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Gate Oxide Integrity of Thermal Oxide Grown on
High Temperature Formed Si0:3Ge0:7

Y. H. Wu and Albert Chin, Senior Member, IEEE

Abstract—We have investigated the gate oxide integrity of
thermal oxides direct grown on high temperature formed
Si0 3Ge0 7. Good oxide integrity is evidenced by the low inter-
face-trap density of 5 9 10

10 eV 1cm 2, low oxide charge
density of 5 6 10

10 cm 2, and the small stress-induced
leakage current after −3.3 V stress for 10 000 s. The good gate
oxide integrity is due to the high temperature formed and
strain-relaxed Si0 3Ge0 7 that has a original smooth surface and
stable after subsequent high temperature process.

Index Terms—Gate oxide integrity, SiGe oxide, stress-induced
leakage current.

I. INTRODUCTION

GATE oxide integrity [1]–[6] is one of the most important
factors for process integration. Although SiGe channel

p-MOSFET’s [5]–[11] have improved current-drive capability,
operation speed, and package density of CMOS circuits, the gate
oxide integrity is still unexamined. To prevent strain relaxation
and defect generation, low temperature ( ) processing is
necessary for SiGe p-MOSFET. Unfortunately, both gate oxide
integrity and junction leakage are much degraded at the limited
low temperature [12], and also obstacles further process inte-
gration with modern high-K gate dielectric [13], [14]. Recently,
we developed a new SiGe formation process using deposited
amorphous Ge followed by rapid thermal annealing (RTA) [15].
Because SiGe is formed by solid phase epitaxy at high temper-
atures similar to silicide formation [16], better thermal stability
can be expected. High hole mobility of 250 cm/Vs and low
source-drain pn junction leakage are obtained using high tem-
perature (950C) RTA of B implanted damages [17]. In this
letter, we have further investigated the gate oxide integrity of
thermal oxide directly grown on high temperature formed SiGe.
Good oxide integrity is evidenced by low interface-trap den-
sity, smooth surface, and small stress-induced leakage current
(SILC), which is attributed to the high SiGe forming tempera-
ture and no rough surface or pinholes [9]–[11] are formed during
subsequent device processing.

II. EXPERIMENTAL

Standard 4-in p-type (100) Si wafers were used in this work.
In addition to SiGe oxides, Si control oxides were also fabri-
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Fig. 1. I–V characteristics of 50 Å thermal oxides grown on 850 and 900
�C RTA formed Si Ge . The insert figure is the cumulative probability for
breakdown electric field.

cated as references. After device isolation,120 Å amorphous
Ge layer is deposited on active region. An HF-vapor passiva-
tion is used to suppress the native oxide formation before Ge
deposition [3], [14]–[17]. A 200 Å Si Ge with good crys-
talline quality was then formed by RTA at 900C as measured by
cross-sectional TEM and X-ray diffraction. More detailed ma-
terial characterization can be found in our previous study [16],
[17]. Gate oxides of 50 Å were then grown by dry Oat 900 C
for both Si Ge and Si control sample. Gate capacitors were
formed after a 3000 Å poly-Si deposition, phosphorus doping
and subsequent patterning.

III. RESULTS AND DISCUSSION

Fig. 1 shows current–voltage (I–V) characteristics of thermal
oxides grown on 850 and 900C RTA formed Si Ge , re-
spectively. Inset figure is the cumulative probability for break-
down electric field. Note that oxide grown on 850C RTA SiGe
has lower breakdown electric field as compared to that grown on
900 C SiGe. The degraded oxide property as decreasing SiGe
formation temperature may be due to either strain relaxation or
higher defect density by lower formation temperature. However,
either mechanism may be a fundamental limitation of gate oxide
integrity using low temperature MBE or CVD grown SiGe. A
breakdown electric field of 11 MV/cm is obtained from thermal
oxide grown on 900C formed SiGe that is still lower than con-
ventional SiO. Possible reason may be due to the presence of
weaker GeOinside the SiO matrix as measured by SIMS sim-
ilar to literature report [18]. However, the Ge peak decreases an
order of magnitude within 10 Å from interface and most part of
this oxide is primarily SiO form.
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Fig. 2. Interface-trap density of 50 Å thermal oxide as a function of energy
obtained from the insert quasistatic and high frequencyC–Vcurves.

Oxide charge and interface trap density are other important
factors for gate oxide integrity, which are directly related to low
frequency device noise [19]. Fig. 2 shows the interface-trap den-
sityobtainedfromtheinsertcapacitance–voltage(C–V)curves.A
substrate doping concentration of cm is extracted
fromC–Vthat is consistent with the measured sheet resistivity on
thiswafer.A low interface-trapdensityof eV cm
and a oxide charge density of cm are obtained
that are the lowest reported values on direct thermally oxidized
SiGe. The low concentration of oxide traps further explains the
measuredhighinterfaceholemobilityandcurrentdrivecapability
reportedpreviously [17].Thenegativeoxidecharge isbelieved to
beduetotheelectrontrapsformedinSiGeoxide.

To further understand the low oxide traps, we have also
measured the surface roughness using atomic force microscopy
(AFM). Fig. 3(a) and (b) show the AFM images of SiGe
surface before and after oxidation, respectively. RMS rough-
ness values of 1.55 and 1.60 Å are measured on respective
Si Ge surface and oxide that indicates the oxidation
process did not roughen the initial SiGe surface. It is also
important to notice that the surface smoothness of SiGe
is comparable to standard Si surface. The smooth SiGe
surface may be due to the similar solid phase epitaxy as CoSi
formation [16]. In contrast to previous reports, no rough surface
or pinholes are observed even for a high Ge composition up to
70% [9]–[11]. This may be due to the high temperature formed
Si Ge that is already strained relaxed as confirmed by the
very sharp XRD linewidth after oxidation with near identical
peak position and linewidth to as formed SiGe .

Reliability is another important issue for practical process in-
tegration of SiGe gate oxide. We have also investigated the re-
liability using a constant voltage stress. Fig. 4 shows the SILC
effect from the insert figure after a3.3 V stress for 10 000 s.
The small SILC indicates excellent gate oxide reliability that is
attributed to the smooth oxide surface and related uniform elec-
tric field distribution over oxide area [3]. The good reliability
also suggests that the high temperature strain relaxed and stable
Si Ge is the essential factor to achieve good oxide integrity.

IV. CONCLUSION

Good oxide integrity is obtained from direct thermally oxi-
dized Si Ge . This is evidenced by low oxide-trap density,

(a)

(b)

Fig. 3. AFM images of 50 Å thermal oxide grown on SiGe surface (a)
before and (b) after oxidation.

Fig. 4. SILC effect after−3.3 V stress for 10 000 s on 50 Å thermal oxide
grown on Si Ge . The insert figure is the current density during the stress.

smooth surface, and small SILC. The good gate oxide integrity
is due to the high temperature formed and strain-relaxed
Si Ge that has a very smooth surface and stable after
subsequent high temperature process
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