 (Y

( k a )
j 2 X j s a ), C22.1 5 C22 2 C21C

2 1
11 C12 ,

½ Jyj
½ 5 P

q
k 5 1 y k a 2 1

jk .

Prediction for the functional y j follows from the predictive density

f (y j ½ Y j) 5 ò f (y j ½ h , Y j) p ( h ½ Y) d h (31)

This density can be approximated by Monte Carlo integration from the MCMC

samplers

fÃ (y j ½ Y j ) 5 Ç
1

r R
r

s 5 1

f (y j ½ h (k,s) , Y j) (32)

where h
(k,s) is the variate of h drawn in the kth iteration and sth replication of the

MCMC sampler. The mean of this predictive distribution is computed from

E(y j ½ Y) 5 E(E(y j ½ h , Y j ) ½ Y) (33)

To evaluate the inner expectation in equation (33), let us consider two cases. Case

1 is k a ¹ 0.

It follows from equations (2) and (29) that

y j 5 (y
( k a )
j k a + 1)1/k a (34)

where y
( k a )
j 5 l 2.1 + n , n ~ Nq (0, r

2
C 22.1). Therefore, we have

y j 5 [( l 2.1 + n ) k a + 1]1/ k a (35)

Case 2 is k a 5 0.

We can derive the following equation by a similar method:

y j 5 exp( l 2.1 + n ) (36)

where l 2.1 5 x s a + C21 C
2 1
11 [log(Y j) 2 X j s l] and exp(a) 5 (exp(a1 ), . . . , exp(aq ))Â for

a 5 (a1 , . . . , aq )Â .

Let y
(k,s)
j denote the functional in equation (35) evaluated at the kth iteration

and sth replication of the samplers, noting that n
(k,s) is generated from the

N q (0, r
2(k,s)

C
(k,s)
22.1 ) distribution in each of the MCMC samples. Therefore,
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330 J. C. Lee & K.-C. Liu

when k a ¹ 0, we predict y j by

yÃ j 5
1

r R
r

s 5 1

y
(k,s)
j (37)

Alternatively, we can also predict y j using the median of the MCMC samplers

yÄ j 5 median({y
(k,s)
j }r

s 5 1 ) (38)

Prediction intervals and quantiles of the functional y j can be computed similarly

from the samplers y
(k,s)
j , s 5 1, . . . , r. Likewise, when k a 5 0, we can use the same

method to predict y j .

Theoretically, the posterior probability of the case k a 5 0 is 0. However, we had

to program the two cases ( k a 5 0 and k a ¹ 0) of the forecast rule separately to avoid

an over¯ ow problem.

The forecast of the future values V can be done quite similarly, so is omitted.

5 Numerical illustration

5.1 Applications of technological substitutions with concur rent short time series

In this section, we will apply equation (1), as speci® ed in Section 1, to a set

(Region B) of telephone switching data studied by Keramidas and Lee (1990).

These data are obtained from a region in the USA consisting of ® ve states. Since,

in the area of technological substitutions, the logistic growth curve is most popular,

we will restrict our attention to this particular model in which the variable Y jt is

de® ned as

Y jt 5 F j(t) /[1 2 F j(t)] (39)

where F j(t) denotes the new technology penetration at time t of measurement j.

The technology penetration is the fraction of the total number of new technology

users divided by the total number of new and old technology users. Therefore, the

general growth curve model with power transformation as described in equations

(1), (2) and (4) can be applied for technological substitutions.

It is noted that this data set has been studied carefully by Keramidas and Lee

(1990). For this paper, we will restrict our attention to the special situation in

which r 5 1, i.e. there is only one group, and apply the transformation in equation

(2) to Y jt de® ned in equation (39). Next, as q 5 1, we show in Fig. 1 a comparison

of approximate and exact predictive densities of y, the last year in state 5, given

the entire data except the last year in that state as our sample Y. Note that the

exact predictive density of y is obtained by integrating out w.r.t. q and k via

numerical integration as given in equation (23). Figure 2 exhibits that the joint

posterior density of q and k given Y is well concentrated and nearly symmetric.

Hence, the approximation given by equation (17) for the predictive distribution y

should be quite adequate.

For the results of Bayesian inference via MCMC sampling, Table 1 lists the

estimates of the standard deviation, and the percentiles for each of the parameters

for the entire data with Y jt given in equation (39) except year 12 of all states. The

Bayes estimates are computed from the MCMC samplers with 50 iterations and

522 replications. Moreover, 50 loops are carried out in each MH algorithm. The

starting points for the replications for each parameter are chosen from random

perturbations around the maximum likelihood estimates as developed in Appendix
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MCMC approximation
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FIG. 1. Comparison of exact and approximate predictive densities of y given Y. Here, Y is the year 12

in state 5 given the entire data set except the last year in that state as the sample.
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FIG. 2. Posterior of q and k given Y. The sample is the same as in Fig. 1.

TABLE 1. MCMC approximations for switching data

Mean SD 2.5% 5% 25% 50% 75% 95% 97.5%

s 2 2.146 , 0.143, 2 2.419, 2 2.370, 2 2.242, 2 2.142, 2 2.054, 2 1.926, 2 1.863,

0.210 0.015 0.183 0.187 0.199 0.210 0.219 0.234 0.239

q 0.785 0.083 0.619 0.644 0.731 0.791 0.845 0.915 0.928

k 0.356 0.048 0.257 0.275 0.324 0.357 0.386 0.441 0.461

r
2 0.028 0.016 0.013 0.014 0.019 0.024 0.031 0.057 0.069
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332 J. C. Lee & K.-C. Liu

TABLE 2. MCMC approximate predictive means, the standard deviations, and

the percentiles for ® ve states when forecasting the penetration of year 12

State Mean SD 2.5% 50% 97.5%

1 0.5735 0.0225 0.5268 0.5734 0.6150

2 0.6043 0.0198 0.5635 0.6054 0.6412

3 0.5872 0.0215 0.5428 0.5885 0.6273

4 0.5687 0.0217 0.5244 0.5685 0.6076

5 0.6229 0.0193 0.5838 0.6219 0.6607

A. The convergence of the MCMC samplers is monitored by examining their

empirical quantiles and the measure, Î RÃ , proposed by Gelman and Rubin (1992).

It is noted that the choice of starting points can re¯ ect the speed of convergence

for the parameters. Therefore, adequate starting values will accelerate the rate of

convergence for the estimation of parameters. The MCMC posterior intervals can

easily be obtained from Table 1. For example, the 95% intervals are read from the

2.5% and 97.5% columns.

By the MCMC samplers mentioned above, we can also obtain the approximate

conditional predictive density of y as developed in Section 4. Figure 1 shows a

comparison of exact density, MCMC approximation and the simple Bayesian

approximation given by equation (17) for the predictive density of y. It is clear

that the approximation via MCMC sampling is better than the simple Bayesian

approximation given by equation (17), although equation (17) performs quite

well. The Rao± Blackwellization approximate predictive density, which is given by

equation (11), is expected to give excellent approximation as well.

Table 2 lists the MCMC approximate predictive means, the standard deviation

and the percentiles of the penetration for each of the ® ve states when year 12 is

being forecast. Figure 3 shows a comparison of 95% predictive intervals for the

penetration of year 12 by three Bayesian methods: simple approximate, MCMC

and exact, when the data consist of the entire data set except year 12 of all states.

It is clear that the intervals via the simple approximate Bayesian method have a

slight upward-shift from those produced by MCMC sampling. Meanwhile, the

intervals via MCMC sampling are almost the same as the exact.

5.2 Simulations

In this subsection, we will present some simulation results using cross-validation

(predictive sample reuse or `leave-one-out’ ), via the simple approximate Bayesian

and ML methods, for the comparison of 95% predictive intervals of y given Y, the

simulated data except the measurement of the last value being forecast. Here, we

set p 5 6, q 5 1, 1 2 a 5 0.95, s 5 ( 2 1.2, 0.2)Â , r
2

5 0.02, q 5 0.85, k 5 0.7, N 5 5,

10, 20, and the number of replication g 5 50. This gives N predicted intervals for

the last N observed values in each data set. Overall, there are 50 3 N predicted

intervals to be compared with 50 3 N actual observations for each method. Table

3 lists a comparison of coverage probability for N 5 5, 10 and 20. It is clear that

the simple approximate Bayesian method is much better than the ML method,

because the percentage of the Bayesian intervals covering the true values is closer

to 0.95 than ML intervals for each of the three situations. It is noted that the

coverage probability by the ML method will be closer to 0.95 as N increases.

Therefore, the simple approximate Bayesian method tends to provide more reliable
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FIG. 3. Comparison of 95% predictive intervals for the penetration of year 12. The data consist of the

entire data set except year 12 of all states.

TABLE 3. Comparison of coverage probabilities for

the prediction of y

Coverage probability

Bayesian ML

N 5 5 0.932 0.888

N 5 10 0.932 0.914

N 5 20 0.946 0.935

Here, p 5 6,1 2 a 5 0.95, s 5 ( 2 1,2,0.2)Â , r
2

5 0.02,

q 5 0.85, k 5 0.7, q 5 1 and no. of replications 5 50.

predictive intervals than the ML method when the sample size is moderate or

small. Better results can be obtained by using MCMC samplers.

6 Concluding remarks

The Bayesian methods presented in this paper, including simple approximate

Bayesian and Bayesian via MCMC sampling, provides alternative ways of dealing

with the general (balanced or unbalanced) growth curve data when the serial

covariance structure holds, while applying the Box± Cox power transformation on

the observations. The model as speci® ed in equations (1), (2) and (4) can be very

useful in forecasting technological substitutions for concurrent short time series.
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334 J. C. Lee & K.-C. Liu

The serial covariance structure (AR(1) dependence) is de ® nitely an important

dependence structure for the unbalanced repeated measures.

It is noted that the Bayesian methods presented in this paper provide superior

ways of constructing more reliable predictive intervals and regions for the future

values. Meanwhile, the forecast accuracy for the future values via the simple

approximate Bayesian method is better than the ML method. More accurate

approximation can be obtained from MCMC samplers. Furthermore, the computa-

tions involved are not diý cult and do not take much running time. It is noted that

all computing results in this paper are conducted in the S-plus environment.

Finally, it is fair to say that the proposed approximate Bayesian methods with

power transformation and AR(1) dependence covariance structure should be quite

useful for practitioners in dealing with forecasting technological substitutions with

concurrent short time series, as well as with other data in which the transformation

is helpful. The results are useful for the situation in which no transformation is

needed as well, because it will simply be a special case.
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Appendix A: The ML estimates of the parameters

The ML estimates of parameters s , r
2 , q and k denoted as s Ã , r Ã

2 , q Ã and k Ã are

s Ã a 5 ( R
N *

a

j 5 N *
a 2 1 + 1

XÂ j CÃ
2 1
j X j )

2 1

R
N *

a

j 5 N *
a 2 1 + 1

XÂ j CÃ
2 1
j Y

( k Ã a )
j (A1)

and

r Ã
2

5
1

n [ R r

a 5 1
R
N *

a

j 5 N *
a 2 1 + 1

(Y
( k Ã a )
j 2 X j s Ã a )Â CÃ 2 1

j (Y
( k Ã a)
j 2 X j s Ã a ) ] (A2)

with n de® ned in equation (7), CÃ j 5 ( q Ã ½ a 2 b ½ ), a, b 5 1, . . . , p j and q Ã , k Ã 1 , . . . , k Ã , maxi-

mize the pro ® le likelihood function

Lmax ( q , k 1 , . . . , k r ) 5 [ r Ã
2( q , k 1 , . . . , k r )] 2 n /2(1 2 q

2 ) 2 (n 2 N) /2 ½ J ½ (A3)

where J, the Jacobian of the power transformation, is de® ned in equation (7), and

r Ã
2( q , k 1 , . . . , k r ) is the r Ã

2 given in equation (A2) with q Ã , k Ã 1 , . . . , k Ã r replaced by

q , k 1 , . . . , k r respectively.

Appendix B: Prediction of y j given Y with the ML method

With the same assumption as described in Section 3.2, we have as our predictor

for y j , given Y

yÃ j 5 {1 + k Ã a [x s Ã a + CÃ 21 CÃ 2 1
11 (Y

( k Ã a )
j 2 X j s Ã a )]}1/k Ã a , k Ã a ¹ 0

(B1)

5 exp{x s Ã a + CÃ 21 CÃ
2 1
11 [log(Y j) 2 X j s Ã a ]}, k Ã a 5 0

where s Ã a is given in equation (A1), 1 5 (1, . . . , 1)Â , q 3 1. In equation (B1), we use

the convention that b
d

5 (b
d
1 , . . . , b

d
p )Â .

In addition to the point prediction, we can obtain interval prediction for y j given

Y. For q 5 1, we have the approximate predictive interval

yÃ j 6 za/2 r Ã y (B2)
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where za/2 is the 100 a /2 per cent point of the standard normal distribution

r
2
y 5 [hÂ ( l 2.1 )]2

r
2(C 22.1 + AW

2 1
AÂ 2 2C21 C

2 1
11 X jW

2 1
AÂ )

A 5 x 2 C 21 C
2 1
11 X j , W 5 R

N *
a

j 5 N *
a 2 1

XÂ j C
2 1
j X j

l 2.1 5 x s Ã a + C21 C
2 1
11 (Y

( k Ã a )
j 2 X j s Ã a ), hÂ (X ) 5 (1 + k a X )(1 2 k a )/ k a

It is noted that r
2
y is the variance of the forecast error for y j when the parameters

q , k and r
2 are assumed known, and r Ã

2
y is its estimate obtained by substituting the

ML estimates for the unknown parameters.

Appendix C: Prediction of future penetration with the ML method

From equations (39) and (B1), we have our predictor for F j(t) the future penetra-

tions, given by

FÃ j(t) 5 yÃ jt /(1 + yÃ jt) (C1)

For q 5 1, we have the approximate predictive interval for F j (t)

FÃ j(t) 6 za/2 r Ã f (C2)

where za/2 is the 100 a /2 per cent point of the standard normal distribution

r
2
f 5 [ gÂ ( l ( k a)

2.1 )]2
r

2(C22.1 + AW
2 1

AÂ 2 2C21C
2 1
11 X jW

2 1
AÂ )

A 5 x 2 C 21 C
2 1
11 X j , W 5 R

N *
a

j 5 N *
a 2 1

XÂ j C
2 1
j X j

l ( k a )
2.1 5 x s Ã a + C21 C

2 1
11 (Y

( k Ã a )
j 2 X j s Ã a )

gÂ (X ) 5 (1 + k a X ) 2 (1/ k a +1) [1 + (1 + k a X )1/ k a ] 2 2

It is noted that r
2
f is obtained in a manner similar to r

2
y discussed in Appendix B.
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