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Axially symmetric on-axis flat-top beam
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A synthesis method for arbitrary on-axis intensity distributions from axially symmetric fields is developed in
the paraxial approximation. As an important consequence, a new pseudo-nondiffracting beam, the axially
symmetric on-axis flat-top beam (AFTB), is given by an integral transform form. This AFTB is completely
determined by three simple parameters: the central spatial frequency Sc , the on-axis flat-top length L, and
the on-axis central position zc . When LSc @ 1, this AFTB can give a nearly flat-top intensity distribution
on the propagation axis. In particular, this AFTB approaches the nondiffracting zero-order Bessel J0 beam
when L → `. It is revealed that the superposition of multiple AFTB fields can give multiple on-axis flat-
top intensity regions when some appropriate conditions are satisfied. © 2000 Optical Society of America
[S0740-3232(00)01202-3]
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1. INTRODUCTION
Nondiffracting beams, such as the zero-order Bessel J0
beam,1,2 have attracted much attention, because their in-
tensity distributions do not change in those transverse
planes perpendicular to the propagation direction. These
novel nondiffracting beams are of practical interest, for
example, in precision alignment, laser machining, and la-
ser surgery. However, ideal nondiffracting beams are
not realizable in physics because they have infinite en-
ergy. Recently many authors have investigated the so-
called pseudo-nondiffracting beams.3–23 A pseudo-
nondiffracting beam is characterized by an almost
constant axial intensity distribution over a finite axial re-
gion and a beamlike shape in the transverse dimensions.
Recently many kinds of pseudo-nondiffracting beams
have been presented by the use of various methods such
as the stationary phase method,7,14,16,19 the iterative
method,8–11,13,17 and the two-element method.20–22

Besides those pseudo-nondiffracting beams whose on-
axis intensity distributions are almost invariable in a spe-
cific region, those beams whose on-axis intensity distribu-
tions have other specific profiles, such as the profile of
multiple flat-top intensity regions on the propagation
axis, are of practical interest. For example, those axially
symmetric beams with multiple on-axis flat-top intensity
regions can be used in the laser head of multifocal optical
disk drives. In the past few years, several authors have
investigated the synthesis problem of arbitrary on-axis
intensity distributions in free space by employing various
iterative methods.24–27

In this paper we shall employ the spatial-frequency
method to construct arbitrary on-axis intensity distribu-
tions from axially symmetric fields in the paraxial ap-
proximation. Based on this construction method, we
shall present a new pseudo-nondiffracting beam, the axi-
ally symmetric on-axis flat-top beam (AFTB), which can
be regarded as a modified version of the paraxial Bessel
J0 beam and investigate its on-axis intensity behavior.
0740-3232/2000/030447-09$15.00 ©
In addition, we shall investigate the synthesis problem of
multiple on-axis flat-top intensity distributions from the
linear superposition of multiple AFTB fields.

2. SYNTHESIS OF ARBITRARY ON-AXIS
INTENSITY DISTRIBUTIONS FROM
AXIALLY SYMMETRIC FIELDS
In the paraxial approximation, the slowly varying enve-
lope f(x, y, z) of an arbitrary monochromatic light beam
E(x, y, z, t) 5 exp@i(k z 2 v t)#f (x, y, z) obeys the follow-
ing paraxial wave equation28:
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]2f

]y2 5 0, (1)

where k is the wave number and v is the angular fre-
quency. It is well known that,28 to a general axially sym-
metric beam f(r, z), the solution of Eq. (1) is given by

c ~ f, z ! 5 c ~ f, 0 !exp~2ipl f 2z ! (2)

in the spatial-frequency domain, where f is the radial spa-
tial frequency, l is the wavelength, and c ( f, z) is the
Fourier–Bessel transform of the complex optical field dis-
tribution f(r, z) at the z 5 z plane, namely,

f~r, z ! 5 2pE
0

`

c ~ f, z !J0~2prf !f d f, (3)

where J0(u) is the zero-order Bessel function of the first
kind.

Substituting Eq. (2) into Eq. (3), one can obtain

f~r, z ! 5 E
0

`

kc ~A2S/l, 0 !exp~2i2pSz !

3 J0~2prA2S/l!dS, (4)

where S 5 lf 2/2. In particular, the on-axis field distri-
bution f(0, z) is given by
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f~0, z ! 5 E
0

`

kc ~A2S/l, 0 !exp~2i2pSz !dS, (5)

where the property J0(0) 5 1 has been used.
From Eq. (5) one can find that the on-axis field distri-

bution f(0, z) is the half-space Fourier transform of the
function kc (A2S/l, 0) at the original z 5 0 plane. This
property implies that the inverse Fourier transform of the
on-axis field distribution f(0, z) of an arbitrary axially
symmetric field f(r, z) has no negative spatial-frequency
component at all.

It is well known that, in the spatial-frequency domain,
the longitudinal spatial frequency fz is given by fz

5l21A1 2 l2f 2 for an axially symmetric field. In par-
ticular, in the paraxial approximation, A1 2 l2f 2 ' 1
2 l2 f 2/2, and fz reduces to fz 5 l21 2 S. From this

expression, one can know that the quantity S is directly
related to the longitudinal spatial frequency fz . In the
following, we shall also for simplicity call the quantity S
the (longitudinal) spatial frequency, because, for a mono-
chromatic optical field, the quantity l21 is actually a con-
stant. From the relation S 5 lf 2/2, one knows that the
longitudinal spatial frequency S is always positive.
However, in the remainder of this paper, we shall for con-
venience extend the longitudinal spatial frequency S to
the negative region (i.e., S , 0) in form. Unlike the
positive longitudinal spatial frequency (i.e., S > 0), the
negative longitudinal spatial frequency (i.e., S , 0) has
no real physical meaning. We shall deal with it only as a
variable in some related integral transforms.

Let us now employ the spatial-frequency method to
construct an arbitrary on-axis desired intensity distribu-
tion Ig(0, z) from an axially symmetric field. Our method
is as follows.

First, we obtain the inverse Fourier transform w(S) of
the function AIg(0, z), namely,

w~S ! 5 E
2`

`

AIg~0, z ! exp~i2pSz !dz. (6)

Usually the function w(S) is complex and has negative
spatial-frequency components. However, for the practi-
cal case, the function w(S) should have a limited distri-
bution, provided that the integral *2`

` Ig(0, z)dz is finite.
Fortunately, for practical synthesis problems, the integral
*2`

` Ig(0, z)dz is always finite. One can deduce that, as
an important consequence of the property that the func-
tion w(S) has a limited distribution, the integral

E
2`

2Sl

w~S !exp~2i2pSz !d S

decreases (may not monotonously decrease) with the in-
crease of the integral limit Sl in the total behavior. In
particular, this integral approaches 0 when Sl → `.

Second, we replace the variable S of the function w(S)
by the variable S 2 Sc and construct a new function
w(S 2 Sc), where Sc is a positive parameter. The effect
of this step is to reduce the negative spatial-frequency
components, because the negative spatial-frequency com-
ponents of the function w(S 2 Sc) are always smaller
than those of the function w(S) when Sc . 0. In addi-
tion, the radial spatial frequency fc that corresponds to
the longitudinal spatial frequency Sc can be determined
to be fc 5 A2Sc /l, according to the relation S 5 lf 2/2.

Third, we use the function w(S 2 Sc) to replace the
function kc (A2S/l, 0) in Eq. (4) and construct an axially
symmetric field distribution f(r, z) by means of the inte-
gral transform

f~r, z ! 5 E
0

`

w~S 2 Sc!exp~2i2pSz !

3 J0~2prA2S/l!dS. (7)

The axially symmetric field f(r, z) given by Eq. (7) is al-
ways a solution of the paraxial wave equation of Eq. (1).
In terms of Eq. (7), the property J0(0) 5 1, and the Fou-
rier transform relation

AIg~0, z ! 5 E
2`

`

w~S1!exp~2i2pS1z !dS1 ,

one can prove that the on-axis field distribution f(0, z)
can be expressed as

f~0, z ! 5 exp~2i2pScz !@AIg~0, z ! 2 g~z !#, (8)

g~z ! 5 E
2`

2Sc

w~S1!exp~2i2pS1z !dS1 , (9)

where S1 5 S 2 Sc . In terms of Eq. (8), the on-axis in-
tensity distribution I(0, z) can be determined to be

I~0, z ! 5 uAIg~0, z ! 2 g~z !u2. (10)

As pointed out above, in the total behavior the larger the
quantity Sc , the smaller the function g(z), and there-
fore the smaller the difference between I(0, z) and
Ig(0, z). In particular, g(z) → 0 and I(0, z) → Ig(0, z)
when Sc → `.

Finally, we increase the value of the quantity Sc until
the difference between I(0, z) and Ig(0, z) becomes negli-
gible. Seldom, if the inverse Fourier transform w(S) of
the function AIg(0, z) has no negative spatial-frequency
component (namely, w(S) 5 0 for S , 0), the parameter
Sc can be always chosen to be 0. In this case, the con-
structed three-dimensional field distribution f(r, z) can
be given by

f~r, z ! 5 E
0

`

w~S !exp~2i2pSz !J0~2prA2S/l!dS.

One can prove that, in this special case, the constructed
on-axis intensity distribution I(0, z) is exactly the on-axis
desired intensity distribution Ig(0, z).

From the above analysis, one can find that the param-
eter Sc is very important. Its value has a direct influence
on the difference between the constructed on-axis inten-
sity distribution I(0, z) and the on-axis desired intensity
distribution Ig(0, z). The larger the value of Sc , the
smaller the difference between I(0, z) and Ig(0, z).
Therefore, when the parameter Sc is large enough, the
constructed on-axis intensity distribution I(0, z) ap-
proaches the on-axis desired intensity distribution
Ig(0, z). However, it is necessary to point out that the
above conclusion is valid only when the paraxial approxi-
mation is satisfied.28 If the investigated optical field
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f(r, z) does not satisfy the paraxial approximation, the
difference between I(0, z) and Ig(0, z) may increase with
the increase of the parameter Sc . Therefore, in practical
applications, one should choose the value of the param-
eter Sc such that the difference between I(0, z) and
Ig(0, z) is small and at the same time the paraxial ap-
proximation is satisfied. One can use the condition uc
! 1 to roughly determine whether the paraxial approxi-
mation is satisfied, where uc 5 lfc 5 A2lSc is the char-
acterization angle corresponding to the spatial frequency
Sc . Fortunately, in almost all cases, the paraxial ap-
proximation is well satisfied.

3. AXIALLY SYMMETRIC ON-AXIS FLAT-
TOP BEAM
As a concrete application of the above synthesis method,
let us now present a new pseudo-nondiffracting beam. In
this example, the on-axis desired intensity distribution
Ig(0, z) is the rectangular function rect@(z 2 zc)/L#,
whose value is given by rect@(z 2 zc)/L# 5 1 for the re-
gion of u(z 2 zc)/Lu < 1/2 and rect@(z 2 zc)/L# 5 0 else-
where. The parameters L and zc express the flat-top
length and the central position of the on-axis flat-top in-
tensity distribution rect@(z 2 zc)/L#, respectively. Sub-
stituting the rectangular function rect@(z 2 zc)/L# into
Eq. (6), one can determine the function w(S) to be

w~S ! 5 L sinc~LpS !exp~i2pSzc!, (11)

where sinc(u) 5 sin(u)/u is the sinc function.
By employing the synthesis method developed in Sec-

tion 2, one can construct the complex optical field distri-
bution f(r, z) that corresponds to the on-axis desired in-
tensity distribution rect@(z 2 zc)/L# and the parameter
Sc (see Appendix A):

f~r, z ! 5 E
0

`

L sinc@Lp~S 2 Sc!#

3 exp@i2p~Szc 2 Sczc 2 Sz !#

3 J0F2prS 2S

l
D 1/2GdS. (12)

In particular, the on-axis intensity distribution I(0, z) can
be expressed as (see Appendix B)

I~0, z ! 5 uf~0, z !u2 5 urectS z 2 zc

L D 2 g~z !u2, (13)

g~z ! 5 E
2`

2Sc

L sinc~LpS1!

3 exp@2i2pS1~z 2 zc!#dS1 , (14)

where S1 5 S 2 Sc .
As we pointed out in Section 2, the larger the param-

eter Sc , the smaller the value of the function g(z) and the
smaller the difference between the on-axis intensity dis-
tribution I(0, z) and the ideal flat-top profile rect@(z
2 zc)/L#. When Sc → `, g(z) approaches 0 and the
on-axis intensity distribution I(0, z) approaches the ideal
flat-top profile rect@(z 2 zc)/L#. For this reason, we
name the beam whose field distribution f(r, z) is given
by Eq. (12) the axially symmetric on-axis flat-top beam
(AFTB). From Eq. (12) one can find that the complex op-
tical field distribution f(r, z) of the AFTB is completely
determined by three parameters L, Sc , and zc . As an
important consequence, the on-axis intensity distribution
I(0, z) is also determined by the parameters L, Sc , and
zc . In fact, as we show below, the normalized on-axis in-
tensity distribution of the AFTB is simply determined by
the quantity LSc . According to the original distribution
L sinc@Lp(S 2 Sc)#exp@i2p (S 2 Sc) zc# of the AFTB at
the original z 5 0 plane, the physical meaning of the pa-
rameter Sc in this example can be reasonably explained
as the central spatial frequency of the AFTB. In addi-
tion, it is worth mentioning that the central position zc
can be zero or negative, according to Eq. (12). The nega-
tive zc means only that the central position is located at
the left-hand side of the z 5 0 plane. However, we are
more interested in those AFTB’s with positive zc .

To understand more clearly the influence of the param-
eters L, Sc , and zc on the difference between the on-axis
intensity distribution I(0, z) and the ideal flat-top profile
rect@(z 2 zc)/L#, let us now introduce two dimensionless
normalization parameters j 5 LS1 and h 5 (z 2 zc)/L.
In terms of j and h, the on-axis intensity distribution
I(0, h) and the difference function g(h) can be respec-
tively reexpressed as (see Appendix B) I(0, h) 5 urect(h)
2 g(h)u2 and

g~h! 5 E
2`

2LSc

sinc~pj!exp~2i2pjh!dj. (15)

Equation (15) and the relation I(0, h) 5 urect(h)
2 g(h)u2 explicitly show that the difference between the
on-axis intensity distribution I(0, h) and the ideal flat-top
profile rect(h) is determined only by the quantity LSc and
that the larger the quantity LSc , the smaller the differ-
ence between I(0, h) and rect(h). One may be surprised
at the property that the parameter zc has no influence on
the difference between I(0, h) and rect(h). In our opin-
ion, this property can be explained as follows: (1) the pa-
rameter zc is related only to the phase factor exp(i2pSzc)
in Eq. (12) [note that the constant phase factor
exp(2i2pSc zc) can be ignored]; (2) according to the paral-
lel shift theorem of Fourier transform theory, the phase
factor exp(i2pSzc) creates only a parallel shift zc in the
on-axis field distribution; and (3) therefore the parameter
zc has no influence on the on-axis normalized intensity
distribution I(0, h).

The normalized on-axis intensity distributions I(0, h)
of the AFTB’s for LSc 5 10, LSc 5 100, and LSc 5 200
are shown in Fig. 1. From Fig. 1 one can find that, just
as we expected, the larger the quantity LSc , the smaller
the difference between I(0, h) and rect(h). In the simu-
lation of Fig. 1, we do not use Eq. (15) and the formula
I(0, h) 5 urect(h) 2 g(h)u2, but rather we directly use
the equivalent formula

I~0, h! 5 U E
2LSc

H

sinc~pj!exp~2i2pjh!djU2

. (16)

In Eq. (16) the parameter H, which is used as the upper
limit of the integral (to replace the real integral limit `) in
the numerical simulation, can be chosen to be any large
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number, such as 3000, 4000, or 5000. In the simulation
of Fig. 1, we let the integral limit H be 4000. From the
point of view of physics, this treatment does not lead to
any difference in the physical results because the function
sinc(p j) is actually equal to zero when j . 4000. One
may be surprised at the steep edges of the on-axis normal-
ized intensity distributions I(0, h). In our opinion, these
steep edges result from the infinite aperture effect (note
that the integral limit 4000 used in the simulation is ac-
tually equivalent to the integral limit ` and therefore can
be regarded as an infinite aperture). To make this state-
ment clearer, we investigate the influence on the normal-
ized on-axis intensity distribution I(0, h) from different
choices of the integral limit H. The normalized on-axis
intensity distributions that correspond to different inte-
gral limits H 5 20, H 5 50, and H 5 100 are shown in
Figs. 2(a), 2(b), and 2(c), respectively. In Fig. 2 the value
of LSc is 10. From Fig. 2 one can see that the steep
edges vanish when the parameter H is not too large. In
our opinion, this is due to the finite aperture effect. By
the way, Fig. 2 also shows the interesting phenomenon
that, in the flat-top region, the number of large oscilla-
tions is exactly equal to LSc and the number of small os-
cillations is equal to H. We emphasize that this phenom-
enon is not a coincidence because our numerous
simulations all give the same conclusion. Perhaps it is
worth further investigations in both mathematics and
physics.

To support more strongly the conclusion that the pa-
rameter zc has no influence on the on-axis normalized in-
tensity distribution, we also directly employ Eq. (12) to

Fig. 1. Normalized on-axis intensity distributions I(0, h) of the
AFTB’s for (a) LSc 5 10, (b) LSc 5 100, and (c) LSc 5 200.
present some numerical simulations (Fig. 3), which corre-
spond to zc 5 0.0 m, zc 5 5.0 m, and zc 5 10.0 m, re-
spectively. In Fig. 3 the parameters are chosen such that
L 5 10 m, Sc 5 10 m21, LSc 5 100. Similarly to the
treatment in Fig. 1, we also use a large number to replace
the upper limit ` of the integral. To be consistent with
the choice in Fig. 1, we let the upper limit of the integral
be 410 m21 [note that the integral region (0 m21, 410 m21)
of the variable S in Eq. (12) is exactly equivalent to the
integral region (2100, 4000) of the variable j in Eq. (16),
because of the relations j 5 LS1 5 L(S 2 Sc), L
5 10 m, and Sc 5 10 m21]. Figure 3 explicitly shows
that the parameter zc has no influence on the on-axis nor-
malized intensity distribution. In fact, Fig. 3 is com-
pletely consistent with Fig. 1(b).

From Figs. 1 and 3 one can find that there are many
oscillations in the on-axis intensity distribution. It has
been proven that the amplitude apodization method can
efficiently suppress this kind of oscillations.6,7,20 We are
preparing to study in a future investigation how to sup-
press the on-axis intensity oscillations of the AFTB field
by use of amplitude apodization.

It can be proved that the total energy P of the AFTB is
P 5 2p*0

`uc ( f, 0)u2f d f. In terms of the relation
uc ( f, 0)u 5 uk21L sinc@Lp(S 2 Sc)#u, the total energy P
can be reexpressed as P 5 k21L2*0

` sinc2@Lp(S
2 Sc)#dS. From this expression, one can find that the
total energy P of the AFTB is always finite provided that
the parameter L is finite. Fortunately, for practical ap-

Fig. 2. Normalized on-axis intensity distribution I(0, h) of the
AFTB corresponding to LSc 5 10 in different choices of the high
limit of the integral. (a) H 5 20, (b) H 5 50, and (c) H 5 100.
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plications, the parameter L is always finite. Therefore
the AFTB can be realized physically. It is apparent that
the AFTB must have a beamlike shape in the transverse
dimensions because its energy is finite. Figure 4 pro-
vides six transverse intensity distributions I(r) of the
AFTB that correspond to the z 5 0.0-m, the z 5 9.0-m,
the z 5 9.5-m, the z 5 9.9-m, the z 5 10.0-m, and the
z 5 10.1-m planes, respectively. In Fig. 4 the param-
eters are chosen such that l 5 0.6328 mm, L
5 20 m, zc 5 0 m, Sc 5 10 m21, and LSc 5 200; the
upper limit of the integral [Eq. (12)] is chosen to be
210 m21 [corresponding to H 5 4000 in Eq. (16)]. As we
expected, Fig. 4 explicitly shows the transverse beamlike
shape of the AFTB. In particular, Fig. 4 shows that the
change of the central lobe of the transverse intensity dis-
tribution with the axial coordinate z is very small in the
flat-top region. From Fig. 4 one can find that the central
part of the transverse intensity distribution of the AFTB
is very similar to that of the ideal Bessel J0 beam.1,2

This property implies that the AFTB is somewhat related
to the ideal Bessel J0 beam. In fact, as we show below,
the paraxial Bessel J0 beam is the special AFTB that cor-
responds to L 5 `. However, it is necessary to point out
that, for large r, the transverse intensity distribution of
the AFTB must decay faster than that of the Bessel J0
beam, because the energy of the AFTB is always finite but
the energy of the Bessel J0 beam is infinite.

In addition, from Eq. (12) one can derive that

Fig. 3. On-axis intensity distribution I(0, z) with different cen-
tral position zc . (a) zc 5 0.0 m, (b) zc 5 5.0 m, and (c) zc
5 10.0 m. The parameters L and Sc are chosen such that L
5 10 m and Sc 5 10 m21.
f~r, z !exp~i2pSczc! 5 E
0

`

L sinc@Lp~S 2 Sc!#

3 exp@i2pS~z 2 zc!#

3 J0F2prS 2S

l
D 1/2GdS. (17)

Then, in terms of Eq. (17), one can further obtain

I~r, zc! 5 uf~r, zc!u2

5 U E
0

`

L sinc@Lp~S 2 Sc!#J0F2prS 2S

l
D 1/2GdSU2

.

(18)

Equation (18) explicitly shows that the radial intensity
distribution I(r, zc) at the zc plane is also independent of
the parameter zc . Of course, this property also results
from the fact that the parameter zc is related only to the
phase factor exp(i2pS zc) in the spatial-frequency distri-
bution w(S 2 Sc).

To understand the simulations of the AFTB field bet-
ter, we now briefly compare the spatial-frequency (angu-
lar spectrum) expression and the Fresnel diffraction ex-
pression. It is well known that both the (paraxial)
spatial-frequency expression28 and the Fresnel diffraction
expression are the solutions of the paraxial wave equation
[Eq. (1)]. They are actually equivalent, but they have dif-
ferent advantages. The paraxial spatial-frequency ex-
pression is more suitable for describing the near field and
the quasi near field because c ( f, z) directly reduces to
c ( f, 0) when z → 0 [see Eq. (2)]. The Fresnel diffrac-
tion expression is more suitable for describing the far field
and the quasi far field (for example, in the focal region).
It is not convenient to use the Fresnel diffraction formula
to evaluate the near-field and the quasi-near-field distri-
butions (note that the flat-top region of the AFTB is of the
near-field and quasi-near-field type), because this formula
has a z21 factor. In particular, in numerical evaluation
this z21 factor easily leads to large errors in those trans-
verse planes that are close to the original z 5 0 plane.
Therefore we do not use the Fresnel diffraction formula
but directly use Eq. (12) to numerically simulate the field
distribution of the AFTB in this paper.

To understand the properties of the AFTB more clearly,
let us now investigate the relation between the AFTB and
the ideal zero-order Bessel J0 beam.1,2 From Eq. (12),
the relation limpL→` L sinc@Lp(S 2 Sc)# 5 d (S 2 Sc),
and the integral property *u02e

u01ed (u 2 u0)h(u)du
5 h(u0), one can easily obtain limL→`f(r, z)
5 J0(2pfcr)exp(2ipl f c

2 z), where f(r, z) is given by
Eq. (12), d (u) is the Dirac d function, e is a very small
quantity, and fc 5 A2Sc /l. On the other hand, if one
use 2pfc to replace the parameter a in Eq. (4) of Ref. 1
and then use the paraxial approximation b 5 Ak2 2 a2

5 k 2 a2/(2k), one can reexpress Eq. (4) of Ref. 1 as
E(x, y, z, t) 5 exp@i(kz 2 v t)# J0(2p fc r)exp(2ipl f c

2 z).
Comparing these two results, one can immediately de-
duce that the AFTB approaches the paraxial Bessel J0
beam1,2 when L → `. Therefore the AFTB can be re-
garded as a modified version of the paraxial Bessel J0
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Fig. 4. Radial intensity distributions I(r) of the AFTB at the (a) z 5 0.0-m, (b) z 5 9.0-m, (c) z 5 9.5-m, (d) z 5 9.9-m, (e) z
5 10.0-m, and (f ) z 5 10.1-m planes. The parameters are chosen such that l 5 0.6328 mm, L 5 20 m, zc 5 0 m, Sc 5 10 m21, and
LSc 5 200.
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beam. This relation is helpful for understanding both
the AFTB and the nondiffracting zero-order Bessel J0
beam. Of course, it is necessary to point out that the
Bessel J0 beam generally obeys the scalar Helmholtz
wave equation, but the AFTB obeys only the paraxial
wave equation [Eq. (1)].

Similarly to other pseudo-nondiffracting beams, the
AFTB can be generated by various methods. To be more
consistent with the angular spectrum expression of Eq.
(12), we suggest the following method to generate the
AFTB, which is similar to the method used by Durnin
et al.2 We first generate the radial field distribution that
is proportional to

L sincFLpS r1
2

2lF2 2 ScD GexpF i2pzcS r1
2

2lF2 2 ScD G
3 expS 2ik

r1
2

2F D
in the fore focal plane [the spatial frequency S in Eq. (A3)
has been replaced by r1

2 /(2lF2) because the relations S
5 lf 2/2 and f 5 r1 /(lF)], where r1 is the radial coordi-
nate in the fore focal plane, F is the focal length of the
lens, and the phase factor exp@2ikr1

2 /(2F)# can offset the
phase factor exp@ikr1

2 /(2F)# that appears in the Fraun-
hofer diffraction formula for the far field in focal plane.
Then, according to Fourier optics theory, after the propa-
gation through free space and the lens F, the desired
AFTB field can be generated in the right-hand region of
the lens F. In this generation method the property that
the field distribution at the fore focal plane is proportional
to the spatial-frequency distribution has been employed.
This method is not suitable for generating those AFTB’s
that correspond to zc 1 L/2 < 0, because, in this case, the
on-axis flat-top regions of the AFTB solutions are located
at the left-hand side of the lens F (i.e., the flat-top regions
are not real but imaginary). Fortunately, this method is
valid for those more attractive AFTB’s with nonnegative
zc .

As an extension of the study of the AFTB, let us now
investigate the on-axis intensity behavior of the linear su-
perposition of multiple AFTB fields and derive the appro-
priate conditions for the synthesis of multiple on-axis flat-
top intensity distributions. According to the linear
superposition principle of optical fields, the superposition
field distribution f(r, z) of m AFTB’s can be expressed as

f~r, z ! 5 (
n51

m

cnfn~r, z !, (19)

fn~r, z ! 5 E
0

`

Ln sinc@Lnp~S 2 Sc,n!#

3 exp@i2p~Szc,n 2 Sc,nzc,n 2 Sz !#

3 J0~2prA2S/l!dS, (20)

where the subscript n corresponds to the nth AFTB. In
particular, one can prove that the on-axis superposition
field f(0, z) of m AFTB’s can be expressed as

f~0, z ! 5 (
n51

m

cn exp~2i2pSc,nz !

3 F rectS z 2 zc,n

Ln
D 2 gn~z !G , (21)

gn~z ! 5 E
2`

2Sc,n

Ln sinc~LnpS1!

3 exp@2i2pS1~z 2 zc,n!#dS1 . (22)

In terms of Eqs. (21) and (22), one can easily prove that
the above superposition field can give m flat-top intensity
distributions on the propagation axis when the conditions
LnSc,n @ 1 and 2(zc,n11 2 zc,n) . Ln11 1 Ln are satis-
fied. The conditions 2(zc,n11 2 zc,n) . Ln11 1 Ln can
ensure that those AFTB fields are separated by dark re-
gions and do not interfere one another on the propa-
gation axis. Figure 5 presents the on-axis intensity dis-
tribution of the simplest superposition field of two
AFTB’s. In this example the parameters are chosen such
that c1 5 c2 5 1, l 5 0.6328 mm, L1 5 L2 5 10 m, zc,1
5 10 m, zc,2 5 25 m, Sc,1 5 Sc,2 5 10 m21, and L1Sc,1
5 L2Sc,2 5 100. Similarly to the simulation of Fig. 3,
the high limit of the integral used for Fig. 5 is chosen to be
410 m21. From Fig. 5 one can find that, just as we ex-
pected, the superposition field of the above two AFTB’s in-
deed give two nearly flat-top intensity distributions on
the propagation axis.
Fig. 5. On-axis intensity distribution I(0, z) of the superposition field of two AFTB’s. The parameters are chosen such that c1 5 c2
5 1, l 5 0.6328 mm, L1 5 L2 5 10 m, zc,1 5 10 m, zc,2 5 25 m, Sc,1 5 Sc,2 5 10 m21, and L1Sc,1 5 L2Sc,2 5 100.
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4. CONCLUSIONS
We have employed the spatial-frequency method to con-
struct arbitrary on-axis intensity distributions from axi-
ally symmetric fields. This synthesis method is generally
valid, provided that the paraxial approximation is satis-
fied. As a concrete application, we have presented a new
pseudo-nondiffracting beam, the axially symmetric on-
axis flat-top beam (AFTB), investigated its on-axis inten-
sity behavior, and proved that it is a modified model of the
paraxial Bessel J0 beam. In particular, we have demon-
strated that the AFTB can present a nearly flat-top inten-
sity distribution on the propagation axis when LSc @ 1.
As an extension of the study of the AFTB, we have theo-
retically proved that the linear superposition of multiple
AFTB fields can provide multiple flat-top intensity distri-
butions on the propagation axis when the conditions
LnSc,n @ 1 and 2(zc,n11 2 zc,n) . Ln11 1 Ln are satis-
fied. In addition, we have suggested a generation
method for a single AFTB field. The realization method
for the superposition fields of multiple AFTB’s is now un-
der investigation.

APPENDIX A: DERIVATION OF EQ. (12)
Substituting the rectangular function rect@(z 2 zc)/L#
into Eq. (6), one can obtain

w~S ! 5 E
zc2L/2

zc1L/2

exp~i2pSz !dz. (A1)

Integrating the right-hand side of Eq. (A1), one can fur-
ther obtain

w~S ! 5
sin~pSL !

pS
exp~i2pSzc!. (A2)

which is just Eq. (11) of Section 3.
From Eq. (11), one can determine the function w(S

2Sc) to be

w~S 2 Sc! 5 L sinc@Lp~S 2 Sc!#exp@i2p zc~S 2 Sc!#.

(A3)
Then substituting Eq. (A3) into Eq. (7), one can easily de-
rive Eq. (12) of Section 3.

APPENDIX B: DERIVATION OF EQ. (15)
From Eq. (12) and the relation J0(0) 5 1, one can express
the on-axis field distribution f(0, z) as

f~0, z ! 5 E
0

`

L sinc@Lp~S 2 Sc!#

3 exp@i2p~Szc 2 Sczc 2 Sz !#dS

5 exp~2i2pScz !E
0

`

L sinc@Lp~S 2 Sc!#

3 exp@2i2p~S 2 Sc!~z 2 zc!#dS. (B1)

Then, in terms of the variable S1 5 S 2 Sc , the field
f(0, z) can be further expressed as
f~0, z ! 5 exp~2i2pScz !E
2Sc

`

L sinc~LpS1!

3 exp@2i2pS1~z 2 zc!#dS1 . (B2)

Note that the integral low limit has been varied to 2Sc
from 0.

By employing the Fourier transform relation

rectS z 2 zc

L D 5 E
2`

`

L sinc~LpS1!exp~i2pS1zc!

3 exp~2i2pS1z !dS1 ,

one can reexpress Eq. (B2) as

f~0, z !exp~i2pScz ! 5 rectS z 2 zc

L D 2 g~z !, (B3)

g~z ! 5 E
2`

2Sc

L sinc~LpS1!

3 exp@2i2pS1~z 2 zc!#dS1 ,

(B4)

where the relation *2Sc

` 5 *2`
` 2 *

2`
2Sc has been used.

Obviously, Eqs. (13) and (14) are the direct consequence
of Eqs. (B3) and (B4).

It is apparent that g(z) can be reexpressed as

g~z ! 5 E
2`

2LSc

sinc@p~LS1!#

3 expF2i2p~LS1!
z 2 zc

L Gd~LS1!. (B5)

If we use the dimensionless normalized parameters j
5 LS1 and h 5 (z 2 zc)/L, then Eq. (B5) can be further
expressed as

g~h! 5 E
2`

2LSc

sinc~pj!exp~2i2pjh!dj, (B6)

where we have used g(h) to replace g(z) because the
right-hand side of Eq. (B6) is a single-variable function of
the dimensionless parameter h.

Substituting Eq. (B6) into Eq. (B3), one can derive

I~0, h! 5 urect~h! 2 g~h!u2, (B7)

where g(h) is given by Eq. (B6). Note that Eq. (B6) is
just Eq. (15) of Section 3. As an important consequence
of Eqs. (B7) and (B6), the normalized on-axis intensity
distribution I(0, h) is related only to the quanty LSc .
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