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On Computing the Minimum Feedback Vertex Set of
a Directed Graph by Contraction Operations

Hen-Ming Lin and Jing-Yang Jou

Abstract—Finding the minimum feedback vertex set (MFVS)in can slow down the analysis significantly, the size of the FVS
a graph is an important problem for a variety of computer-aided  plays an important role in speeding up the analyRistial scan
design (CAD) applications and graph reduction plays animportant -, shlemis another application on the MFVS problem. It only
role in solving this intractable problem. This paper is largely con- K bset of flin-fl ble [4] and th d both
cerned with three new and powerful reduction operations. Each of makes a subset of flip-flops scannable [4] an us.re HCES DO
these operations defines a new class of graphs, strictly larger than the area overhead and the performance degradation caused by
the class of contractible graphs [Levy and Low (1988)], inwhichthe the scan design. In the past, the authors of [5]-[11] used a di-
MFVS can be found in polynomial-time complexity. Based on these rected graph, calle8-graph to model the structural dependen-
operations, an exact algorithm run on branch and bound manner ciesin acircuit. In arf-graphG = (V, E), avertex represents

is developed. This exact algorithm uses a good heuristic to find out flio-flop 7 in th iginal circuit and dae (i ists wh
an initial solution and a good bounding strategy to prune the so- aflip-flop ¢ in the original circuit and an edge. (j) exists when

lution space. To demonstrate the efficiency of our algorithms, we there is a combinational path from the flip-flepo the flip-flop
have implemented our algorithms and applied them to solving the j. Then, they used the MFVS of thg-graph to intelligently
partial scan problem in ISCAS’89 benchmarks. The experimental choose the flip-flops to scan.

results show that if our three new contraction operations are ap- Unfortunately, the MFVS problem is known as NP-complete

plied, 27 out of 31 circuits in ISCAS’89 benchmarks can be fully . . .
reduced. Otherwise, only 12 out of 31 can be fully reduced. Fur- on general graph [12] and even on bipartite one [13]. Smith and

thermore, for all ISCAS'89 benchmarks our exact algorithm can  Walford [2] develop an optimal algorithm to solve this problem
find the exact cutsets in less than 3 s (CPU time) on SUN-Ultrall in any graph. Their major idea is to propose a sufficient con-

workstation. Therefore, the new contraction operations and our al- dition for one or more vertices to be a part of some MFVS.
gorilt_hm;, are demonstrated to be very effective in the partial scan g gyfficient condition is the following: given a directed graph
application. G = (V, E), avertex sef’ C V and a vertex sefy that con-
_Index Terms—Algorithm, branch and bound, design for testa-  sjsts of all vertices in the cycles containing a verte¥inF is a
bility, graph theory, minimum feedback vertex set, partial scan. part of some MFVS of3 if F is an MFVS ofGx. Their algo-
rithm chooses one vertex at a time, two vertices at a time, and
|. INTRODUCTION so on as thé” set and tests if the chosen vertex set satisfies this
condition. If a vertex sef’ satisfies the condition, the vertex set
. ; . ~ I is removed from the graph. The process is then repeated on
. bactr vg/rfe_x S‘ft (ME\:?;obf[{em Is to |_dent|{|y thet_ M the remaining graph. However, in the worst case, eamplete
"Tum subset/ n suhc. a ? e'rVIremovmg at verdl_c(;esalg raph, this algorithm can only find the MFVS after enumerating
! g;\%mamlr;.g grapn is acl:)yc 'Ca ar;jy.comﬁ.u er—abll € T e exponential number of all vertex combinations. Therefore,
sian (. ) app Ications can be reduced into this problem. rfﬁeir algorithm can only handle smaller graphs [10]. Ashar and
following three applications are pointed out in [2]. 1) Identlw lik [9] propose an implicit method based on binary decision

the state variables needed in test generation. 2) Identifythefea igram (BDD) to compute the MFVS in any graph. They de-

back cut needed in the logic simulation. 3) |dentify the IOCE?‘ive a Boolean function whose satisfying assignments directly

tion in a circuit needed for complete diagnosis of circuit fault%. :
. . . : orrespond to the FVS of a graph. By searching the shortest path
Xie and Beerel [3] transform an origindarkov chain which P grapn. By ng P

Lo in the BDD of this Boolean function, the MFVS of the graph can
models an asynchronous system under analysis, into a smal|

. &'found. Chakradhast al. [7] use theinteger linear program-
one. Thefeedback vertex s@FVS) of the state transition graphm'ng(ILP) to model the MFVS problem. A lower bound can be

of the original Markov chain is the state space of the transformg lculated by relaxing their ILP formulation laear program-

Markov chain. Because larger state space of the Markov Ch‘?ﬁrﬂwg(LP) formulation. They then use this lower bound to design

a branch and bound algorithm to solve the MFVS problem.

, _ _ , Because of the intractability of the MFVS problem, some
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an approximation algorithm with the approximation factothe class of reducible graphs, the contraction operations could

O(log n) for finding adirected cuthat splits the graph into two still reduce their size and improve the performance of these exis-

(approximately) equal-sized components. Then, they desigmt algorithms. Ashar, Malik [9] and Chakradleial.[7] have

an approximation algorithm for MFVS problem by using thehown that the graph reduction can significantly speed up their

directed cut. This approximation algorithm for MFVS problenexact algorithms.

partitions the original graph into two parts by a directed cut, Furthermore, we develop a new exact algorithm according to

adds the cut into the feedback set, and continues finding tie contraction operations. This algorithm runs on the branch

directed cut for each part recursively. The recursion endad bound manner and thus needs an effective bounding strategy

when the graph no longer contains cycles. The approximatiand a good initial solution. Because of these requirements, we

factor of this algorithm is Q6g®n). Evenet al. [15] further develop an effective bounding algorithm to prune the solution

improve the approximation factor to Bgnloglogn) by space and a heuristic algorithm that produces a good initial so-

changing the method of selecting the directed cut. They firsition. Both the algorithms are based on the contraction opera-

introduce a distance metric on the vertex/edge set. Theions and thus reduce the effort of implementation. To demon-

their approximation algorithm picks arbitrarily a vertexand strate the efficiency of our algorithms, we have implemented

conducts a single-source-shortest-paths algorithm f¥ofhe our algorithms and applied them to the partial scan application.

single-source-shortest-paths algorithm defines layers wilthe experimental results show that if our three new contrac-

respect to the source where each layer is a directed cut, antion operations are applied, 27 out of 31 circuits in ISCAS'89

the layer with the minimum cost is chosen to partition thbenchmarks [4], [8], [10], [11] can be fully reduced. Other-

graph into two parts. Bar-Yehudat al. [16] also propose an wise, only 12 out of 31 can be fully reduced. Furthermore, for

approximation algorithm according to the property2ef3 sub- all ISCAS’'89 benchmarks our exact algorithm can find out the

graphin which the degree of each vertex is either two or threexact cutsets in less than 3 s (CPU time) on SUN-Ultrall work-

The approximation factor of their algorithm is(®— 2/n). station. Therefore, the new contraction operations and our algo-

However, this algorithm can only handle undirected graphs. rithms are demonstrated to be very effective in the partial scan
Even though MFVS problem is NP-complete, the MFV&pplication.

of some classes of graphs can be found in polynomial-timeThe remainder of this paper is organized as follows. We state

complexity. Several authors have proposed polynomial-tinpeeliminaries in Section II. In Section Il and Section IV, we

algorithms to solve the MFVS problem in some special graphsropose the new contraction operations and our exact algorithm.

Liang [19] proposes an algorithm with {&]|}]) time com- The experimental results present in Section V. Finally, Section

plexity to solve theminimum cost feedback vertex @#CFVS) VI concludes the paper.

problem inpermutation graphsLu and Tang [18] propose a

linear time algorithm to find the MCFVS dhterval graphs

However, most of the graphs modeling the CAD applications Il. PRELIMINARIES

do not generally satisfy the restrictions caused by these special

graphs. Levy and Low [1] propose five contraction operations. First, some definitions are given and will be used in the fol-

The five operations define a class of graphs catledtractible lowing discussions.

graphsin which the MFVS can be found in polynomial-time Definition 1: A directed graphG is a pair(V, E), whereV’

complexity. Their algorithm reduces the size of an input grapsa finite set andv is a binary relation ov’. The set/ is called

by iteratively using the five contraction operations. If a graptihevertex sebf GG, and its elements are callgdrtices The set

can be fully reduced, the graph is a contractible graph. Levyis called theedge sebf ¢, and its elements are calledges

and Low [1] have shown that the class of contractible grapf®esizeof a graphG = (V, F) is the number of the vertices in

contains both the class of/clically reducible graph$17] and the vertex set’.

the class of interval graphs. In this paper, we further proposeDefinition 2: If (u, v) is an edge in a directed gragh =

three new and powerful contraction operations. Incorporatittlf, £), we say that itstartsat the vertexs andpointsto the

our new contraction operations with the five operations preertexwv, and it is arout-edgeof the vertexu and ann-edgeof

posed in [1], we define a new class of graphs catledlicible the vertexs. Theout-degreef the vertexu is the number of the

graphs strictly larger than the class of contractible graphs, iaut-edges of:, and thein-degreeof the vertexu is the number

which the MFVS can be found in polynomial-time complexityof the in-edges of.. Thedegreeof a vertex is its in-degree plus
Please note that the three new contraction operations canigheout-degree.

hance both the speed of the existent exact algorithms [7], [9]Definition 3: A pathof length% from a vertexu to a vertex

and the quality of the FVS produced by the existent approxit in a graphG = (V| F) is a sequencévo, v1, va, ..., Uk)

mation algorithms [14], [15]. The reason is that both the speefivertices such that = v, v’ = vy, and(v;_1, v;) € E for

of the exact algorithms [7], [9] and the approximation factors= 1, 2, ..., k. If there is a patlp from a vertexu to another

of the approximation algorithms [14], [15] depend on the sizaeertexy’, we say that.’ is reachablefrom « viap. A path forms

of input graph, and the graph reduction caused by the eightcersycleif vy = v, and the path contains at least one edge. A

traction operations (three new plus five old) can reduce the sizgcle (vo, 1) is called aself-loop

of the input graph while it still preserves the information neces- Definition 4: A cutsetof the graphG = (V, E) is a set of

sary for finding a MFVS. The property is callegtimality pre- verticesC' C V' such that7—C is acyclic.

serving propertyTherefore, even for the graph not belonging to Now, we formally state the MFVS problem.
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The MFVS Problem (Cycle Breaking Probler®iven a di- e @
rected graplt, find a cutset” such that the number of the ver- ‘ o
tices in the cutse€’ is the minimum. LQ pe

In Section II-A and 1I-B, we discuss the previous contractio 0 e

algorithms that are used frequently to solve the MFVS proble
[5]-[11] and their applications on the partial scan problems.

!

O

A. The Previous Contraction Algorithms

The previous contraction algorithms proposed in [1] and [1/ o 0
consist of two major steps: 1) the graph reduction and 2) t Q ° e
heuristic selection. The graph reduction step reduces the gri

while it preserves all properties necessary for finding the mi

imum cutset. In the graph reduction step, there are five contr: l
tion operations: 1) INO operation: given a vertexvith in-de-

gree zero, remove and all its incident edges; 2) OUTO oper- 0
ation: given a vertex with out-degree zero, removeand all
its incident edges; 3) LOOP operation: given a veriexith a LOOP(g) a

self-loop, pushy into the cutset, remove and all its incident
edges; 4) IN1 operation: given a vertexwith in-degree one
and no self-loopy is the uniquepredecessoof v, mergev into °
u as a single vertex; and 5) OUT1 operation: given a vertex Q
with out-degree one and no self-loapis the uniquesuccessor
of v, mergev to « as a single vertex. Fig. 1 shows an exampl
of applying the contraction operations to a directed graph. If the
graph can be reduced completely by the contraction operationsginal circuit and an edge,(;) exists when there is a com-
the cutset is the minimum one, and this graph belongs to thimational path from the flip-flog to the flip-flop 5. Primary
contractible graphOtherwise, a vertex is selected heuristicalljnputs and primary outputs are not included in the verte¥’set
from the remaining vertices, push it into the cutset and remoVaerefore, the problem of scan flip-flop selection is reduced
it and its incident edges from the graph. In [1], the heuristic t® find the MFVS ofS-graph. This approach tends to produce
conducted by randomly choosing a vertex from the remainitggh fault coverage with relatively low area overhead. We will
graph. From several experiments, the authors of [10] found tltemonstrate the efficiency of our algorithms on this approach.
random selection is not effective. They proposed to select the
vertex with the maximum sum of the in-degree and the out-de- I1l. OUR NEW CONTRACTION OPERATIONS
gree in the remaining graph. If the heuristic selection is con- )
ducted, then the cutset obtained is not guaranteed to be the nfin}1-€dges (PIE) Operation
imum. The graph reduction step and the heuristic selection stefPIE operation removes the redundant edges of a geafur
are iteratively applied until the graph is empty. cycle breaking consideration. It contains two ideas. We describe
them as shown below.

The first idea comes from the conceptaaiyclic edgesGiven

The scan desigris a populardesign-for-testabilitDFT) an edge:, if no cycle goes through, the edge: is calledacyclic
technique. In dull scan designall flip-flops are replaced by edge For illustration in Fig. 2(a), there are two subgrapfis,
scannable flip-flops, so that only combinational test generatiandGs, in the grapi=. The set of the edges betwe@n andG,
method is necessary for generating the test set with high faiglcalledEq; 2. If all edges in thellg;_ o2 are in the same di-
coverage. However, the full scan designs often incur highction, such as fron; to G2, then no cycle if7 contains the
area overhead and performance degradation. Due to its ledges in thekg; ¢o. Therefore, the edges in thgg; o are
overhead, thepartial scan desigmmethodology has become aacyclic edges and can be removed fréhfor cycle breaking
major DFT technique for sequential circuits. For a long timeonsideration. The grap¥ shown in Fig. 2(b) is not the con-
a variety of techniques have been applied to automaticathactible one because both the in-degree and the out-degree of
selecting the scan flip-flops. The approach proposed in [4]l vertices inG are larger than one and there is no self-loop.
uses testability analysis to select scan flip-flops. The methbtbwever, Fig. 2(b) can be divided into two subgrapfis,and
suggested in [20] uses functional vectors and a combinatiod& as shown, and the acyclic edges shown in bold edges can be
test generator to select the scan flip-flops. In [8], the approadmoved. Because both; andG, are the contractible graphs
is concerned with the selection of scan flip-flops aiming tand can be reduced as shown in Fig. 2(c), the optimum solution
break up the cyclic structure in the circuits. In this paper, wis, b, f, h} can be found.
focus on this approach that selects the scan flip-flops accordingrhe following discussion explains how to identify the acyclic
to the MFVS of S-graph The S-graphmodels the structural edges.
dependencies between flip-flops by a directed graph. In anDefinition 5: A strongly connected componesfta directed
S-graphG = (V, F), a vertex: represents a flip-flop in the graphG = (V, F) is the maximum set of verticd$ C V" such

léig. 1. Contraction operations on a directed graph.

B. Partial Scan
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Acyclic Edges

N
I
[ "\
(a)
OUT1
@ e (n)
LOOP (a, h)
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(c)

Fig. 2. (a) The concept of acyclic edges. (b) A noncontractible graph. (c) Graph reduction.

that for every pair of verticeg andv in U, the vertices: andv  note that either or v needs to be chosen to break this cycle,
are reachable from each other [21]. and thell-edges, 4, v) and @, «), must be removed after that.
Definition 6: TheG>“C = (V5¢C | E5C)isthecomponent Therefore, the other cycles containing one oflithedges can be
graphof G = (V, E) where V5¢© contains one vertex for broken automatically. For example, the gra@hn Fig. 3(a) is
each strongly connected component(fand £5°C contains not a contractible graph and contains no acyclic edge. Because
the edge 4, v) if there is a directed edge from a vertex in thehe thin edges in Fig. 3(a) afe-edges, they must be removed to
strongly connected component 6f corresponding ta: to a break the cycles formed by themselves. Consequently, the bold
vertex in the strongly connected componentiaforresponding edges are acyclic edges in the remaining graph and they can be
to v [21]. removed. After removing the bold edges, the remaining graph
For the sake of the clarity, the proofs of the following lemmagan be reduced as shown in Fig. 3(b). Therefore, the optimum
theorems, and corollaries are placed into the Appendix. solution{a, f} can be found.
Theorem 1: G5“€ is a directed acyclic graph [21]. According to the concept dii-edge, the acyclic edges in the
Corollary 1: Given a graphG = (V,E) and its corre- graphG-PIE can be removed for the cycle breaking considera-
sponding component gragtc = (V5¢C ESCC) the edges tion of G. Theorem 2 and Corollary 2 formally state this obser-
in £ associated with an edge i°““ do not belong to any vation.
cycle inG and can be eliminated frod for the cycle breaking ~ Theorem 2: Given a directed grap& = (V, F), the PIE of
consideration. G and a cutsef’ of G, there is no edge v) € PIE in the graph
According to Theorem 1 and Corollary 1, in order to find thé&—C.
acyclic edges between subgraphs, we should find the componer®orollary 2: Given a graph@ = (V, E), the PIE ofG and
graph of first. Those edges associated with the edges in tha edge+, v) in the grapha-PIE, if there is no cycles iG/-PIE

component grapli?>““ can then be removed. containing {, v), («, v) can be removed for the cycle breaking
The second idea of the PIE operation comes from the concepnsideration of7.
of theIl-edges described as follows. Given a graph? = (V, E) and the PIE of7, the PIE op-

Definition 7: Given a directed grapl¥ = (V, E) and an eration deletes the acyclic edges(¢fPIE by finding the com-
edge {;, v) in E, the edge+, v) is all-edge if there also exists ponent graph of7-PIE. Because the component graph can be
an edge, ) in F. found by the depth-first search, this operation runs on time com-

For illustration, in Fig. 3(a), all thin edges are theedges. plexity O(Z| + |V|). The PIE operation defines a new class of
For the sake of the clarity, the set of thieedges in a graph is graphs whose MFVS can be computed in polynomial time. We
called PIE in the following discussions. call this clas$?1E-contractible The most important thing is that

According to the definition ofl-edge, if an edgey, v) isin the class of PIE-contractible graphs can subsume the class of
the PIE, then there is a cycle, v, ©) with length two. Please scc-compressible graphahich was proposed in [7], while its
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(o) 0

(a)

(o) (1)
‘ 4 IN1(b, c, d, e) LOOP(a, f)
D O[rmr@ Qe

(b)

Fig. 3. (a) A noncontractible graph. (b) Graph reduction after PIE operation.

MFVS can be computed with the same time complexity as th e ——»@
of scc-compressible.
B. CORE Operation ° e

(a)

The following definitions are necessary for further discus
sion.
Definition 8: Given a directed grapt¥ = (V, F) and the
PIE of G, a vertexv is aneighborof a vertexw if there is an
edge {, v) € PIE. Given a subgrapfi’ = (V’, E’) of G where ( : >
V' C VandE’ C PIEC E, if each vertex ir¥/’ has no self-loop IN1(c) 0 LOOP(d) @
and it is the neighbor of the other verticedifh G’ is ad-clique :>

of G.
Please note that if we remove all edges excepfithedges e
and treat the pair dil-edges ¢, v) and @, «) as an undirected
edge {:, v), the d-clique can be viewed as tti@uein an undi- (b)
rected graph. Fig.4. (a) Agraphis notthe PIE-contractible. (b) Graph reduction after CORE
Definition 9: Given a directed grapt¥ = (V, E), the PIE operation.
of G and a d-cliquew = (V’, E') of G, a vertexu is a CORE
of G’ if w € V' and all its incident edges are HY. A vertexv  optimality of final solution because there must be no cycle in
is all-vertexif all its incident edges are in the PIE. the remaining graph containing the vertexAfter removing
For illustration in Fig. 4, the vertex and the verteX are the the vertices{l, 1.} into the cutset, the remaining graph is
neighbors of each other, but the verteis not a neighbor of the contractible and the minimum cutsgt, &, d} can be found as
vertexc. The vertex sefa, b, 1} forms a d-clique and both the shown in Fig. 4(b). Theorem 3 states this observation.
vertexa and the vertex are the cores of the d-cliqye, b, h}. Theorem 3: Given a directed grapty = (V, E) and a core
The verticess, b, andd are thell-vertices. v of the d-clique’ = (V’, E’) in G, breaking all cycles in¥
Given ad-clique = (V’, £’) inagraphG, if a vertexv is by removing{V’ — v} into the cutseC of G does not impair
acore ofG’, CORE operation removes the vertex §&' —v}  the optimality ofC.
into the cutseC of GG. The following discussion explains that Furthermore, if a core exists, it can be found by the CORE op-
the CORE operation does not impair the optimality of the cutsetation shown in Fig. 5 in time-complexity (| +|V| log |V])

C. according to Theorems 4-6.
Lemma 1: Given a d-clique = (V’, E’) with n vertices, For the sake of the clarity, the set of tHevertices in a graph
there are at least — 1 vertices in any cutset af’. is called PIV in the following discussions.

The graphG in Fig. 4(a) is not a PIE-contractible graph. Theorem 4: Given a directed grap¥ = (V, E) and the PIV
According to Lemma 1, to break all cycles in the d-cliquef G, a vertexv could be the core if it is in the PIV and has the
{a, b, h}, at least two vertices need removing and so do atiinimum degree compared to all its neighbors.
edges incident tda, b, h}. Please note that all incident edges Theorem 5: Given a directed grapis = (V, E) and a
of the corea are in the d-clique{a, b, 2}. Removing all Il-vertexw with its neighbors¥ (v), the vertexv is a core of
vertices in{a, b, h} except the corex does not impair the G’ = ({N(v),v}, E') if G’ is a d-clique.
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Cutset <- CORE(G, PIV, PIE){
1. sort(PIV);
foreach v in PIV{
2. if(v.valid == true){
Is_d-clique = check_d-clique({v, N(v)});

3. if(Is_d-clique)
G=G - {v, N(w)}, return(N(v));
4. else
lable_invalid_core({v, N(v)});
} o3 (a)
(d, f)

Fig. 5. The pseudocode of CORE operation.
Theorem 6:Given a directed grapl¢ = (V, E) and ° e IN1(d, f °
a Il-vertex » with the minimum degree: compared to its —> e e
neighborsN (w), if the vertexu is not a core, each vertex in °
N(u) is not a core inG either. e
The pseudocode of the CORE operation is shown in Fig. ° a

According to Theorem 4, only the vertices in the PIV need to LOOP(e)

checked. Therefore, given a graph= (V, E), the PIE and the ° @
PIV of GG, the CORE operation first sorts the vertices in PIV ii

the ascending order according to the degree. Then, it chooses LOOP(c) OUT1(a) G
first vertexv with “valid” mark in PIV and checks ifv, N(v)} @ < ::J < :;
forms a d-clique by breadth-first search{if, N(v)} forms a

(b)

d-cligue G’ = (V', E'), v is a core ofG’ according to The- ‘e

orem 5. Then, the vertices i’ and their incident edges are

removed fromG and the vertice§V’ — v} are placed into the

cutsetC'. Otherwise, all vertices iV (v), v} are marked “in- Fig 6 (a) A graph is not CORE-contractible or PIE contractible and (b) graph
valid” according to Theorem 6 and it continuously checks theduction after DOME operation.

next vertex with “valid” mark in PIV. Because of the sorting and

the breadth-ﬂr'st search procedures, the CORE opera.tlon runs Opyofinition 12: Given a grapha without self-loops, an edge
time-complexity O{Z|+|V|log |V'|). The CORE operation alsoé

defi | ¢ hewh b 1, v) isdominatedf one of the following conditions is satisfied.
elines a new class of graphs whose MFVS can e compute 5”Pu C P,;P, is the vertex set that consists of albnII-
polynomial-time. We call this clagSORE-contractible

predecessorsf the vertex: andP, is the vertex set that consists
. of all predecessorsf the vertexv. 2) S, C S,;5,is the vertex
C. DOME Operation set that consists of alon-II-successorsf the vertexs andS,,
The DOME (dominated edge) operation comes from the cois-the vertex set that consists of aliccessorsf the vertexu.
cept that onlyminimal cycleslescribed in Definition 10 are nec-Otherwise, {, v) is anondominated edge
essary for cycle breaking consideration. Because no minimalin Fig. 6(a), the bold edges satisfy the condition 1 and the
cycle goes through thrdominated edgedescribed in Definition dashed edges satisfy the condition 2. Therefore, they are the

12, the dominated edges can be removed. dominated edges
Definition 10: A cycleCy = (v, va, ..., Up, v1) IS Said to Theorem 8: Given a directed grapliz without self-loops,
becoveredy a cycleCy = (uq, ug, ..., ux, u1)ifeachvertex only nondominated edges are necessary for computing the
v, ¢ = 1...m,in Cy is contained byCs. A cycle isminimalif MFVS of G.
it does not cover another cycle. We use Fig. 7 to explain Theorem 8. In Fig. 7(d),
For illustration in Fig. 6, the cycléa, ¢, ¢} is a minimal denotes the vertex set of the nbnpredecessors of;, P,
cycle, but the onéa, ¢, d, b, a) is not. denotes the vertex set of the predecessorsafid P, C F,,.
Theorem 7: Given a directed grapfy, only minimal cycles Therefore, ¢, v) is a dominated edge. We claim that all
need to be broken while computing the MFVS@f cycles that contain the edge,(v) are not the minimal ones.
Theorem 7 is trivial because breaking a minimal cy€leill ~ First, the cycles that contain the edge {) must go through
automatically break all cycles coveririg one of the predecessors of Without loss of generality, we
Definition 11: Given an edge, v), the vertexu is apre- assume that they ar€;, = (z, u, v, wy, wa, ..., Wk, )
decessoof the vertexv and the vertew is asuccessoof the and Co = (P, u, v, wi, wa, ..., wy, Py). The cycle

vertexu. If (u, v) is all-edge, then the vertexis calledll-pre- C; goes through thdl-predecessor: of « and the cycle
decessopf the vertexv and the vertex is calledIl-successor C, goes through the noh-predecessor ofu. Because
of the vertexu. Otherwise, the vertex is callednonIl-prede- the vertexz is a Il-predecessor of:, the cycle C; must
cessoiof the vertexs and the vertex is callednon1l-successor cover the cycle(z, u, z). Therefore, the cycle?; is not a
of the vertexu. minimal cycle. For the cycle’;, becauseP, C F,, there
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must be a cycleCs = (P, v, w1, wa, ..., wi, Puy).
BecauseCy = (P, u, v, wy, wa, ..., Wy, Py;) COVers
Cs = (Py, v, w1, wa, ..., wg, Py), it is not the minimal

one. On the other hand, the condition 2 is symmetric to tl
condition 1 and its concept is shown in Fig. 7(b). Therefor:
the dominated edges can be removed for cycle breaki
consideration as stated in Theorem 8.

The graph in Fig. 6(a) is neither PIE-contractible nc (a)
CORE-contractible. However, both the bold and the dashed
edges are the dominated ones and thus can be removed¢?- The concept of the DOME operation.
cording to Theorem 8. After that, the remaining graph is the
contractible graph and the minimum cutget ¢} can be found and removes it and its incident edges from the graph. Other-
as shown in Fig. 6(b). For each edge, checking the satisfactiig€, theMergeoperation removes the vertexrom the graph
of the conditions 1 and 2 mentioned above can be conducgitfl connects all predecessors:ab each successor of After
with time-complexity O(V'|), so the DOME operation runs branching, the current best solution is changed to the returned
on O(E||[V]) time-complexity. Therefore, it also defines asolution, if the returned solution is better.
new class of graphs callddOME-contractiblegraphs whose
MFVS can be found in polynomial-time.

A. Initial Solution Calculation

Our algorithm for calculating the initial solution is modified
from the contraction algorithm mentioned in Section II-A. The
modifications are listed as follows:

Our exact algorithm based on the branch and bound strategyl) The operations, PIE, CORE, and DOME, are added into
is shown in Fig. 8. This procedure is invoked at the top level  the graph reduction step.

IV. OUR EXACT ALGORITHM

with the following parameters: the gragh = (V, E) to be 2) The weight function for heuristic selection is modified
solved, the current solutio@C' (which is the empty set ini- as “ax (number oflI-edge3+/3 x (in-degree plus out-de-
tially), the best solutiorBC seen so far (which i$" initially), gree).”

a lower boundMlin_P (which is zero initially), a tagl. (which 3) The heuristic is done byergingthe vertex with thenin-
denotes the current recursive level) and areducible(which imum weightrather thanremovingthe vertex with the
denotes that if¥ could be further reduced and is one initially). maximum weigh{Merging a vertex means that remove

It recursively reduces the size 6f and returns the minimum the vertexv from the graph and connect all predecessors
cutset ofG. of v to each successor of)

The eight contraction operations can be used to reduce th&@he reason for the modification 2 is that if a vertekas a
problem size without impairing the optimality. Another methodl-edge {, v), there exists a cycl@:, v, ). Eitheru or v needs
to reduce the problem size is partitioning. Téteongly con- to be removed to break this cycle. It implies thats highly
nected component§CC'’s) of a graph form disjoint subprob-likely to appear in the minimum cutset.
lems for cycle breaking. In our algorithm, the graph reduction The reason for the modification 3 comes from the results of
step is applied before partitioning. This is because the graph tiee following experiments. First, we define the following items.
duction step can remove redundant dependencies and verticeBefinition 13: A graphG = (V, E) is complete if there ex-
and the remaining graph could be further partitioned into moigts the edge&y;, v;) in G, Vuv;, v; € V andi # j. Thedensity
SCC's. of a graphG = (V, E) is defined by 1E|/|Ecomp|;” |Peomp|

At the graph reduction step, the eight contraction operatioissthe number of the edges in the complete grépb.,, =
are applied to reducing the graghiteratively untilG can no  (V, Ecomp)- A graph is said to baonreducibléf the eight con-
longer be reduced. 7 is empty after that, the minimum cutsettraction operations can no longer reduce it.
of GG is found. Otherwise, the number of SCC'’s in the reduced For different densities, we randomly produce teanre-
graph is calculated. If the number of SCC’s is larger than @luciblegraphs with 100 vertices. Then, we apply the algorithms
the cycle breaking procedure is applied to each SCC, respBI8BR (heuristic is based on removing the vertex with the max-
tively. Otherwise, both thanitial solution and thelower bound imum weight) and H8M (heuristic is based on merging the
of this reduced graph are calculated by the method described/@értex with the minimum weight) to them, respectively. In
Section IV-A and Section IV-B, respectively. Thever bound Table I, the rows Heu_H8R and Heu_H8M denote the average
is the number of the vertices needed at least to break all ¢ynes of the heuristic selection being conducted in solving
cles in the remaining graph. The search is bounded and termigraph by the two algorithms, respectively, and the rows
nated if the sum of the current solution and the lower bound 8l_H8R and Sol_H8M denote the average size of the cutsets
equal to or larger than the best solution seen so far. Otherwis@raduced by the two algorithms, respectively.
vertexv with the maximum weight is selected as the branching We can find that algorithm H8R produces the cutsets whose
vertex. The weight function will be described in Section IV-Asizes are close to the times of heuristic selection being con-
The branching is done by assuming that the vertéx in the ducted by it, but algorithm H8M does not, especially in the
minimum cutset or not. If the vertaxis in the minimum cutset, graphs with higher density. This is because a gré&plwith
the Removeoperation appends it into the current soluti@® higher density is more likely a nonreducible graph. Removing
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Cutset <- exact_cycle_break(G, CC, BC, Min_P, L, reducible){
if( reducible ){
1./% graph reduction */
CC = CC + graph_reduction(G);
2./* can graph be partitioned 7 */
if (numof (SCC(G)) > 1){
foreach SCCi = (V’, E’) in G
CC = CC + exact_cycle_break(SCCi, 0, V’, 0, 0, 0);
Return(CC) ;
i3
3./* lower bound and initial solution calculation */
lower_bound = bound_calculation(G);
if (L == 0) {
Min_P = lower_bound;
BC = CC + initial_solution_calculation(G);
}
4./*% bounding the search 7 */
if( |CC| + lower_bound > |BC| ) return(BC);
else if(G is empty) return(CC);
5./# branching by assuming v is in the minimum cutset or not */
v = maximum_weight_vertex(G);
Left = exact_cycle_break(Remove(G, v), CC+v, BC, Min_ P, L+1, 1);
if( |Left] < |BC| ) BC = Left;
if( Min_P == |BC| ) return(BC); /* bounding the search */
Right = exact_cycle_break(Merge(G, v), CC, BC, Min_ P, L + 1, 1);
if( |Right| < |BC| ) BC = right;
return(BC) ;
}

Fig. 8. The pseudocode of our exact algorithm.

TABLE | least one vertex to break a cycle. First, the graph reduction
COMPARISONBETWEEN THEHEURISTICSHBR AND H8M is applied iteratively until no more reduction is possible and
density 1 01 1031051071 09 the lower bound is updated according to the LOOP and the
Hen B8R 5111795 1886 19031925 CORE operations. After that, if the graph is empty, the exact
SoLLHSR | 58.5 1 82.8 1 89.9 1 93.7 | 96.0 lower bound is found. Otherwise, the heuristic is applied as
Heu H8M | 40.8 | 16 | 87 | 5.1 | 2.6 follows. 1) If a d-clique with the largest sizecan be found,
Sol H8M [ 56.0 | 81.5 | 88.6 | 93.1 | 95.8 we remove it and its incident edges and then increase the lower

bound bys — 1. 2) If there is no d-clique with size being

a vertex froma, the remaining graph is still most likely nonre-2rger than one in the graph, we remove the cyClewith
ducible because its density is still high. Therefore, the heurisflé® Minimum length and increase the lower bound by one.
selection could be conducted again and again. Howevghe _graph _reductlon an_d the heuristic selection are |terat|ve_ly
merging a vertex it could produce several self-loops and th@PPlied until the graph is empty, and then the lower bound is
remaining graph can be reduced without conducting heurisfffurned. Because finding the largest d-clique in a directed
selection. Therefore, the times of heuristic selection can BE#Ph is @ NP-complete problem, which is equal to finding the
reduced significantly, especially in the graphs with highé?rgeSt cligue in an und]rected'graph,.the heuristic based on the
density. The fewer times heuristic selections are conduct&@cePt of common neighbor is applied [22].

the better solutions could be found. Because the nonreducible

graph usually has a higher density, the algorithm H8M usuaffy MCFVS Problem

produces a better solution than the algorithm H8R. Given a weighted directed graghi = (V, E, W), where
) each vertex inV is associated with a cost, find a cutset”
B. Bounding Strategy such that the sum of the cost of the vertices in the cutsstthe

The lower bound calculation also uses the eight contractiomnimum.
operations. Similar to the contraction algorithm mentioned Our algorithm can be easily modified to cope with the
in Section II-A, it also contains the graph reduction and thdCFVS problem as follows. First, the sum of the costs of the
heuristic selection. The heuristic is based on Lemma 1 maerertices instead of the number of the vertices in the cufset
tioned in Section 111-B, which we need at least- 1 vertices is used as the cost function. Second, the weight function of
to break the cycles in a d-clique with sizeand we need at a vertex becomesafx (number ofI1-edges)+3x (in-degree
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+ out-degree))/(vertex cost). The lower bound estimation in-
creases the lower bound by the sum of the costs of the vertices

TABLE I
WEIGHT FUNCTION COMPARISON

303

in the removed d-clique except the one with the maximum graph size | HoR | H5WR, | exact
cost or by the minimum cost of the vertices in the removed s13207 669 59 59 59
cycle. Last, the contraction operations IN1, OUT1, and CORE 51423 74 22 22 21
are modified as follows. The cost of the unique predecessor 51488 6 5 5 o
v’ of a vertexv must be smaller than that of the vertexor 51494 6 5 5 5
the IN1 operation. The cost of the unique succesgoof a $15850 o597 91 91 88
vertexv must be smaller than that of the vertefor the OUT1 s34 15 é ‘E 0
operation. The core of a d-clique must have the maximum cost zggg ;? ; ; 3
in this d-clique for the CORE operation. T 538417 1636 390 | 388 | 374
I 538584 1452 315 | 301 | 292
$386 6 5 5 5
V. EXPERIMENTAL RESULTS 5400 21 9 9 9
s444 21 9 9 9
To demonstrate the efficiency of our algorithm, we have im- $510 6 o 0 5
plemented our algorithm and applied it to solving the partial $5378 164 30 30 30
scan problem in ISCAS’89 benchmarks. In our experiments, the :g;g g i j i
self-loops in the initialS-graph are ignored first, since these 759234 598 54 53 53
loops do not cause problems during test generation [8]. The <053 6 5 5 5

following experiments are run at SUN-Ultrall workstation with
256M RAM.

In Table Il, the algorithm H5R is the previous contraction affully reduced, the graph size can also be further reduced signif-
gorithm proposed in [10] in which the “in-degreeout-degree” icantly. Therefore, our new contraction operations can improve
is used as the weight function. The algorithm H5WR modthe speed of the exact algorithms significantly. Also, the sizes
fies the weight function of H5R tod!x (number oflI-edges) of the cutsets produced by the algorithm H8WR are not larger
+ Ax(in-degree+ out-degree)” wherex = 1 and3 = 1. The than those produced by the algorithm H5WRSCC. In par-
sizes of the cutsets produced by the two algorithms are showrtigular, the algorithm H8WR outperforms in the circuits s1423,
columns “H5R” and “H5WR,” respectively. The sizes of exac$15850, s38417, and s38584. The CPU time consumed by the
cutsets are shown in columeXact” In all circuits in Table Il, algorithm H8WR only increases slightly. It is surprising that the
the algorithm H5WR does not produce worse results than takgorithm H8WR runs faster than the algorithm HSWRSCC
algorithm H5R. Both the algorithms H5R and HSWR produci the circuits s15850, s38417, and s38584. The reasons could
the exact cutset for the circuits without being highlighted esbe that before a heuristic is conducted, the contraction opera-
cept s1423 and s15850. Furthermore, the algorithm HSWR pti®ns must be applied with no gain returned, and the number of
duces better results for the circuits highlighted, especially ftimes of the heuristics being conducted by the algorithm HSWR
$38584. The circuits in ISCAS’89 benchmarks not being listed SCC is much larger than that of the algorithm H8WR.
in Table Il can be fully reduced by the algorithm H5R, so we do In Table [V, the algorithm H8WM conducts the heuristics
not need to consider them in our experiments. by merging the vertex with the minimum weight instead of the

The experimental results in Table 11l show that our new comne adopted by the algorithm H8WR that removing the vertex
traction operations are useful for the practical CAD applicatiowith the maximum weight. Only nonreducible circuits need to
In Table IlI, the algorithm H8WR adds three new contractiohe considered in this comparison. Though in the circuit s15850,
operations (PIE, CORE, and DOME) into the algorithm H5WRhe algorithm H8WM produces a solution larger than the algo-
The algorithm “H5WR+ SCC” adds the SCC (strongly con-rithm H8WR by 1. However, in the circuit s38417, the algo-
nected component) operation proposed in [2] and [7] into thighm H8WM produces a solution smaller than the algorithm
algorithm H5WR. The sizes of the graphs that cannot be furthdBWR by 8. The most important thing is that the algorithm
reduced without conducting the heuristic selection, the timesld8WM makes no more heuristics than the algorithm H8WR for
heuristic selection conducted before the graph is fully reduceall, circuits. Therefore, conducting merging instead of removing
the sizes of the cutsets produced and the CPU time consumedhbyristic should produce better cutsets in most cases.
these two algorithms are shown in columns “r_size,” “heu_sel,” To further demonstrate the efficiency of the algorithm
“sol,” and “time,” respectively. The zeros in columns “r_size’"H8WM, we compare the results produced by the algorithm
and “heu_sel” mean that the correspondifiggraphs can be H8WM with the results produced by the exact algorithm for the
fully reduced, and the optimal cutsets can be found after agraphs generated randomly. In Table V, column one and row
plying the graph reduction. If only the SCC operation and fivene show the sizes and the densities of input graphs, respec-
contraction operations (INO, OUTO, IN1, OUT1, and LOOPjively. The rows “H8WM” and Exact show the average sizes
are applied, all circuits in Table 11l cannot be fully reducedof the feedback vertex sets (FVS) produced by the algorithm
However, after adding our operations (PIE, CORE and DOMBE)ISWM and the exact algorithm. The rowsgprox. f show
the S-graphs can be fully reduced in 15 out of 19 circuits. Ithe average approximation factors of the algorithm H8WM at
those 4 circuits (s1423, s15850, s38417, and s38584) cannotltfferent graphs. The approximation factor is the ratio of the
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TABLE Il
CONTRACTION OPERATIONS COMPARSION
H5WR+SCC H8WR
rsize | heusel | sol | time(s) | r_size | heusel | sol | time(s)
s13207 | 47 26 59 0.24 0 0 59 0.24
s1423 53 14 22 0.04 26 7 21 0.04
s1488 6 4 5 0.01 0 0 3 0.01
s1494 6 4 5 0.01 0 0 5] 0.01
s15850 | 176 5y 91 0.63 28 9 88 0.56
$344 3 1 5 0.01 0 0 5 0.01
$349 3 1 5 0.01 0 0 5 0.01
$382 12 6 9 0.01 0 0 9 0.01
s38417 | 465 323 386 | 3.27 120 64 382 | 2.04
$38584 | 796 133 | 301 | 2.08 16 1 292 | 1.18
s386 6 4 ) 0.01 0 0 5 0.01
s400 12 6 9 0.01 0 0 9 0.02
s444 12 6 9 0.01 0 0 9 0.01
s510 6 4 5 0.01 0 0 5 0.01
sHh378 8 1 30 0.04 0 0 30 0.05
s820 5 3 4 0.01 0 0 4 0.01
$832 5 3 4 0.01 0 0 4 0.01
s9234 94 34 53 0.08 0 0 53 0.08
$953 6 4 5 0.01 0 0 5 0.01
TABLE IV eringproblem (see [23] for details). In MFVS problem, the max-
HEURISTIC COMPARISON ATISCAS'89 ARCUITS imum independent set can be used to compute the lower bound
HSWR. AWM as shown below. First, all minimal cycles are enumerated. Each
sol | heusel | time(s) | sol | heu_sel | time(s) minimal cycle: is associated with a vertexin the indepen-
s1423 | 21 7 0.03 21 2 0.04 dency graph, which is an undirected graph. The edg@ éxists
515850 | 88 9 056 | 89 4 0.58 in the independency graph if all vertices in the cychre dif-
$38417 | 382 | 64 204 1374| 8 1.92 ferent from the vertices in the cycje Then, a lower bound for
s38584 | 292 1 1.18 | 292 1 1.37 breaking all cycles in a graph can be computed by finding the

maximum clique size in the independency graph. Because the

size of the FVS produced by the algorithm H8WM to the sizeaximum clique problem is a NP-complete problem, the good
of the FVS produced by the exact algorithm. In Table V, wkeuristic proposed in [22] is used in our experiments.
can see that the results of the algorithm H8WM are very closeThe authors of [7] use thiateger linear programmingILP)
to the ones of the exact algorithm and all the approximatidaa model the MFVS problem. A lower bound can be calculated
factors are smaller than 1.1. Please note that the approximatiynrelaxing their ILP formulation tdinear programming(LP)
factors are smaller in the graphs with very low density arfdrmulation. To enhance the lower bound of this relaxation, they
the graphs with higher density. The reasons are the followirgiggest adding the constraints caused by the cycles with length
in the graphs with lower density, the contraction operatiors(see [7] for details).
can largely reduce the sizes of graphs and thus result in bettewe conduct the experiments as follows. First, the graph re-
solutions. In the graphs with higher density, conducting trduction is applied to th&-graph of each circuit. After the graph
heuristic by merging a vertex results in fewer times of heuristieduction, we calculate the lower bounds for the remaining
selections as mentioned in Section IV-A. The fewer times tlggaphs, which are nonreducible. In Table VI, the columns
heuristic selections are conducted, the better solutions couldtt¥e and three show the graph size before reduction and after
found. reduction, respectively. The column “exact” shows the exact

In the branch and bound algorithms, two factors can improl@wver bounds. The lower bounds produced by the maximum
the speed. The one is a good initial solution and the otherimglependent set, the ILP relaxation and our approach are shown
a tight lower bound. The algorithm H8WM produces a gooih columns “MIS,” “ILP,” and “Ours,” respectively. The last
initial solution for our branch and bound algorithm. To demoreolumn is the CPU time consumed by our approach (including
strate the effectiveness of our bounding strategy, we compé#ine CPU time consumed by the graph reduction). We can find
the algorithm of our lower bound calculation mentioned in Sethat for the circuit s38417, both approaches “MIS” and “ILP”
tion IV-B with the one suggested in [23] and the one proposguloduce a lower bound less than the exact one by 28. However,
in [7]. our approach finds the exact lower bound for all circuits in

In [23], themaximum independent s&tindependency graph Table VI in very short CPU time. Because we perform the
is suggested as a bounding strategy to solvectiiemn-cov- “ILP” approach by running the commercial tool LINGO on 586
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TABLE V
RESULT COMPARISON BETWEEN THEH8WM ALGORITHM AND THE EXACT ALGORITHM AT THE GRAPHS PRODUCED RANDOMLY

size | density [0.0125[0.025] 0.05 ] 0.1 | 03 [ 05 | 0.7 [ 09
HZWM 05 [ 45 | 11 [192[34.7]405[ 441 [ 46.2

50 Exact 0.5 45 | 108 | 179 | 33.5 | 398 | 43.3 | 46
approx. f 1 1 1.02 | 1.08 | 1.04 | 1.02 | 1.02 | 1.01
H8WM 0.5 76 154 | 245 | 44 | 50.2 | 53.4 | 56.2

60 Exact 0.5 75 149 | 23.1 | 426 | 49.3 | 53 56

approx. f 1 1.02 {1.04 {1.06 | 1.04 | 1.02 | 1.01 | 1.01
H8WM 1.3 11.1 | 21.2 | 30 | 52.8 | 59.7 | 63.6 | 66.2

70 Exact 1.3 11 19.8 | 28 | 513 | 59 | 629 | 65.7

approx. f 1 1.01 / 1.07 | 1.08 | 1.03 | 1.02 | 1.02 | 1.02
H8WM 1 134 | 265 | 389|622 | 695 | 734 | 76

80 Exact 1 13 | 247 | 36.8 | 60.2 | 68.2 | 72.6 | 75.8

approx. f 1 1.03  1.08 | 1.06 | 1.04 | 1.02 | 1.02 | 1.01

H8WM 1.4 1877 | 336 | 466 | 71.6 | 79.9 | 83.5 | 86.1
90 Exact 1.4 179 | 31 | 441 | 70 78 | 82.2 | 85.6
approx. f 1 1.05 | 1.09 | 1.06 | 1.03 | 1.03 | 1.02 | 1.01

PC and enumerating all minimal cycles consumes much CPU TABLE VI
time, the CPU time consumed by the approaches “MIS” and LOWERBOUND COMPARISON ATISCAS'89 QrcuITs
“ILP" are not listed here. Furthermore, we randomly produce size | rsize | exact | MIS | ILP | Ours | time(s)

ten nonreducible graphs with 50 vertices for the different den-"s1423 | 74 26 11 9 [105] 11 0.04
sity listed in Table VII and apply the three bounding strategies s15850 | 597 | 28 13 13 | 13 13 0.59
to them. For these graphs, our approach also produces bett(s38417 | 1636 | 120 | 88 | 60 | 60 | 88 1.90
lower bounds than the other two approaches. An interesting 838584 | 1452 | 16 5 4 [45] 5 1.18
phenomenon is that when the graph density is high, it seems

that the approaches “MIS” and “ILP” could not produce a lower TABLE VII
bound hlgher than 25 for these graphs. HOWQVGY, our approach LOWER BOUND COMPARISON AT THE GRAPHS PRODUCED RANDOMLY
still produces good lower bounds for them. Therefore, our density | 0.1 | 03 | 05 ] 07 ] 0.9
bounding strategy can prune the solution space efficiently and MIS | 138 | 22.3 | 242 | 248 | 249
enhances the speed of our exact algorithm. ILP 1102312485 25 | 25 | 25

Finally, we summarize the CPU time consumed and the re- Ours 15 | 26.4 | 327382437
sults produced by our exact algorithm in Table VIII. It is sur- exact | 17.9 | 33.5 | 39.8 |43.3 | 46.0

prising that for all circuits in ISCAS’89 benchmarks our exact

algorithm can find out the exact cutsets in less than 3 s (CR)y our heuristic algorithms but also the speed of our exact al-

time). gorithm. The experimental results further show that our exact
algorithm can find out the exact cutsets for all ISCAS’89 bench-

VI. CONCLUSION marks in less than 3 s (CPU time) on SUN-Ultrall workstation.
W'gherefore, the new contraction operations and our algorithms

The contributions of this paper are summarized as follo o X )
ge demonstrated to be very effective in the partial scan appli-

1) Three new and powerful contraction operations that can f
ther reduce a graph are developed for computing the MFVS o?%t'on'
graph. These contraction operations define a new class of graphs
called reducible graphs whose MFVS can be found in polyno-
mial-time complexity. Furthermore, the contraction operations Corollary 1: Given a graphG = (V, E) and its corre-

can be incorporated with the existent exact algorithms and tsigonding component grag*“® = (VSCC | ESCC) the edges
approximation algorithms to improve the speed of the exact & £ associated with an edge iB5““ do not belong to any
gorithms and to reduce the value of approximation factors of thgcle inG and can be eliminated frof for the cycle breaking
approximation algorithms. 2) An algorithm based on branch arednsideration.

bound strategy is developed for solving the MFVS problem ex- Proof: Assume that an edge,(v) in E is associated with
actly. This algorithm employs a heuristic that produces a goad edge inz>““ and the edgey, v) also belongs to a cycle .

initial solution and a good bounding strategy to prune the sBecause, v) is associated with an edge BP¢¢, the vertices
lution space. We have implemented our algorithms and appliecand~ must be in the different component vertices(&f“<.

them to solving the partial scan problem in ISCAS’'89 benclidowever, the edgey v) belongs to a cycle 67, sox andv are
marks. In these experiments, our new contraction operations caachable from each other. They must be in the same strongly
significantly enhance not only the quality of the FVS producetbnnected component. It is contradictive. Therefore, no cycle in

APPENDIX
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TABLE VIII
THE RESULTS PRODUCED BY OUREXACT ALGORITHM
circuit | sol. | time(s) | circuit | sol. | time(s) | circuit | sol. | time(s) | circuit | sol. | time(s)
s1196 0 0.01 s27 1 0.01 s386 5 0.01 s641 7 0.01
51238 0 0.01 5298 1 0.01 s400 9 0.01 s713 7 0.01
s13207 | 59 0.24 s344 ) 0.01 s420 0 0.01 s820 4 0.01
s1423 | 21 0.06 $349 ) 0.01 s444 9 0.01 $832 4 0.01
$1488 5 0.01 |s35932 | 306 | 1.30 s510 5 0.01 s838 0 0.01
s1494 | 5 0.01 $382 9 0.01 $526 3 0.01 s9234 | 53 0.07
s15850 | 88 | 0.64 | s38417 | 374 | 2.03 | s526n | 3 0.01 s953 ) 0.01
5208 0 0.01 |s38584|292| 1.18 s5378 | 30 0.03
G contains the edge:( v) and the edgey, v) can be eliminated Proof: Given a vertices: with the minimum degree in
for the cycle breaking consideration. V'’ and assume that the cosehas degreen, m > n. Because

Theorem 2: Given a directed grapy = (V, E), the PIE of v is a core ofG’, all its incident edges are associated with its
G and a cutsef’ of GG, there is no edgey v) € PIE in the graph neighbors. Because bothand« are in the d-clique&’, the
G-C. neighbors ofv are also the neighbors af Therefore, the de-

Proof: Assume that an edge(v) in the graphG—C'isin  gree ofu is not smaller than the degree ofi.e.,n > m. Itis
the PIE. According to the definition dfi-edge, there exists a contradictive.
cycle(u, v, u} in the graphG—C. Therefore, the grapf—C'is Lemma4: If a vertexu is a core of ad-clique§’ = (V', E')
cyclic. It is contradictive. in G u is all-vertex.

Corollary 2: Given a graphz = (V, E), the PIE ofG and Proof: According to Definition 8 and 9, all edges i’
an edget, v) in the graphG-PIE, if there is no cycles ifts-PIE  belong to PIE and the edges of a core must belorg td'here-
containing {:, v), (u, v) can be removed for the cycle breakindore, the vertex. must be dl-vertex.
consideration of7. Theorem 4: Given a directed grapf = (V, E) and the PIV

Proof: Assume that there is no cycle in the gradpHPIE  of G, a vertexv could be the core ifitis in the PIV and has the
containing the edgey( v). If some cycles in7 contain ¢, »), minimum degree compared to all its neighbors.
those cycles must contain some edges in the PIE. According Proof: Itis obvious from Lemma 3 and Lemma 4.
to Theorem 2, those cycles must be broken after the edges iTheorem 5:Given a directed grapli = (V, E) and a
the PIE are removed. Therefore, those cycles do not needlerertexv with its neighborsN (v), the vertexv is a core of
be considered for cycle breaking and the edge«) can be G’ = ({N(v), v}, E') if G is a d-clique.

removed. Proof: The {N(v), v} forms a d-clique and all incident
Lemma 1: Given a d-clique’ = (V’, E’) with n vertices, edges ofv are associated with its neighbors. Therefore, the
there are at least — 1 vertices in any cutset af’. vertexw is a core of the d-cliqué&’ = ({N(v), v}, £).
Proof: Assume that” is a cutset oG’ and the number Theorem 6:Given a directed grapltz = (V,E) and a

of the vertices inC' is less tham — 1. Therefore, the graph II-vertexw with the minimum degree compared to its neigh-
G'—C contains two vertices; andw, at least. By the definition bors N(u), if the vertexw is not a core, each vertex iN(u)
of d-cliques, there exists H-edge {, v) in G'—C. Therefore, is not a core in either.
there is a cycle in the graphi’—C. It is contradictive. Proof: Assume that the vertexis not a core and a core
Lemma 2: Given a d-clique? = (V’, £’) with n vertices, is the neighbor of:. According to Theorem 4 and Theorem 5,
randomly choosing — 1 vertices fromV’ forms a cutset of?’.  the corev must also have a degreeand the{ N (v), v} forms a
Proof: Because7 is a d-clique, each vertex i’ has d-cligueG’. Because the vertexis a neighbor of;, the vertex:
no self-loop. A graph with a single vertex without self-loops i also in this d-cliqu&?’. Furthermore, becaugehas a degree
acyclic. n, all incident edges of. must also be inZ’. Therefore, the
Theorem 3: Given a directed grapt? = (V, L) and a core vertexu is also a core according to the definition of core. It is
v of the d-cliqueG’ = (V’, E’) in G, breaking all cycles i@’  contradictive.
by removing{V’—v} into the cutse of G does notimpairthe  Theorem 7: Given a directed grap¥, only minimal cycles
optimality of C. need to be broken while computing the MFVS®f
Proof: According to Lemma 1 and Lemma 2, to break all ~ Proof: For each cycl€ which is not minimal, there exists
cyclesin@, only one vertex can be reserved and all edg€s'in a minimal cycleC,,, covered by the cycl€' according to Defi-
must be removed. Please note that all incident edges of the coiteon 10. Because breaking,, automatically breaks the cycle
v are in@. This means that after removiqd’’—v}, there isno € only minimal cycles need to be considered for computing the
cycle containing in the remaining graph. Therefore, breakindFVS of a directed graph.
all cycles inG’ by removing{V’—v} into C does not impairthe ~ Lemma 5: Given a directed grapty = (V, E), an edge,

optimality of the final solution. v) € E and a vertex: that is all-predecessor of the vertex
Lemma 3: Given adirected grap# = (V, E) and ad-clique the cycleC' containing the pathx, «, v) is not minimal.
G’ = (V', E") of G, if there exists a core of G the corev has Proof: Because: is all-predecessor of the vertexthere

the minimum degree i’. must exist a cycléz, u, «) with length two covered by
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Lemma 6: Given a directed grapty = (V, E'), an edge 4,
v) € E and a vertex: that is all-successor of the vertex the
cycle C containing the patk, v, ) is not minimal.

Proof: Lemma 6 is symmetric to Lemma 5.

Lemma 7: Given a directed grap&¥ = (V, E) without self-
loops, an edge, v) € E, the sets’, and P, that consist of the
predecessors of the verticeaandw, respectively, ifP, C P,
then each cycle contains the edge«) is not minimal.

Proof: Without loss of generality, we assume that g
the vertexP,; € PF,, and a cycleC; contains the edge
(v, v). Because the cycl&€’; contains {, v), it must go
through one of the predecessors of Without loss of
generality, we assume the predecessor is the veRgx
and C(1 <Puzv U, v, Wy, wWa, ..., wk7Pu1>a (wiflv wz)
€ F and i 2,3 ...,k If B, € P, there must
exist an edge(F,;, v). Therefore, there also exist a cycle [19]

(11]
(12]
[13]
[14]

[15]

[17]

(18]

Co = (Pui, v, w1, wa, ..., wk, Pu); (w1, w;) € E and 20
1= 2,3, ..., k. Because the cycl€; covers the cycl€, it [20]
is not minimal. [21]

Lemma 8: Given a directed grap¥ = (V, F) without self-
loop, an edge, v) € F, the setsS,, andS,, that consist of the
successors of the verticesandu, respectively, ifS, C S, then
each cycle contains the edge ¢) is not minimal.

Proof: Lemma 8 is symmetric to Lemma 7.

Theorem 8: Given a directed grapli without self-loops,
only nondominated edges are necessary for computing the
MFVS of G.

Proof: Itis obvious from Theorem 7 and Lemmas 5-8.

[22]

(23]
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