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On Computing the Minimum Feedback Vertex Set of
a Directed Graph by Contraction Operations

Hen-Ming Lin and Jing-Yang Jou

Abstract—Finding the minimum feedback vertex set (MFVS) in
a graph is an important problem for a variety of computer-aided
design (CAD) applications and graph reduction plays an important
role in solving this intractable problem. This paper is largely con-
cerned with three new and powerful reduction operations. Each of
these operations defines a new class of graphs, strictly larger than
the class of contractible graphs [Levy and Low (1988)], in which the
MFVS can be found in polynomial-time complexity. Based on these
operations, an exact algorithm run on branch and bound manner
is developed. This exact algorithm uses a good heuristic to find out
an initial solution and a good bounding strategy to prune the so-
lution space. To demonstrate the efficiency of our algorithms, we
have implemented our algorithms and applied them to solving the
partial scan problem in ISCAS’89 benchmarks. The experimental
results show that if our three new contraction operations are ap-
plied, 27 out of 31 circuits in ISCAS’89 benchmarks can be fully
reduced. Otherwise, only 12 out of 31 can be fully reduced. Fur-
thermore, for all ISCAS’89 benchmarks our exact algorithm can
find the exact cutsets in less than 3 s (CPU time) on SUN-UltraII
workstation. Therefore, the new contraction operations and our al-
gorithms are demonstrated to be very effective in the partial scan
application.

Index Terms—Algorithm, branch and bound, design for testa-
bility, graph theory, minimum feedback vertex set, partial scan.

I. INTRODUCTION

G IVEN a directed graph , theminimum feed-
back vertex set (MFVS)problem is to identify the min-

imum subset in such that after removing all vertices in
, the remaining graph is acyclic. Many computer-adided de-

sign (CAD) applications can be reduced into this problem. The
following three applications are pointed out in [2]. 1) Identify
the state variables needed in test generation. 2) Identify the feed-
back cut needed in the logic simulation. 3) Identify the loca-
tion in a circuit needed for complete diagnosis of circuit faults.
Xie and Beerel [3] transform an originalMarkov chain, which
models an asynchronous system under analysis, into a smaller
one. Thefeedback vertex set(FVS) of the state transition graph
of the original Markov chain is the state space of the transformed
Markov chain. Because larger state space of the Markov chain
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can slow down the analysis significantly, the size of the FVS
plays an important role in speeding up the analysis.Partial scan
problemis another application on the MFVS problem. It only
makes a subset of flip-flops scannable [4] and thus reduces both
the area overhead and the performance degradation caused by
the scan design. In the past, the authors of [5]–[11] used a di-
rected graph, calledS-graph, to model the structural dependen-
cies in a circuit. In an -graph , a vertex represents
a flip-flop in the original circuit and an edge ( ) exists when
there is a combinational path from the flip-flopto the flip-flop
. Then, they used the MFVS of the-graph to intelligently

choose the flip-flops to scan.
Unfortunately, the MFVS problem is known as NP-complete

on general graph [12] and even on bipartite one [13]. Smith and
Walford [2] develop an optimal algorithm to solve this problem
in any graph. Their major idea is to propose a sufficient con-
dition for one or more vertices to be a part of some MFVS.
This sufficient condition is the following: given a directed graph

, a vertex set and a vertex set that con-
sists of all vertices in the cycles containing a vertex in is a
part of some MFVS of if is an MFVS of . Their algo-
rithm chooses one vertex at a time, two vertices at a time, and
so on as the set and tests if the chosen vertex set satisfies this
condition. If a vertex set satisfies the condition, the vertex set

is removed from the graph. The process is then repeated on
the remaining graph. However, in the worst case, e.g.,complete
graph, this algorithm can only find the MFVS after enumerating
the exponential number of all vertex combinations. Therefore,
their algorithm can only handle smaller graphs [10]. Ashar and
Malik [9] propose an implicit method based on binary decision
diagram (BDD) to compute the MFVS in any graph. They de-
rive a Boolean function whose satisfying assignments directly
correspond to the FVS of a graph. By searching the shortest path
in the BDD of this Boolean function, the MFVS of the graph can
be found. Chakradharet al. [7] use theinteger linear program-
ming(ILP) to model the MFVS problem. A lower bound can be
calculated by relaxing their ILP formulation tolinear program-
ming(LP) formulation. They then use this lower bound to design
a branch and bound algorithm to solve the MFVS problem.

Because of the intractability of the MFVS problem, some
researches focus on designing good approximation algorithms.
These algorithms are designed with theoretical supports so
that the ratio of their result to the optimal result has an upper
bound calledapproximation factor. Leighton and Rao [14]
have proven that for any n-nodemulticommodity flow problem
with uniform demands, themax-flowis within a O( )-factor
of the min-cut, i.e., the max-flow is smaller than O( )
times the min-cut. According to this theorem, they first design
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an approximation algorithm with the approximation factor
O( ) for finding adirected cutthat splits the graph into two
(approximately) equal-sized components. Then, they design
an approximation algorithm for MFVS problem by using the
directed cut. This approximation algorithm for MFVS problem
partitions the original graph into two parts by a directed cut,
adds the cut into the feedback set, and continues finding the
directed cut for each part recursively. The recursion ends
when the graph no longer contains cycles. The approximation
factor of this algorithm is O( ). Evenet al. [15] further
improve the approximation factor to O( ) by
changing the method of selecting the directed cut. They first
introduce a distance metric on the vertex/edge set. Then,
their approximation algorithm picks arbitrarily a vertexand
conducts a single-source-shortest-paths algorithm from. The
single-source-shortest-paths algorithm defines layers with
respect to the source, where each layer is a directed cut, and
the layer with the minimum cost is chosen to partition the
graph into two parts. Bar-Yehudaet al. [16] also propose an
approximation algorithm according to the property of2–3 sub-
graph in which the degree of each vertex is either two or three.
The approximation factor of their algorithm is O .
However, this algorithm can only handle undirected graphs.

Even though MFVS problem is NP-complete, the MFVS
of some classes of graphs can be found in polynomial-time
complexity. Several authors have proposed polynomial-time
algorithms to solve the MFVS problem in some special graphs.
Liang [19] proposes an algorithm with O( ) time com-
plexity to solve theminimum cost feedback vertex set(MCFVS)
problem inpermutation graphs. Lu and Tang [18] propose a
linear time algorithm to find the MCFVS ofinterval graphs.
However, most of the graphs modeling the CAD applications
do not generally satisfy the restrictions caused by these special
graphs. Levy and Low [1] propose five contraction operations.
The five operations define a class of graphs calledcontractible
graphs in which the MFVS can be found in polynomial-time
complexity. Their algorithm reduces the size of an input graph
by iteratively using the five contraction operations. If a graph
can be fully reduced, the graph is a contractible graph. Levy
and Low [1] have shown that the class of contractible graphs
contains both the class ofcyclically reducible graphs[17] and
the class of interval graphs. In this paper, we further propose
three new and powerful contraction operations. Incorporating
our new contraction operations with the five operations pro-
posed in [1], we define a new class of graphs calledreducible
graphs, strictly larger than the class of contractible graphs, in
which the MFVS can be found in polynomial-time complexity.

Please note that the three new contraction operations can en-
hance both the speed of the existent exact algorithms [7], [9]
and the quality of the FVS produced by the existent approxi-
mation algorithms [14], [15]. The reason is that both the speed
of the exact algorithms [7], [9] and the approximation factors
of the approximation algorithms [14], [15] depend on the size
of input graph, and the graph reduction caused by the eightcon-
traction operations (three new plus five old) can reduce the size
of the input graph while it still preserves the information neces-
sary for finding a MFVS. The property is calledoptimality pre-
serving property. Therefore, even for the graph not belonging to

the class of reducible graphs, the contraction operations could
still reduce their size and improve the performance of these exis-
tent algorithms. Ashar, Malik [9] and Chakradharet al.[7] have
shown that the graph reduction can significantly speed up their
exact algorithms.

Furthermore, we develop a new exact algorithm according to
the contraction operations. This algorithm runs on the branch
and bound manner and thus needs an effective bounding strategy
and a good initial solution. Because of these requirements, we
develop an effective bounding algorithm to prune the solution
space and a heuristic algorithm that produces a good initial so-
lution. Both the algorithms are based on the contraction opera-
tions and thus reduce the effort of implementation. To demon-
strate the efficiency of our algorithms, we have implemented
our algorithms and applied them to the partial scan application.
The experimental results show that if our three new contrac-
tion operations are applied, 27 out of 31 circuits in ISCAS’89
benchmarks [4], [8], [10], [11] can be fully reduced. Other-
wise, only 12 out of 31 can be fully reduced. Furthermore, for
all ISCAS’89 benchmarks our exact algorithm can find out the
exact cutsets in less than 3 s (CPU time) on SUN-UltraII work-
station. Therefore, the new contraction operations and our algo-
rithms are demonstrated to be very effective in the partial scan
application.

The remainder of this paper is organized as follows. We state
preliminaries in Section II. In Section III and Section IV, we
propose the new contraction operations and our exact algorithm.
The experimental results present in Section V. Finally, Section
VI concludes the paper.

II. PRELIMINARIES

First, some definitions are given and will be used in the fol-
lowing discussions.

Definition 1: A directed graph is a pair , where
is a finite set and is a binary relation on . The set is called
thevertex setof , and its elements are calledvertices. The set

is called theedge setof , and its elements are callededges.
Thesizeof a graph is the number of the vertices in
the vertex set .

Definition 2: If ( ) is an edge in a directed graph
, we say that itstartsat the vertex andpoints to the

vertex , and it is anout-edgeof the vertex and anin-edgeof
the vertex . Theout-degreeof the vertex is the number of the
out-edges of , and thein-degreeof the vertex is the number
of the in-edges of . Thedegreeof a vertex is its in-degree plus
its out-degree.

Definition 3: A pathof length from a vertex to a vertex
in a graph is a sequence

of vertices such that , and for
. If there is a path from a vertex to another

vertex , we say that is reachablefrom via . A path forms
a cycle if and the path contains at least one edge. A
cycle is called aself-loop.

Definition 4: A cutsetof the graph is a set of
vertices such that – is acyclic.

Now, we formally state the MFVS problem.
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The MFVS Problem (Cycle Breaking Problem):Given a di-
rected graph , find a cutset such that the number of the ver-
tices in the cutset is the minimum.

In Section II-A and II-B, we discuss the previous contraction
algorithms that are used frequently to solve the MFVS problem
[5]–[11] and their applications on the partial scan problems.

A. The Previous Contraction Algorithms

The previous contraction algorithms proposed in [1] and [10]
consist of two major steps: 1) the graph reduction and 2) the
heuristic selection. The graph reduction step reduces the graph
while it preserves all properties necessary for finding the min-
imum cutset. In the graph reduction step, there are five contrac-
tion operations: 1) IN0 operation: given a vertexwith in-de-
gree zero, remove and all its incident edges; 2) OUT0 oper-
ation: given a vertex with out-degree zero, removeand all
its incident edges; 3) LOOP operation: given a vertexwith a
self-loop, push into the cutset, remove and all its incident
edges; 4) IN1 operation: given a vertexwith in-degree one
and no self-loop, is the uniquepredecessorof , merge into

as a single vertex; and 5) OUT1 operation: given a vertex
with out-degree one and no self-loop,is the uniquesuccessor
of , merge to as a single vertex. Fig. 1 shows an example
of applying the contraction operations to a directed graph. If the
graph can be reduced completely by the contraction operations,
the cutset is the minimum one, and this graph belongs to the
contractible graph. Otherwise, a vertex is selected heuristically
from the remaining vertices, push it into the cutset and remove
it and its incident edges from the graph. In [1], the heuristic is
conducted by randomly choosing a vertex from the remaining
graph. From several experiments, the authors of [10] found that
random selection is not effective. They proposed to select the
vertex with the maximum sum of the in-degree and the out-de-
gree in the remaining graph. If the heuristic selection is con-
ducted, then the cutset obtained is not guaranteed to be the min-
imum. The graph reduction step and the heuristic selection step
are iteratively applied until the graph is empty.

B. Partial Scan

The scan designis a populardesign-for-testability(DFT)
technique. In afull scan design, all flip-flops are replaced by
scannable flip-flops, so that only combinational test generation
method is necessary for generating the test set with high fault
coverage. However, the full scan designs often incur high
area overhead and performance degradation. Due to its low
overhead, thepartial scan designmethodology has become a
major DFT technique for sequential circuits. For a long time,
a variety of techniques have been applied to automatically
selecting the scan flip-flops. The approach proposed in [4]
uses testability analysis to select scan flip-flops. The method
suggested in [20] uses functional vectors and a combinational
test generator to select the scan flip-flops. In [8], the approach
is concerned with the selection of scan flip-flops aiming to
break up the cyclic structure in the circuits. In this paper, we
focus on this approach that selects the scan flip-flops according
to the MFVS ofS-graph. The S-graphmodels the structural
dependencies between flip-flops by a directed graph. In an

-graph , a vertex represents a flip-flop in the

Fig. 1. Contraction operations on a directed graph.

original circuit and an edge (, ) exists when there is a com-
binational path from the flip-flop to the flip-flop . Primary
inputs and primary outputs are not included in the vertex set.
Therefore, the problem of scan flip-flop selection is reduced
to find the MFVS of -graph. This approach tends to produce
high fault coverage with relatively low area overhead. We will
demonstrate the efficiency of our algorithms on this approach.

III. OUR NEW CONTRACTION OPERATIONS

A. -edges (PIE) Operation

PIE operation removes the redundant edges of a graphfor
cycle breaking consideration. It contains two ideas. We describe
them as shown below.

The first idea comes from the concept ofacyclic edges. Given
an edge , if no cycle goes through, the edge is calledacyclic
edge. For illustration in Fig. 2(a), there are two subgraphs,
and , in the graph . The set of the edges between and
is called . If all edges in the are in the same di-
rection, such as from to , then no cycle in contains the
edges in the . Therefore, the edges in the are
acyclic edges and can be removed fromfor cycle breaking
consideration. The graph shown in Fig. 2(b) is not the con-
tractible one because both the in-degree and the out-degree of
all vertices in are larger than one and there is no self-loop.
However, Fig. 2(b) can be divided into two subgraphs,and

as shown, and the acyclic edges shown in bold edges can be
removed. Because both and are the contractible graphs
and can be reduced as shown in Fig. 2(c), the optimum solution

can be found.
The following discussion explains how to identify the acyclic

edges.
Definition 5: A strongly connected componentof a directed

graph is the maximum set of vertices such
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Fig. 2. (a) The concept of acyclic edges. (b) A noncontractible graph. (c) Graph reduction.

that for every pair of vertices and in , the vertices and
are reachable from each other [21].

Definition 6: The is thecomponent
graph of where contains one vertex for
each strongly connected component ofand contains
the edge (, ) if there is a directed edge from a vertex in the
strongly connected component of corresponding to to a
vertex in the strongly connected component ofcorresponding
to [21].

For the sake of the clarity, the proofs of the following lemmas,
theorems, and corollaries are placed into the Appendix.

Theorem 1: is a directed acyclic graph [21].
Corollary 1: Given a graph and its corre-

sponding component graph , the edges
in associated with an edge in do not belong to any
cycle in and can be eliminated from for the cycle breaking
consideration.

According to Theorem 1 and Corollary 1, in order to find the
acyclic edges between subgraphs, we should find the component
graph of first. Those edges associated with the edges in the
component graph can then be removed.

The second idea of the PIE operation comes from the concept
of the -edges described as follows.

Definition 7: Given a directed graph and an
edge ( , ) in , the edge (, ) is a -edge if there also exists
an edge (, ) in .

For illustration, in Fig. 3(a), all thin edges are the-edges.
For the sake of the clarity, the set of the-edges in a graph is
called PIE in the following discussions.

According to the definition of -edge, if an edge (, ) is in
the PIE, then there is a cycle with length two. Please

note that either or needs to be chosen to break this cycle,
and the -edges, ( , ) and ( , ), must be removed after that.
Therefore, the other cycles containing one of the-edges can be
broken automatically. For example, the graphin Fig. 3(a) is
not a contractible graph and contains no acyclic edge. Because
the thin edges in Fig. 3(a) are-edges, they must be removed to
break the cycles formed by themselves. Consequently, the bold
edges are acyclic edges in the remaining graph and they can be
removed. After removing the bold edges, the remaining graph
can be reduced as shown in Fig. 3(b). Therefore, the optimum
solution can be found.

According to the concept of -edge, the acyclic edges in the
graph -PIE can be removed for the cycle breaking considera-
tion of . Theorem 2 and Corollary 2 formally state this obser-
vation.

Theorem 2: Given a directed graph , the PIE of
and a cutset of , there is no edge (, ) PIE in the graph
– .
Corollary 2: Given a graph , the PIE of and

an edge (, ) in the graph -PIE, if there is no cycles in -PIE
containing ( , ), ( , ) can be removed for the cycle breaking
consideration of .

Given a graph and the PIE of , the PIE op-
eration deletes the acyclic edges of-PIE by finding the com-
ponent graph of -PIE. Because the component graph can be
found by the depth-first search, this operation runs on time com-
plexity O( ). The PIE operation defines a new class of
graphs whose MFVS can be computed in polynomial time. We
call this classPIE-contractible. The most important thing is that
the class of PIE-contractible graphs can subsume the class of
scc-compressible graphs, which was proposed in [7], while its
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Fig. 3. (a) A noncontractible graph. (b) Graph reduction after PIE operation.

MFVS can be computed with the same time complexity as that
of scc-compressible.

B. CORE Operation

The following definitions are necessary for further discus-
sion.

Definition 8: Given a directed graph and the
PIE of , a vertex is a neighborof a vertex if there is an
edge ( , ) PIE. Given a subgraph of where

and PIE , if each vertex in has no self-loop
and it is the neighbor of the other vertices in is ad-clique
of .

Please note that if we remove all edges except the-edges
and treat the pair of -edges ( , ) and ( ) as an undirected
edge ( ), the d-clique can be viewed as thecliquein an undi-
rected graph.

Definition 9: Given a directed graph , the PIE
of and a d-clique of , a vertex is a CORE
of if and all its incident edges are in . A vertex
is a -vertexif all its incident edges are in the PIE.

For illustration in Fig. 4, the vertex and the vertex are the
neighbors of each other, but the vertexis not a neighbor of the
vertex . The vertex set forms a d-clique and both the
vertex and the vertex are the cores of the d-clique .
The vertices , and are the -vertices.

Given a d-clique in a graph , if a vertex is
a core of operation removes the vertex set
into the cutset of . The following discussion explains that
the CORE operation does not impair the optimality of the cutset

.
Lemma 1: Given a d-clique with vertices,

there are at least vertices in any cutset of .
The graph in Fig. 4(a) is not a PIE-contractible graph.

According to Lemma 1, to break all cycles in the d-clique
, at least two vertices need removing and so do all

edges incident to . Please note that all incident edges
of the core are in the d-clique . Removing all
vertices in except the core does not impair the

Fig. 4. (a) A graph is not the PIE-contractible. (b) Graph reduction after CORE
operation.

optimality of final solution because there must be no cycle in
the remaining graph containing the vertex. After removing
the vertices into the cutset, the remaining graph is
contractible and the minimum cutset can be found as
shown in Fig. 4(b). Theorem 3 states this observation.

Theorem 3: Given a directed graph and a core
of the d-clique in , breaking all cycles in

by removing into the cutset of does not impair
the optimality of .

Furthermore, if a core exists, it can be found by the CORE op-
eration shown in Fig. 5 in time-complexity O( )
according to Theorems 4–6.

For the sake of the clarity, the set of the-vertices in a graph
is called PIV in the following discussions.

Theorem 4: Given a directed graph and the PIV
of , a vertex could be the core if it is in the PIV and has the
minimum degree compared to all its neighbors.

Theorem 5: Given a directed graph and a
-vertex with its neighbors ( ), the vertex is a core of

if is a d-clique.
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Fig. 5. The pseudocode of CORE operation.

Theorem 6: Given a directed graph and
a -vertex with the minimum degree compared to its
neighbors ( ), if the vertex is not a core, each vertex in

is not a core in either.
The pseudocode of the CORE operation is shown in Fig. 5.

According to Theorem 4, only the vertices in the PIV need to be
checked. Therefore, given a graph , the PIE and the
PIV of , the CORE operation first sorts the vertices in PIV in
the ascending order according to the degree. Then, it chooses the
first vertex with “valid” mark in PIV and checks if
forms a d-clique by breadth-first search. If forms a
d-clique , is a core of according to The-
orem 5. Then, the vertices in and their incident edges are
removed from and the vertices are placed into the
cutset . Otherwise, all vertices in are marked “in-
valid” according to Theorem 6 and it continuously checks the
next vertex with “valid” mark in PIV. Because of the sorting and
the breadth-first search procedures, the CORE operation runs on
time-complexity O( ). The CORE operation also
defines a new class of graphs whose MFVS can be computed in
polynomial-time. We call this classCORE-contractible.

C. DOME Operation

The DOME (dominated edge) operation comes from the con-
cept that onlyminimal cyclesdescribed in Definition 10 are nec-
essary for cycle breaking consideration. Because no minimal
cycle goes through thedominated edgesdescribed in Definition
12, the dominated edges can be removed.

Definition 10: A cycle is said to
becoveredby a cycle if each vertex

, in is contained by . A cycle isminimal if
it does not cover another cycle.

For illustration in Fig. 6, the cycle is a minimal
cycle, but the one is not.

Theorem 7: Given a directed graph , only minimal cycles
need to be broken while computing the MFVS of.

Theorem 7 is trivial because breaking a minimal cyclewill
automatically break all cycles covering.

Definition 11: Given an edge (, ), the vertex is a pre-
decessorof the vertex and the vertex is asuccessorof the
vertex . If ( , ) is a -edge, then the vertexis called -pre-
decessorof the vertex and the vertex is called -successor
of the vertex . Otherwise, the vertex is callednon- -prede-
cessorof the vertex and the vertex is callednon- -successor
of the vertex .

Fig. 6 (a) A graph is not CORE-contractible or PIE contractible and (b) graph
reduction after DOME operation.

Definition 12: Given a graph without self-loops, an edge
( , ) isdominatedif one of the following conditions is satisfied.
1) is the vertex set that consists of allnon- -
predecessorsof the vertex and is the vertex set that consists
of all predecessorsof the vertex . 2) is the vertex
set that consists of allnon- -successorsof the vertex and
is the vertex set that consists of allsuccessorsof the vertex .
Otherwise, ( , ) is anondominated edge.

In Fig. 6(a), the bold edges satisfy the condition 1 and the
dashed edges satisfy the condition 2. Therefore, they are the
dominated edges.

Theorem 8: Given a directed graph without self-loops,
only nondominated edges are necessary for computing the
MFVS of .

We use Fig. 7 to explain Theorem 8. In Fig. 7(a),
denotes the vertex set of the non--predecessors of ,
denotes the vertex set of the predecessors ofand .
Therefore, ( , ) is a dominated edge. We claim that all
cycles that contain the edge (, ) are not the minimal ones.
First, the cycles that contain the edge (, ) must go through
one of the predecessors of. Without loss of generality, we
assume that they are
and . The cycle

goes through the -predecessor of and the cycle
goes through the non--predecessor of . Because

the vertex is a -predecessor of , the cycle must
cover the cycle . Therefore, the cycle is not a
minimal cycle. For the cycle , because , there
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must be a cycle .
Because covers

, it is not the minimal
one. On the other hand, the condition 2 is symmetric to the
condition 1 and its concept is shown in Fig. 7(b). Therefore,
the dominated edges can be removed for cycle breaking
consideration as stated in Theorem 8.

The graph in Fig. 6(a) is neither PIE-contractible nor
CORE-contractible. However, both the bold and the dashed
edges are the dominated ones and thus can be removed ac-
cording to Theorem 8. After that, the remaining graph is the
contractible graph and the minimum cutset can be found
as shown in Fig. 6(b). For each edge, checking the satisfaction
of the conditions 1 and 2 mentioned above can be conducted
with time-complexity O( ), so the DOME operation runs
on O( ) time-complexity. Therefore, it also defines a
new class of graphs calledDOME-contractiblegraphs whose
MFVS can be found in polynomial-time.

IV. OUR EXACT ALGORITHM

Our exact algorithm based on the branch and bound strategy
is shown in Fig. 8. This procedure is invoked at the top level
with the following parameters: the graph to be
solved, the current solution (which is the empty set ini-
tially), the best solution seen so far (which is initially),
a lower bound (which is zero initially), a tag (which
denotes the current recursive level) and a tagreducible(which
denotes that if could be further reduced and is one initially).
It recursively reduces the size of and returns the minimum
cutset of .

The eight contraction operations can be used to reduce the
problem size without impairing the optimality. Another method
to reduce the problem size is partitioning. Thestrongly con-
nected components(SCC’s) of a graph form disjoint subprob-
lems for cycle breaking. In our algorithm, the graph reduction
step is applied before partitioning. This is because the graph re-
duction step can remove redundant dependencies and vertices,
and the remaining graph could be further partitioned into more
SCC’s.

At the graph reduction step, the eight contraction operations
are applied to reducing the graphiteratively until can no
longer be reduced. If is empty after that, the minimum cutset
of is found. Otherwise, the number of SCC’s in the reduced
graph is calculated. If the number of SCC’s is larger than 1,
the cycle breaking procedure is applied to each SCC, respec-
tively. Otherwise, both theinitial solution and thelower bound
of this reduced graph are calculated by the method described in
Section IV-A and Section IV-B, respectively. Thelower bound
is the number of the vertices needed at least to break all cy-
cles in the remaining graph. The search is bounded and termi-
nated if the sum of the current solution and the lower bound is
equal to or larger than the best solution seen so far. Otherwise, a
vertex with the maximum weight is selected as the branching
vertex. The weight function will be described in Section IV-A.
The branching is done by assuming that the vertexis in the
minimum cutset or not. If the vertexis in the minimum cutset,
the Removeoperation appends it into the current solution

Fig. 7. The concept of the DOME operation.

and removes it and its incident edges from the graph. Other-
wise, theMergeoperation removes the vertexfrom the graph
and connects all predecessors ofto each successor of. After
branching, the current best solution is changed to the returned
solution, if the returned solution is better.

A. Initial Solution Calculation

Our algorithm for calculating the initial solution is modified
from the contraction algorithm mentioned in Section II-A. The
modifications are listed as follows:

1) The operations, PIE, CORE, and DOME, are added into
the graph reduction step.

2) The weight function for heuristic selection is modified
as “ (number of -edges) (in-degree plus out-de-
gree).”

3) The heuristic is done bymergingthe vertex with themin-
imum weightrather thanremovingthe vertex with the
maximum weight. (Merging a vertex means that remove
the vertex from the graph and connect all predecessors
of to each successor of.)

The reason for the modification 2 is that if a vertexhas a
-edge ( , ), there exists a cycle . Either or needs

to be removed to break this cycle. It implies thatis highly
likely to appear in the minimum cutset.

The reason for the modification 3 comes from the results of
the following experiments. First, we define the following items.

Definition 13: A graph is complete if there ex-
ists the edges in , and . Thedensity
of a graph is defined by “ ;”
is the number of the edges in the complete graph

. A graph is said to benonreducibleif the eight con-
traction operations can no longer reduce it.

For different densities, we randomly produce tennonre-
duciblegraphs with 100 vertices. Then, we apply the algorithms
H8R (heuristic is based on removing the vertex with the max-
imum weight) and H8M (heuristic is based on merging the
vertex with the minimum weight) to them, respectively. In
Table I, the rows Heu_H8R and Heu_H8M denote the average
times of the heuristic selection being conducted in solving
a graph by the two algorithms, respectively, and the rows
Sol_H8R and Sol_H8M denote the average size of the cutsets
produced by the two algorithms, respectively.

We can find that algorithm H8R produces the cutsets whose
sizes are close to the times of heuristic selection being con-
ducted by it, but algorithm H8M does not, especially in the
graphs with higher density. This is because a graphwith
higher density is more likely a nonreducible graph. Removing
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Fig. 8. The pseudocode of our exact algorithm.

TABLE I
COMPARISONBETWEEN THEHEURISTICSH8R AND H8M

a vertex from , the remaining graph is still most likely nonre-
ducible because its density is still high. Therefore, the heuristic
selection could be conducted again and again. However,
merging a vertex in could produce several self-loops and the
remaining graph can be reduced without conducting heuristic
selection. Therefore, the times of heuristic selection can be
reduced significantly, especially in the graphs with higher
density. The fewer times heuristic selections are conducted,
the better solutions could be found. Because the nonreducible
graph usually has a higher density, the algorithm H8M usually
produces a better solution than the algorithm H8R.

B. Bounding Strategy

The lower bound calculation also uses the eight contraction
operations. Similar to the contraction algorithm mentioned
in Section II-A, it also contains the graph reduction and the
heuristic selection. The heuristic is based on Lemma 1 men-
tioned in Section III-B, which we need at least vertices
to break the cycles in a d-clique with size, and we need at

least one vertex to break a cycle. First, the graph reduction
is applied iteratively until no more reduction is possible and
the lower bound is updated according to the LOOP and the
CORE operations. After that, if the graph is empty, the exact
lower bound is found. Otherwise, the heuristic is applied as
follows. 1) If a d-clique with the largest sizecan be found,
we remove it and its incident edges and then increase the lower
bound by . 2) If there is no d-clique with size being
larger than one in the graph, we remove the cyclewith
the minimum length and increase the lower bound by one.
The graph reduction and the heuristic selection are iteratively
applied until the graph is empty, and then the lower bound is
returned. Because finding the largest d-clique in a directed
graph is a NP-complete problem, which is equal to finding the
largest clique in an undirected graph, the heuristic based on the
concept of common neighbor is applied [22].

C. MCFVS Problem

Given a weighted directed graph , where
each vertex in is associated with a cost, find a cutset
such that the sum of the cost of the vertices in the cutsetis the
minimum.

Our algorithm can be easily modified to cope with the
MCFVS problem as follows. First, the sum of the costs of the
vertices instead of the number of the vertices in the cutset
is used as the cost function. Second, the weight function of
a vertex becomes ( (number of -edges) (in-degree
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out-degree))/(vertex cost). The lower bound estimation in-
creases the lower bound by the sum of the costs of the vertices
in the removed d-clique except the one with the maximum
cost or by the minimum cost of the vertices in the removed
cycle. Last, the contraction operations IN1, OUT1, and CORE
are modified as follows. The cost of the unique predecessor

of a vertex must be smaller than that of the vertexfor
the IN1 operation. The cost of the unique successorof a
vertex must be smaller than that of the vertexfor the OUT1
operation. The core of a d-clique must have the maximum cost
in this d-clique for the CORE operation.

V. EXPERIMENTAL RESULTS

To demonstrate the efficiency of our algorithm, we have im-
plemented our algorithm and applied it to solving the partial
scan problem in ISCAS’89 benchmarks. In our experiments, the
self-loops in the initial -graph are ignored first, since these
loops do not cause problems during test generation [8]. The
following experiments are run at SUN-UltraII workstation with
256M RAM.

In Table II, the algorithm H5R is the previous contraction al-
gorithm proposed in [10] in which the “in-degreeout-degree”
is used as the weight function. The algorithm H5WR modi-
fies the weight function of H5R to “ (number of -edges)

(in-degree out-degree)” where and . The
sizes of the cutsets produced by the two algorithms are shown in
columns “H5R” and “H5WR,” respectively. The sizes of exact
cutsets are shown in column “exact.” In all circuits in Table II,
the algorithm H5WR does not produce worse results than the
algorithm H5R. Both the algorithms H5R and H5WR produce
the exact cutset for the circuits without being highlighted ex-
cept s1423 and s15850. Furthermore, the algorithm H5WR pro-
duces better results for the circuits highlighted, especially for
s38584. The circuits in ISCAS’89 benchmarks not being listed
in Table II can be fully reduced by the algorithm H5R, so we do
not need to consider them in our experiments.

The experimental results in Table III show that our new con-
traction operations are useful for the practical CAD application.
In Table III, the algorithm H8WR adds three new contraction
operations (PIE, CORE, and DOME) into the algorithm H5WR.
The algorithm “H5WR SCC” adds the SCC (strongly con-
nected component) operation proposed in [2] and [7] into the
algorithm H5WR. The sizes of the graphs that cannot be further
reduced without conducting the heuristic selection, the times of
heuristic selection conducted before the graph is fully reduced,
the sizes of the cutsets produced and the CPU time consumed by
these two algorithms are shown in columns “r_size,” “heu_sel,”
“ ,” and “ ,” respectively. The zeros in columns “r_size”
and “heu_sel” mean that the corresponding-graphs can be
fully reduced, and the optimal cutsets can be found after ap-
plying the graph reduction. If only the SCC operation and five
contraction operations (IN0, OUT0, IN1, OUT1, and LOOP)
are applied, all circuits in Table III cannot be fully reduced.
However, after adding our operations (PIE, CORE and DOME),
the -graphs can be fully reduced in 15 out of 19 circuits. In
those 4 circuits (s1423, s15850, s38417, and s38584) cannot be

TABLE II
WEIGHT FUNCTION COMPARISON

fully reduced, the graph size can also be further reduced signif-
icantly. Therefore, our new contraction operations can improve
the speed of the exact algorithms significantly. Also, the sizes
of the cutsets produced by the algorithm H8WR are not larger
than those produced by the algorithm H5WRSCC. In par-
ticular, the algorithm H8WR outperforms in the circuits s1423,
s15850, s38417, and s38584. The CPU time consumed by the
algorithm H8WR only increases slightly. It is surprising that the
algorithm H8WR runs faster than the algorithm H5WRSCC
in the circuits s15850, s38417, and s38584. The reasons could
be that before a heuristic is conducted, the contraction opera-
tions must be applied with no gain returned, and the number of
times of the heuristics being conducted by the algorithm H5WR

SCC is much larger than that of the algorithm H8WR.
In Table IV, the algorithm H8WM conducts the heuristics

by merging the vertex with the minimum weight instead of the
one adopted by the algorithm H8WR that removing the vertex
with the maximum weight. Only nonreducible circuits need to
be considered in this comparison. Though in the circuit s15850,
the algorithm H8WM produces a solution larger than the algo-
rithm H8WR by 1. However, in the circuit s38417, the algo-
rithm H8WM produces a solution smaller than the algorithm
H8WR by 8. The most important thing is that the algorithm
H8WM makes no more heuristics than the algorithm H8WR for
all circuits. Therefore, conducting merging instead of removing
heuristic should produce better cutsets in most cases.

To further demonstrate the efficiency of the algorithm
H8WM, we compare the results produced by the algorithm
H8WM with the results produced by the exact algorithm for the
graphs generated randomly. In Table V, column one and row
one show the sizes and the densities of input graphs, respec-
tively. The rows “H8WM” and “Exact” show the average sizes
of the feedback vertex sets (FVS) produced by the algorithm
H8WM and the exact algorithm. The rows “approx. f” show
the average approximation factors of the algorithm H8WM at
different graphs. The approximation factor is the ratio of the
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TABLE III
CONTRACTION OPERATIONSCOMPARSION

TABLE IV
HEURISTIC COMPARISON AT ISCAS’89 CIRCUITS

size of the FVS produced by the algorithm H8WM to the size
of the FVS produced by the exact algorithm. In Table V, we
can see that the results of the algorithm H8WM are very close
to the ones of the exact algorithm and all the approximation
factors are smaller than 1.1. Please note that the approximation
factors are smaller in the graphs with very low density and
the graphs with higher density. The reasons are the following:
in the graphs with lower density, the contraction operations
can largely reduce the sizes of graphs and thus result in better
solutions. In the graphs with higher density, conducting the
heuristic by merging a vertex results in fewer times of heuristic
selections as mentioned in Section IV-A. The fewer times the
heuristic selections are conducted, the better solutions could be
found.

In the branch and bound algorithms, two factors can improve
the speed. The one is a good initial solution and the other is
a tight lower bound. The algorithm H8WM produces a good
initial solution for our branch and bound algorithm. To demon-
strate the effectiveness of our bounding strategy, we compare
the algorithm of our lower bound calculation mentioned in Sec-
tion IV-B with the one suggested in [23] and the one proposed
in [7].

In [23], themaximum independent setof independency graph
is suggested as a bounding strategy to solve thecolumn-cov-

eringproblem (see [23] for details). In MFVS problem, the max-
imum independent set can be used to compute the lower bound
as shown below. First, all minimal cycles are enumerated. Each
minimal cycle is associated with a vertexin the indepen-
dency graph, which is an undirected graph. The edge (, ) exists
in the independency graph if all vertices in the cycleare dif-
ferent from the vertices in the cycle. Then, a lower bound for
breaking all cycles in a graph can be computed by finding the
maximum clique size in the independency graph. Because the
maximum clique problem is a NP-complete problem, the good
heuristic proposed in [22] is used in our experiments.

The authors of [7] use theinteger linear programming(ILP)
to model the MFVS problem. A lower bound can be calculated
by relaxing their ILP formulation tolinear programming(LP)
formulation. To enhance the lower bound of this relaxation, they
suggest adding the constraints caused by the cycles with length
2 (see [7] for details).

We conduct the experiments as follows. First, the graph re-
duction is applied to the-graph of each circuit. After the graph
reduction, we calculate the lower bounds for the remaining
graphs, which are nonreducible. In Table VI, the columns
two and three show the graph size before reduction and after
reduction, respectively. The column “exact” shows the exact
lower bounds. The lower bounds produced by the maximum
independent set, the ILP relaxation and our approach are shown
in columns “MIS,” “ILP,” and “Ours,” respectively. The last
column is the CPU time consumed by our approach (including
the CPU time consumed by the graph reduction). We can find
that for the circuit s38417, both approaches “MIS” and “ILP”
produce a lower bound less than the exact one by 28. However,
our approach finds the exact lower bound for all circuits in
Table VI in very short CPU time. Because we perform the
“ILP” approach by running the commercial tool LINGO on 586
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TABLE V
RESULT COMPARISONBETWEEN THEH8WM ALGORITHM AND THE EXACT ALGORITHM AT THE GRAPHSPRODUCEDRANDOMLY

PC and enumerating all minimal cycles consumes much CPU
time, the CPU time consumed by the approaches “MIS” and
“ILP” are not listed here. Furthermore, we randomly produce
ten nonreducible graphs with 50 vertices for the different den-
sity listed in Table VII and apply the three bounding strategies
to them. For these graphs, our approach also produces better
lower bounds than the other two approaches. An interesting
phenomenon is that when the graph density is high, it seems
that the approaches “MIS” and “ILP” could not produce a lower
bound higher than 25 for these graphs. However, our approach
still produces good lower bounds for them. Therefore, our
bounding strategy can prune the solution space efficiently and
enhances the speed of our exact algorithm.

Finally, we summarize the CPU time consumed and the re-
sults produced by our exact algorithm in Table VIII. It is sur-
prising that for all circuits in ISCAS’89 benchmarks our exact
algorithm can find out the exact cutsets in less than 3 s (CPU
time).

VI. CONCLUSION

The contributions of this paper are summarized as follows.
1) Three new and powerful contraction operations that can fur-
ther reduce a graph are developed for computing the MFVS of a
graph. These contraction operations define a new class of graphs
called reducible graphs whose MFVS can be found in polyno-
mial-time complexity. Furthermore, the contraction operations
can be incorporated with the existent exact algorithms and the
approximation algorithms to improve the speed of the exact al-
gorithms and to reduce the value of approximation factors of the
approximation algorithms. 2) An algorithm based on branch and
bound strategy is developed for solving the MFVS problem ex-
actly. This algorithm employs a heuristic that produces a good
initial solution and a good bounding strategy to prune the so-
lution space. We have implemented our algorithms and applied
them to solving the partial scan problem in ISCAS’89 bench-
marks. In these experiments, our new contraction operations can
significantly enhance not only the quality of the FVS produced

TABLE VI
LOWER BOUND COMPARISON AT ISCAS’89 CIRCUITS

TABLE VII
LOWER BOUND COMPARISON AT THEGRAPHSPRODUCEDRANDOMLY

by our heuristic algorithms but also the speed of our exact al-
gorithm. The experimental results further show that our exact
algorithm can find out the exact cutsets for all ISCAS’89 bench-
marks in less than 3 s (CPU time) on SUN-UltraII workstation.
Therefore, the new contraction operations and our algorithms
are demonstrated to be very effective in the partial scan appli-
cation.

APPENDIX

Corollary 1: Given a graph and its corre-
sponding component graph , the edges
in associated with an edge in do not belong to any
cycle in and can be eliminated from for the cycle breaking
consideration.

Proof: Assume that an edge (, ) in is associated with
an edge in and the edge (, ) also belongs to a cycle in.
Because (, ) is associated with an edge in , the vertices

and must be in the different component vertices of .
However, the edge (, ) belongs to a cycle in , so and are
reachable from each other. They must be in the same strongly
connected component. It is contradictive. Therefore, no cycle in
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TABLE VIII
THE RESULTSPRODUCED BY OUREXACT ALGORITHM

contains the edge (, ) and the edge (, ) can be eliminated
for the cycle breaking consideration.

Theorem 2: Given a directed graph , the PIE of
and a cutset of , there is no edge (, ) PIE in the graph
– .

Proof: Assume that an edge (, ) in the graph – is in
the PIE. According to the definition of -edge, there exists a
cycle in the graph – . Therefore, the graph– is
cyclic. It is contradictive.

Corollary 2: Given a graph , the PIE of and
an edge (, ) in the graphG-PIE, if there is no cycles inG-PIE
containing ( , ), ( , ) can be removed for the cycle breaking
consideration of .

Proof: Assume that there is no cycle in the graphG-PIE
containing the edge (, ). If some cycles in contain ( , ),
those cycles must contain some edges in the PIE. According
to Theorem 2, those cycles must be broken after the edges in
the PIE are removed. Therefore, those cycles do not need to
be considered for cycle breaking and the edge (, ) can be
removed.

Lemma 1: Given a d-clique with vertices,
there are at least vertices in any cutset of .

Proof: Assume that is a cutset of and the number
of the vertices in is less than . Therefore, the graph

– contains two vertices, and , at least. By the definition
of d-cliques, there exists a-edge ( , ) in – . Therefore,
there is a cycle in the graph – . It is contradictive.

Lemma 2: Given a d-clique with vertices,
randomly choosing vertices from forms a cutset of .

Proof: Because is a d-clique, each vertex in has
no self-loop. A graph with a single vertex without self-loops is
acyclic.

Theorem 3: Given a directed graph and a core
of the d-clique in , breaking all cycles in

by removing – into the cutset of does not impair the
optimality of .

Proof: According to Lemma 1 and Lemma 2, to break all
cycles in , only one vertex can be reserved and all edges in
must be removed. Please note that all incident edges of the core

are in . This means that after removing – , there is no
cycle containing in the remaining graph. Therefore, breaking
all cycles in by removing – into does not impair the
optimality of the final solution.

Lemma 3: Given a directed graph and a d-clique
of , if there exists a core of the core has

the minimum degree in .

Proof: Given a vertices with the minimum degree in
and assume that the corehas degree . Because

is a core of , all its incident edges are associated with its
neighbors. Because bothand are in the d-clique , the
neighbors of are also the neighbors of. Therefore, the de-
gree of is not smaller than the degree of, i.e., . It is
contradictive.

Lemma 4: If a vertex is a core of a d-cliques
in is a -vertex.

Proof: According to Definition 8 and 9, all edges in
belong to PIE and the edges of a core must belong to. There-
fore, the vertex must be a -vertex.

Theorem 4: Given a directed graph and the PIV
of a vertex could be the core if it is in the PIV and has the
minimum degree compared to all its neighbors.

Proof: It is obvious from Lemma 3 and Lemma 4.
Theorem 5: Given a directed graph and a
-vertex with its neighbors , the vertex is a core of

if is a d-clique.
Proof: The forms a d-clique and all incident

edges of are associated with its neighbors. Therefore, the
vertex is a core of the d-clique .

Theorem 6: Given a directed graph and a
-vertex with the minimum degree compared to its neigh-

bors , if the vertex is not a core, each vertex in
is not a core in either.

Proof: Assume that the vertexis not a core and a core
is the neighbor of . According to Theorem 4 and Theorem 5,
the core must also have a degreeand the forms a
d-clique . Because the vertexis a neighbor of , the vertex
is also in this d-clique . Furthermore, becausehas a degree

, all incident edges of must also be in . Therefore, the
vertex is also a core according to the definition of core. It is
contradictive.

Theorem 7: Given a directed graph only minimal cycles
need to be broken while computing the MFVS of.

Proof: For each cycle which is not minimal, there exists
a minimal cycle covered by the cycle according to Defi-
nition 10. Because breaking automatically breaks the cycle

only minimal cycles need to be considered for computing the
MFVS of a directed graph.

Lemma 5: Given a directed graph an edge (,
) and a vertex that is a -predecessor of the vertex,

the cycle containing the path is not minimal.
Proof: Because is a -predecessor of the vertex, there

must exist a cycle with length two covered by .
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Lemma 6: Given a directed graph an edge (,
) and a vertex that is a -successor of the vertex, the

cycle containing the path is not minimal.
Proof: Lemma 6 is symmetric to Lemma 5.

Lemma 7: Given a directed graph without self-
loops, an edge (, ) the sets and that consist of the
predecessors of the verticesand , respectively, if ,
then each cycle contains the edge (, ) is not minimal.

Proof: Without loss of generality, we assume that
the vertex , and a cycle contains the edge
( , ). Because the cycle contains ( , ), it must go
through one of the predecessors of. Without loss of
generality, we assume the predecessor is the vertex
and ;

and . If , there must
exist an edge ). Therefore, there also exist a cycle

; and
. Because the cycle covers the cycle , it

is not minimal.
Lemma 8: Given a directed graph without self-

loop, an edge (, ) , the sets and that consist of the
successors of the verticesand , respectively, if , then
each cycle contains the edge (, ) is not minimal.

Proof: Lemma 8 is symmetric to Lemma 7.
Theorem 8: Given a directed graph without self-loops,

only nondominated edges are necessary for computing the
MFVS of .

Proof: It is obvious from Theorem 7 and Lemmas 5–8.
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