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In this paper we propose a knowledge-based approach to solving loop-schedul-
ing problems.  A rule-based system, called IPLS, is developed by combining a reper-
tory grid and an attribute ordering table to construct a knowledge base.  IPLS chooses
an appropriate scheduling algorithm by inferring some features of loops and assigning
parallel loops to multiprocessors to achieve significant speedup.  Because more at-
tributes are proposed, the accuracy of selection of an appropriate scheduling method
is improved.  In addition, the refined IPLS system can automatically adjust the
attributes in the knowledge base according to profile information; therefore, IPLS has
the capability of feedback learning.  The experimental results show that our approach
can achieve greater speedup on multiprocessor systems than can others.

Keywords: parallelizing compiler, parallel loop scheduling, knowledge-based system, multi-
processor systems, speedup

1. INTRODUCTION

Parallel processing has been one of the most important technologies in modern com-
puting for several decades.  Many powerful multiprocessor hardware systems have been
built to exploit parallelism for concurrent execution.  Two models are classified below
according to their memory organization, addressing schemes, and inter-processor com-
munication mechanisms:

∑ The uniform memory access (UMA) model: Most UMA systems as shown in Fig. 1(a)
are shared-memory environments, in which all processors use the common memory
and have equal time to access all memory words.

∑ The non-uniform memory access (NUMA) model -In NUMA system shown in Fig. 1
(b), the cost of accessing memory increases with the distance between the accessing
processor and target memory.
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In view of the difference between these two architectures, the memory access and
interprocessor communication overheads should be taken into consideration when access-
ing the shared variables.  To speed up multiprocessor systems, it is likely that tasks must be
decomposed into several sub-tasks and executed in parallel on different processors.
Parallelizing compilers and parallel programming tools that can translate ordinary pro-
grams into parallel codes have been proposed.  Parallelizing compilers can analyze se-
quential programs to detect hidden parallelism.  The information is used to automatically
restructure sequential programs into parallel sub-tasks for multiprocessors using schedul-
ing algorithms.  Therefore, it is important to design and implement efficient parallelizing
compilers that can extract the maximum amount of parallelism for multiprocessors.

An efficient approach to extracting potential parallelism is to concentrate on the
parallelism available in the loops.  Since the body of a loop may be executed many times,
loops often comprise a large portion of a program’s parallelism.  By definition, a loop is
called a DOALL loop if there is no cross-iteration dependence in the loop; i.e., all the
iterations of the loop can be executed in parallel.  If all the iterations of a DOALL loop are
distributed among different processors as evenly as possible, a high degree of parallelism
can be exploited.  Parallel loop scheduling is a method that schedules a DOALL loop on
multiprocessor systems as evenly as possible.

In a shared-memory multiprocessor system, scheduling decisions can be made ei-
ther statically at compile-time or dynamically at runtime.  Static scheduling is usually
applied to uniformly distributed iterations on processors [1, 2, 4-6, 9-11, 14, 19-21].
However, it has the drawback of creating load imbalances when the loop style is not uni-
formly distributed, when the loop bounds cannot be known at compile-time, or when local-
ity management cannot be exercised.  In contrast, dynamic scheduling is more appropriate
for load balancing; however, the runtime overhead must be taken into consideration.  In
general, parallelizing compilers distribute loop iterations by using only one kind of sched-
uling algorithm, which maybe static or dynamic.  However, a program may have different
loop styles, including a uniform workload, an increasing workload, a decreasing workload,
and a random workload.  Every scheduling algorithm can achieve good performance with
some loop styles and different system states because the loop style and the system envi-
ronment influence the selection of scheduling strategies.  For example, it is not appropri-
ate to apply GSS on a NUMA system because the communication cost of accessing remote
memory is too high.

The scheduling performance of a DOALL loop on shared-memory multiprocessor
systems is usually dependent upon the amounts of overhead that arise from four main
factors: load imbalances among processors, the synchronization overhead, the communi-
cation overhead, and the thread management overhead. They are described as follows:

Fig. 1. The UMA and NUMA systems.
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∑ Load imbalances: If some processors are idle, we cannot take full of advantage of their
multiprocessing capacity.  A good scheduling algorithm tries to spread the workload
around to multiprocessor systems as evenly as possible.  To avoid uneven assignment
of work units to processors, many loop-scheduling algorithms use a central work queue
for remainder iterations.

∑ Synchronization overhead: This type of overhead arises from simultaneous accesses
made by different processors of a set of shared variables that contain the iteration
indices.

∑ Communication overhead: This is non-uniform data access time among multiproces-
sor systems and is often caused by having to access remote memory for non-local
data.  Data locality management policies attempt to minimize the communication over-
head by allocating iterations close to their data.

∑ Thread management overhead: This refers to the time required to create, detach and
schedule multiple concurrent lightweight processes to express the concurrency on
multithreaded operating systems.  It is well known that the system performance will
drop if too many threads are created for execution.

It is difficult to balance the tradeoff among these factors; therefore, this paper con-
centrates on how to distribute parallel loop iterations on a shared-memory multiprocessor
system not only as evenly as possible, but also with the lowest overhead.  For example, the
block size should be large enough to reduce the synchronization overhead, but load imbal-
ance and the communication overhead may become extreme.  As described above, none of
the scheduling algorithms is best for all cases.  That is, all of the algorithms are only
appropriate for some cases, and none can manage all these features well.  Therefore, find-
ing a good trade-off among them is not an easy task.  Suppose the parallelizing compiler
can analyze loop attributes, such as the loop style, loop bound, data locality, etc.; an appro-
priate scheduling algorithm for this particular case can be determined.  This leads to se-
lecting scheduling algorithms based on a knowledge-based system approach.

The scheme proposed in [19] is called Knowledge-Based Parallel Loop Scheduling
(KPLS).  KPLS uses knowledge-based techniques to select an adequate loop-scheduling
algorithm for a loop according to the attributes of the loop behaviors and system states.
However, in KPLS, some attributes that influence the accuracy of selecting an adequate
loop-scheduling algorithm are neglected.  Therefore, in this paper, we propose a new
approach, called the Intelligent Parallel Loop Scheduling (IPLS) algorithm.  It considers
more attributes so as to make up for the shortcoming of KPLS.  IPLS also integrates more
existing loop-scheduling algorithms than KPLS does for UMA and NUMA systems to make
good use of their advantages in loop parallelism.  Because more attributes are proposed,
the accuracy of selection of an appropriate scheduling method is improved.  In addition, the
refining system in IPLS can automatically adjust the attributes in the knowledge base ac-
cording to profile information.  Therefore, it has a feedback-learning mechanism.  The
experimental results show that our approach can achieve more speedup on multiprocessor
systems than others can.  Furthermore, our approach is obviously superior to others in
terms of system maintenance and extensibility.  Once a new scheduling algorithm or tech-
niques is proposed, it can be easily integrated into IPLS by adding knowledge and rules to
improve the power of IPLS.
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2. BACKGROUND

The major source of parallelism in a program is loops.  If the loop iterations can be
distributed to different processors as evenly as possible, the parallelism within loop itera-
tions can be exploited.  Parallel loop scheduling is used to achieve this goal by determin-
ing how to assign the DOALL loops onto each processor in a balanced fashion so as to
effect a high level of parallelism with the least amount of overhead.  In a shared-memory
multiprocessor system, two kinds of parallel loop scheduling decisions can be made either
statically at compile-time or dynamically at run-time.  In the rest of this section, we will
review the various scheduling algorithms.  We use N and P to denote, respectively, the
number of iterations and the number of processors, and we set the size of the ith partition to
Ki.

2.1 Static Scheduling

Static scheduling [6] makes a scheduling decision at compile-time and uniformly
distributes loop iterations onto processors.  It is applied when each loop iteration takes
roughly the same amount of time, and the compiler knows how many iterations must be run
and how many processors are available for use at compile-time.  It has the advantage of
incurring the minimum scheduling overhead, but load imbalances may occur. However,
static scheduling may perform unacceptably when the loop style is not uniformly distrib-
uted or the loop bounds can not be known at compile-time.  In the following, the different
static scheduling methods with and without consideration of data locality are reviewed.

Block Scheduling  In block scheduling [6], N iterations are divided into NP   rounds.
Each round consists of consecutive iterations and is assigned to one processor. This is
only suitable for uniformly distributed loop iterations.

Cyclic Scheduling  Instead of assigning to a processor a consecutive block of iterations,
iterations are assigned to different processors in a cyclic fashion [6]; i.e., iteration i is
assigned to processor i mod P.  This method may produce a more balanced schedule than
block scheduling for some non-uniformly distributed parallel loops.

Block-D Scheduling  In NUMA systems, managing data locality is important due to the
increased cost of accessing remote memory.  For good performance, it is essential that the
loop partitioning match the data partitioning.  If both the data partitioning and loop sched-
uling occur in blocks, the static scheduling is called Block-D scheduling [6].

Cyclic-D Scheduling  As mentioned above, if both the data partitioning and loop schedul-
ing occur in a cyclic fashion, the static scheduling is called Cyclic-D scheduling [6].

2.2 Dynamic Scheduling

Dynamic scheduling adjusts the schedule during execution whenever it is uncertain
how many iterations to expect or when each iteration will take a different amount of time
due to a branching statement inside the loop.  Although it is more suitable for load balanc-
ing between processors, runtime overhead and memory contention must be considered.
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Dynamic scheduling algorithms, such as SS [12], fixed-size chunking [3, 11], GSS [8], factor-
ing [2], and TSS [11], share the following same characteristics. They always maintain a global
queue containing indices of iterations.  At runtime, when a processor is idle, it issues syn-
chronous operations to the global queue and fetches some iterations for execution.

Pure Self-Scheduling (SS)  This is the easiest and most straightforward dynamic loop
scheduling algorithm [12].  Whenever a processor is idle, an iteration is allocated to it.
This algorithm achieves good load balancing but also introduces excessive overhead.

Chunk Self-Scheduling (CSS)  Instead of allocating one iteration to an idle processor as
in self-scheduling, CSS allocates k iterations each time, where k, called the chunk size, is
fixed and must be specified by either the programmer or the compiler [3, 11].  When the
chunk size is one, this scheme is pure self-scheduling, as discussed above.  If the chunk
size is set to the bound of the parallel loop equally divided by the number of processors,
the scheme becomes static scheduling.  A large chunk size will cause load imbalancing
while a small chunk is likely to produce too much scheduling overhead.  For different
partitioning schemes, we adapted CSS/l, which is a modified version of CSS, where l means
the number of chunks.

Enhanced Chunk Self-Scheduling (ECSS)  When all the dependent iterations of a loop
are assigned to the same processor, the dependent relation is satisfied and it does not need
synchronization operations to keep the executing order of the loop.  Let chunk size be K.
If a loop exist loop carried dependence distance D, and if every time each processor gets K
iterations that mutually are a distance D from work queue, then the dependent relation of K
iterations are reserved without a synchronization operation.  For the loop whose LCD
distance is larger than one, ECSS can develop more parallelism than CSS and reduce the
amount of synchronization overhead.

Guided Self-Scheduling (GSS)  This algorithm can dynamically change the number of
iterations assigned to each processor [8].  More specifically, the next chunk size is deter-
mined by dividing the number of remaining iterations of a parallel loop by the number of
available processors.  The property of decreasing chunk size implies an effort is made to
achieve load balancing and to reduce the scheduling overhead. By allocating large chunks at
the beginning of a parallel loop, one can reduce the frequency of mutually exclusive ac-
cesses to shared loop indices. The small chunks at the end of a loop partition serve to
balance the workload across all the processors.

Multilevel Interleaved Guided Self-Scheduling (MIGSS)  This is a hybrid scheduling
scheme blended with run-time scheduling techniques and compile-time loop restructuring
[15].  Its run-time scheduling is based on guided self-scheduling.  A compile-time loop
transformation method is used to enhance the parallel execution performance.  The basic
idea of MIGSS is to split a hybrid perfectly nested loop into several independent loops and
then apply high-level spreading to the generated loops.  Since the resulting loops are
independent, loop splitting must be applied to outer DOALL loops only.  As in the GSS
scheme, loop interchange and loop coalescing can be applied to the resulting loops to
reduce the number of synchronization points.
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Factoring  In some cases GSS might assign too much work to the first few processors, so that
the remaining iterations are not time-consuming enough to balance the workload.  This
situation arises when the initial iterations in a loop are much more time-consuming than
later iterations.  The factoring algorithm addresses this problem [2].  The allocation of
loop iterations to processors proceeds in phases.  During each phase, only a subset of the
remaining loop iterations (usually half) is divided equally among the available processors.
Because Factoring allocates a subset of the remaining iterations in each phase, it balances
loads better than GSS does when the computation times of loop iterations vary substantially.
In addition, the synchronization overhead of Factoring is not significantly larger than that
of GSS.

Trapezoid Self-Scheduling (TSS)  This approach tries to reduce the need for synchroni-
zation while still maintaining a reasonable load balance [11].  TSS(Ns, Nf) assigns the first
Ns iterations of a loop to the processor starting the loop and the last Nf iterations to the
processor performing the last fetch, where Ns and Nf are both specified by either the pro-
grammer or the parallelizing compiler.  This algorithm allocates large chunks of iterations
to the first few processors and successively smaller chunks to the last few processors.
Tzen and Ni proposed TSS(N/2P, 1) as a general selection.  In this case, the first chunk is of

size N
P2 , and consecutive chunks differ in size 

N
P8 2  iterations.  The difference in the size

of successive chunks is always a constant in TSS whereas it is a decreasing function in GSS
and in Factoring.

Self-Adjusting Scheduling (SAS)  Hamidzadeh and Lilja introduced the SAS technique,
which is capable of improving the performance of programs on NUMA systems by em-
ploying an on-line optimization technique on a dedicated processor [1].  The object of this
algorithm is to address the tradeoffs between three interrelated factors in dynamic
scheduling, namely the remote memory access delay, load imbalancing, and scheduling
costs, to compute schedules that result in minimum total loop execution times on a multi-
processor system.  SAS is an on-line branch-and-bound algorithm that searches through a
space of all possible partial and complete schedules.  The overlapping scheduling and
execution, along with self-adjustment of the durations of partial scheduling periods re-
duces scheduling and synchronization costs significantly.  To satisfy load balancing and
locality management, SAS introduces a unified cost model that accounts for both of these
factors simultaneously.

Safe Self-Scheduling (SSS)  The basic idea behind SSS is to assign to each processor the
largest number, m, of consecutive iterations having a cumulative execution time just ex-

ceeding the average processor workload E
P  [5]; i.e., i s

s m
i s
s me i E

P e i=
+ −

=
+<∑ < ∑1 ( ) ( ) , where

E e ii
N= ∑ =1 ( ) and s is some starting iteration number of the chore.  m is the best choice of

chore size, which is the smallest critical chore size.  SSS is similar to Factoring but im-

proves the shortcoming of Factoring.  In the implementation of SSS, α × N
P  iterations are

given to each processor at compile time, where 0 < a £ 1.  (For most of the applications we
have encountered, 0.5 £ a < 1.)  At run time, an idle processor fetches more unscheduled

iterations.  The i th fetching processor is assigned a chunk of  max ,1−( ) × ×{ } α α
i
P N

P k ,

where k is used to control granularity.
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Adaptive Hybrid Scheduling (AHS)  One solution to workload imbalance on every processor
is to adopt a hybrid scheduling mechanism.  This mechanism distributes the workload as
much as possible at compile-time based on not breaking the load balance among all processors,
and it schedules the left workload at run time.  Let Emax, Emin and Eavg be the maximum, average
and minimum execution times of every iteration, respectively; obviously, E = N × Eavg.  A
block is defined as a number of successive iterations.  The jth block is denoted as Bj, and the
number of iterations included in Bj is called the block size, denoted as |BSj|.  In AHS, the first
block B1 is assigned to processor p1, the second block B2 is assigned to processor p2, and so
on.  Every m consecutive blocks forms a round.  A large number, |BS0| = (N/P) × b  + E/(Emax

× p) × g = (N/P) × w, of iterations is distributed in round 0, where b is the probability not to
fetch again and g is the probability to fetch again, obviously b + g = 1.  b and g are selected by
programmers according to the properties of parallel computers.  The other iterations are left
for later rounds.  |BSi| = (Nr/P) × b + E/(Emax × p) × g = (Nr/P) × w, Nr is the number of remaining
iterations.

Table 1. Various loop scheduling algorithms.

 Scheme Formulas

     SS Ki = 1

  CSS(k) Ki = k

   CSS/l Ki = N
l 

   GSS Ki = 
R
P R N R R Ki

i i i






= = −+, ,0 1

Factoring Ki = 1
2( )







i
p N

P

 TSS(f,l) Ki = f i I N
f l

f l
I− = +







= −
−δ δ, ,2

1

   SSS Ki = max ,1−( ) × ×{ } α α
i
P N

P k

   AHS K0 = (N/P) × b + E/(Emax × p) × g = (N/P) × w
Ki = max {Ri/P × w, k}, Ri+1 = Ri – Ki, R0 = N

Table 2. Sample partition sizes.

    Scheme N = 1000 and P = 4

        SS 111111111111...

   CSS(125) 125 125 125 125 125 125 125 125

     CSS/4 250 250 250 250

       GSS 250 188 141 106 79 59 45 33 25 ...

    Factoring 125 125 125 125 62 62 62 62 31 ...

  TSS(88,12) 88 84 80 76 72 68 64 60 ... 12

       SSS 188 188 188 188 47 47 47 47 12 12 ...

       AHS 188 188 188 188 16 16 16 16 11 11 ...
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Formulas for calculating Ki in different algorithms are listed in Table 1.  Table 2 gives
sample partition sizes for SS, CSS(125), CSS/4, GSS, Factoring, TSS(88, 12), SSS, and AHS,
when N = 1000 and P = 4.

2.3 Affinity Scheduling

As modern shared memory multiprocessor systems have high and non-uniform memory
access costs, these costs gradually dominate the source of a parallel application’s execution.
To reduce the remote memory access cost, affinity scheduling algorithms partition and sched-
ule the loop iterations to the local work queue of each processor.   The data for iteration is
placed on the cache of some dedicated processor to be used repeatedly.  Therefore, they are
more suitable for a NUMA machine that takes data locality into account, but load balancing
between the processors, runtime overhead and memory access rate must be considered.

Affinity Scheduling (AFS)  Most of the dynamic loop scheduling methods work well
only in UMA share-memory systems; in NUMA systems, the overhead of communication
for accessing remote memory is too heavy and more important.  While most existing dy-
namic scheduling algorithms fail to take locality into account, there is one method, called
AFS [7], that gives us a useful alternative. Markatos and LeBlanc proposed this algorithm,
which takes locality into account [7].  AFS consists of two phases: initialization and
execution.  In the initialization phase, AFS divides the iterations of a loop into chunks of

size N
P  .  The ith chunk of iterations is always placed in the local work queue of processor

i.  During the execution phase, when a processor is idle, the processor removes 1
k  (in

general, we assume that k = P) of the remaining iterations from its local work queue and
executes them.  If a processor’s work queue is empty, the scheduling process finds the

most loaded processor, removes 1
P   of the remaining iterations from that processor’s

work queue, and executes them.

Modified Affinity Scheduling (MAFS)   Because the migration strategy of AFS is too
conservative, a mortified policy called MAFS [13] to fix the migration algorithm has been.
The main difference between AFS and MAFS is in the migration policy.  MAFS assigns a
more appropriate quantum than AFS when migrating work between processors.  For an idle

processor, instead of taking 1
P  iterations from the most loaded processor, i, it removes

min( , )N N Ni i
most

i
1 1−   iterations, where Ni

1  equals 
N
P Ni

i
most




,  , is the most loaded

processor’s remaining iterations, and Ni is the total iterations of all processors at time ti.
This scheme combines the advantages of GSS and AFS, reduces the communication cost,
avoids using global queues to alleviate contention, and provides better load balancing.

Locality-Based Dynamic Scheduling (LDS)  Most of the loops scheduling methods
work well only in share-memory systems, but in NUMA systems, the overhead of network
communication is too heavy and more important.  While most existing dynamic scheduling
algorithms fail to take locality into account, there is one method called LDS [6] that offers

a good solution to this kind of problem.  LDS partitions loops into  n
P2   sub-tasks, where

n is the number of remaining unscheduled iterations. The subtask size is half of GSS, but the
iterations are distributed with locality.  For example, if the data locality is cyclic and proces-
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sor p executes a subtask from 1 to S1, then LDS executes the iterations as follows: p + P, p +
2P, ..., p + P × S1.  On the other hand, if the data locality is sequential, the subtask will be
executed in the p × B + 1, p × B + 2, º, p × B + S1 order, where B is the block size with a number
of continuous iterations.  When all the local iterations have been executed completely, non-
local iterations are acquired from the processor with the most unscheduled iterations.

Dynamic Partitioned Affinity Scheduling (DAFS)  The basic idea behind this approach
is to dynamically change the partitioned size of AFS scheduling by using the traced record
of previous executed iterations [10].  There are three distinct phases in this method.  First

is the loop initialization phase: it partitions iterations with size N
P  to each processor, and

this is only done for the first execution of the loop.  Second is the loop execution phase: a

processor removes 1
P  iterations from its local work queue and executes them.  If a

processor’s local work queue is empty, the idle processor finds the most heavily loaded

processor, migrates 1
P  of the remaining iterations of that processor and executes them.

Every processor keeps track of the actual number of iterations that it has executed.  The
first two steps are the same as in AFS.  Third is the re-initialization phase: before executing
the next iteration loop, the loop partition for each processor is re-initialized.  Each pro-
cessor runs the size of iterations, which is last time they were executed.  DAFS can dy-
namically change the partition size in each processor initialization, and the proposed algo-
rithm is more capable of handling workloads that are unbalanced with respect to the amount
of computation represented by each iteration.

Clustered Affinity Scheduling (CAFS)  A new algorithm called clustered affinity scheduling
(CAFS) has been proposed to improve AFS on cluster NUMA machines [16].  In the initial-
ization phase of CAFS, the iterations are divided into C clusters, and a cluster consists of

S P
C=  processors, where C is about P   and P is the number of processors, respectively.

Processors 1, 2, ..., and C are assigned to clusters 1, 2, ..., and C in sequence, respectively.
But processors (C + 1), (C + 2), ..., and 2C are assigned to the clusters in reverse order, and
so on.

In the execution phase of CAFS, each time, a processor performs 1
S   of the re-

maining iterations from its local queue until the local queue is empty, where S is the
number of processors in each cluster.  If no imbalance occurs, then migration is not needed.

When imbalance occurs, the first idle processor migrates 1
S   iterations from the proces-

sor with the largest number of non-executing iterations in its local cluster. Instead of
searching the other P-1 processor of AFS, CAFS searches only the other processors of its
cluster.

Localized Affinity Scheduling (LAFS)  A new algorithm called localized affinity scheduling
(LAFS) has been proposed to improve AFS on a cluster NUMA machines [17].  In the

initialization phase of LAFS, the iterations are divided into N
P  chunks, where N is the total

number of loop iterations and P is the number of processors.  If there are C clusters in the
NUMA system, then chunk 1, chunk 2, ..., and chunk C are assigned, respectively, to the first
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processor of cluster 1, cluster 2, ..., and cluster C in order. Sequentially, chunk C + 1, chunk
C + 2, ..., and chunk 2C are assigned to the second processor of cluster 1, cluster 2, ..., and
cluster C in sequence, and so on.

In the execution phase of LAFS, each time, a processor performs 1
S   of the remain-

ing iterations form its local queue until the local queue is empty, where S is the number of
processor in each cluster.  If no imbalance occurs, then migration is not needed. When

imbalance occurs, the first idle processor migrates 1
S   iterations from the processor

with the largest number of non-executing iterations in its local cluster.  If the queues of

processors in local cluster are all empty, the idle processor migrates 1
P   iterations from

the processor with the largest number of non-executing iterations in other clusters.

Global Distributed Control Scheduling (GDCS)  The basic idea behind GDCS is to
decentralize the scheduling task among all the processors [4].  The scheme logically orga-

nizes P processors in a ring topology.  Initially, GDCS assigns N
P  iterations to each pro-

cessor using the static scheduling scheme in the hope that each processor will receive the
same size workload.  Each processor executes these assigned iterations from its local
queue.  When a processor Pi becomes idle, it requests extra iterations from successive
processors on the ring, Pi+1, Pi+2, ..., PN, P1, ..., Pi-1, until it finds an active processor that still
has more than b iterations.  The active node, processor Pj, dispatches a iterations to this
request, where a and b are two threshold values.  The processor Pi remembers that proces-
sor Pj was the last node from which a request was satisfied.  The next time Pi becomes idle,
it starts requesting work from processor Pj, by-passing processors between Pi and Pj.  An
additional feature of this scheme is that if, in the meantime, processor Pj becomes idle and
processor Pj remembers that it received tasks from processor Pk, then node Pi will jump
from Pj directly to Pk without asking for work from processors between Pj and Pk.  Thus, it
can avoid unnecessary task searching overheads.

2.4 Knowledge-Based Approach

There are four aspects to the problem of loop scheduling on shared-memory
multiprocessors: the synchronization overhead, communication overhead, threaded man-
agement overhead, and load balancing.  In order to reduce the synchronization overhead,
the block size should be large, but load imbalance and the communication overhead may
become very serious.  Therefore, finding a good trade off between them is not easy.  That
is, all of the algorithms are only suitable in some cases, and none can do well in all these
four aspects.

A rule-based system, called Knowledge-based Parallel Loop Scheduling (KPLS) [19],
was proposed to make use of the advantages of typical loop scheduling algorithms for
parallelism. KPLS can choose an appropriate scheduling by analyzing the characteristics of
the input program and can apply the selected scheduling to assign parallel loops on multi-
processor systems to achieve a high level of speedup.

Because KPLS achieves good performance by selecting an appropriate scheduling
algorithm for each executed application, KPLS is very similar to other scheduling algorithms.
We show the hierarchy of loop-scheduling algorithms in Fig. 2.
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3. A NEW APPROACH TO PARALLEL LOOP SCHEDULING

Suppose the parallelizing compiler can analyze a loop’s attributes, such as the loop
style, loop bound, data locality, etc.; a suitable scheduling algorithm for this particular
case can be determined.  This leads us to select scheduling algorithms by using a knowl-
edge-based system approach to get reasonable execution results.  Below, we shall propose
a new approach which uses knowledge-based techniques to construct an intelligent parallel
loop scheduling (IPLS).

In this section, we will further propose two methods to enhance the functionality of
IPLS.  One includes additional attributes that influence the selection of appropriate sched-
uling algorithm for a parallel loop.  If there are more attributes that can be used to increase
the accuracy of selecting an appropriate algorithm, the functionality of IPLS can be improved.
The other is that a refining system, a new component is developed to improve the inferrence
accuracy of IPLS.

3.1 Some Attributes Affecting Scheduling Performance

Four main overheads, the processor load imbalances, synchronization overhead, com-
munication overhead, and thread management overhead, influence the performance of par-
allel loop scheduling on multiprocessor systems.  For example, the block size should be
large enough to reduce the synchronization overhead, but the load imbalance and commu-
nication overhead may become extreme.  As described above, there is no scheduling algo-
rithm that is best for all cases.  That is, all of the algorithms are only suitable for some
cases, and none can manage all these aspects well.  Therefore, finding a trade-off among
them is not an easy task.  According to the analysis of numerous related researches, eigh-
teen attributes influencing the selection of an adequate loop-scheduling algorithm can be
classified into three categories: the system architecture, loop information, and scheduling
method.  They are discussed in detail below.

3.1.1 The attributes of the system architecture

∑ Number of processors: The number of processors must be known at compile time if we
want to use the static scheduling algorithm.  This is a necessary condition for static
scheduling since a scheduling decision is made at compile time.  For dynamic sched-
uling methods, except CSS, the factors can be omitted.

∑  Machine model: Because of the difference between UMA and NUMA, the memory
access and inter-processor communication overheads should be taken into consider-
ation when accessing shared variables.  If a loop has strong data locality, it seems best

Fig. 2. The hierarchy of loop scheduling algorithms.
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to adopt a AFS on NUMA system so that the number of remote memory accesses will be
reduced.  For a well load-balanced loop, we can consider to using CSS on a UMA system
so that the synchronization overhead and communication cost can be reduced.

∑ Cache size: When a block of data is retrieved and placed in the cache, not only the
desired word, but also some adjacent words are retrieved.  As the block size increases,
the hit ratio will at first increase because of the principle of locality: there is great
probability that data in the vicinity of a referenced word will be referenced in the near
future.  As the block size increases, more useful data is brought into the cache.  The
relationship between the block size and hit ratio depends on the locality characteris-
tics of a particular program, and no definitive optimum value has been found.

 ∑ Memory access rate: The memory access cost for a UMA system and a NUMA Sys-
tem is different because NUMA will spend much more on memory access if the data
is missed in cache.  When a migration policy is used for AFS, we must set the value of
the transfer_limit by considering the memory access rate to avoid unnecessary migra-
tion of chunks.

3.1.2 The attributes of loop information

∑ Loop style: Loops can be roughly divided into four kinds as shown in Fig. 3: uniform
workload, increasing workload, decreasing workload, and random workload loops are
the most common ones in programs, and should cover most cases.  In general, increas-
ing workload and decreasing workload are called uniform workload loops.  The static
scheduling method is only suitable for uniform workload loops.  In contrast, dynamic
scheduling is suitable for all loop styles except that GSS is not good for the third kind.
It is possible GSS will initially allocate too many iterations to a processor when the
third kind of loop is present; that is, GSS may cause load imbalancing.

∑ Program size: For Enhanced CSS and Factoring, the size of a loop affects the fitness
about the adopted scheduling algorithm. If the size of the loop is large, the performance
will be improved.

Fig. 3. Four kinds of loops.
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∑ Loop type: The typical applications listed in Table 3 have been studied and implemented
in related researches. Some features of these applications, such as the load balance,
loop style and affinity, are different.  Therefore, each application listed in Table 3 can be
set as a specific type of loop.  If the experience used to correctly choose an adequate
scheduling algorithm for each loop type can be applied to other programs, then the
accuracy of the inference engine in IPLS will be enhanced.

∑ Loop boundary: It is necessary to know the boundary of a loop at compile time before
the compiler applies the static scheduling method so that the synchronization overhead
can be reduced.  On the other hand, this is not necessary for the dynamic scheduling
method because the boundary will be known at runtime.

Table 3. 11 types of loops.

No.                 Applications Load Loop Affinity

Balance Style

1 All-Pairs Shortest Paths Large R Large

2 Transitive Closure Little R Little

3 Reverse Adjoint convolution Little I No

4 Adjoint Convolution Little D No

5 Jacobi Iteration Little R Large

6 Successive Over-Relaxation Large U Large

7 Matrix Multiplication Large U No

8 Gauss Elimination Large R Large

9 Gauss Jordan Little R Large

10 LU Decomposition Little D Large

11 A Loop with Condition Little – –

∑ Data locality: Among all the scheduling algorithms, only AFS, MAFS, LDS and DAFS
consider data locality.  They work well when there is strong data locality in the loop.
Strong data locality is common in many applications, particularly those that employ
iterative algorithms wherein a parallel loop is nested within a sequential loop.  Take
the program segment of Successive Over-Relaxation shown in Fig. 4 as an example.
The i th iteration of the parallel loop always accesses the i th row of the matrix.  Thus
data locality is the only effect that can be exploited.

∑ Loop level: If a loop is nested, usually the level of parallelism is large, especially when a
parallel loop is embedded within a sequential loop.  This is because the more the execu-
tion times of iterations of outer loop, the more the occurrence of data locality needed by
inner parallel loop in the cache of processors on a UMA machine.  Usually, the needed
data are the elements of the matrix that are at different locations.  This is especially
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obvious on a NUMA machine.  For example, the re-initialization phase in DAFS needs
nested loops to dynamically change the partition size, so that it can reassign the workload
of each processor as balanced a manner as possible.

3.1.3 The attributes of scheduling method

∑ Start time: If the start times of processors are unequal, static scheduling may not perform
well.  In contrast, dynamic methods can work well when this unequal processor start
time condition is applied.

∑ Loop carried dependence: The attribute decides if the class of data dependence of a
loop is DOALL or DOACROSS.  This will influence the parallelism of the program
and an adequate scheduling algorithm must be adopted.  When the LCD distance of a
loop is larger than one, we can apply ECSS to schedule the loop so as to reduce the
synchronization overhead.

∑ Thread overhead: The overhead for creating and executing a thread has to be considered.
Large numbers of threads can balance imbalanced workloads but may introduce an over-
head that worsens performance.  This is a tradeoff.  The results indicate that workloads
must be as evenly distributed as possible, and that a minimum number of threads should
be used.

∑ Communication cost: In UMA systems, the effect of network overhead has never been
considered.  But in NUMA systems, the network traffic exerts a very important influ-
ence on the scheduling of decisions.  The right decision will save message-passing
time and network communication.  This attribute has the same effect that data locality
has, in that the LDS method is a good example of this kind of problem may be handle.
The network communication overhead can be roughly divided into three levels:light
traffic, normal traffic and heavy traffic.

∑ Synchronization overhead: The synchronization primitives provided by a system are
related to the synchronization overhead introduced by scheduling algorithms.  If a
system provides few synchronization primitives, the synchronization overhead will be
high.  Thus, we divide the synchronization overhead into four levels.  Level one is no
overhead, level two is slight overhead, level three is moderate overhead, and level four
is high overhead.  SS works well when there is no synchronization overhead since it may
introduce many overheads when shared variables are accessed.  GSS does not work well
when the overhead is moderate or high.

Fig. 4. The program segment of SOR.

for (i = 1; i <= MAXITERATIONS; i++)//SEQUENTIAL
for (j = 1; j <= N; j++)//PARALLEL

for (k = 1; k <= N; k++)//SEQUENTIAL
A(J, k) = UPDATE(A, j, k)
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∑ Easie of: If two scheduling methods are suitable for a particular loop, the one that is
easier to implement should be chosen.  Therefore, ease of implementation should also be
considered in our expert system approach.

∑ Factor: In some scheduling strategies, the values of factors, such as allocation factor
in SSS [5], b and g in AHS, the chunk size in CSS, etc, deterministically affect the
execution time of the program.  Therefore, they should not be neglected if we want to
get optimal factors in order to achieve reasonable performance.

∑ Prefetch: To maximize memory performance, prefetching of multiple single-word
blocks on a miss reduces the miss ratio by approximately 5% to 30% compared to a
system with no prefetching.  The adaptive prefetching strategy tends to further reduce
the miss ratio and the network traffic.  In addition, the average memory delay in a
multiprocessor system using this adaptive prefetching will be reduced.  The relation
between a loop-scheduling algorithm and the method used to prefetch the data is not
clear and will not be discussed in this paper.  The memory performance appears to be
relatively insensitive to whether the specific loop-scheduling strategy is GSS, or to
whether a single chunk of iterations is assigned to each processor at the start of each
parallel loop.

Tables 4 and 5 show the relationships between seventeen attributes and parallel loop
scheduling algorithms in UMA and NUMA models, respectively.  The features mentioned
above are the attributes based upon which we constructed our attribute grid.  ‘Machine
model’ has two categories: UMA and NUMA.  ‘Memory access ratio’ means the speed
ratio of the cache, memory and network.  ‘CPU number’ denotes the system size, which
can be classified into three levels, small, medium, or large.  ‘Loop style’ includes four
kinds of loops: U(uniform), I(increasing), D(decreasing) and R(random).  ‘Program size’
shows the appropriate scale that algorithms fit.  ‘Data locality’ determines if loop data
behavior has affinity or not.  ‘Loop boundary’ determines if it must be known at compile
time.  ‘Loop level’ determines if a nested loop is profitable to algorithms.  ‘Loop carried
dependence’ is classified as DOALL and DOACROSS.  ‘Ease of implementation’ describes
if implementation of the algorithm is easy.  ‘Facto’ means the variables, which can dynami-
cally influence the performance due to loop information and system states.  The overheads
of synchronization, communication and thread management are roughly classified into four
levels: none, light, normal, and heavy.  ‘Start time’ determines whether all each processor
starting time need to be equal or not.

3.2 The Anatomy of the IPLS System

In this paper, we propose a new system, called intelligent parallel loop scheduling
(IPLS) (Fig. 5), which uses knowledge-based techniques to select an appropriate loop-
scheduling algorithm.  The approach makes good use of the advantages of algorithms to
improve loop parallelism.  By the resulting algorithms for assigning parallel loop on multipro-
cessor systems, it is believed that the applications can save execution time and achieve a
high level of speedup.
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Table 5. The attributive table for NUMA models.

NUMA  Model

DOALL

AFS MAFS CAFS LAFS DAFS LDS GDCS[4] ASS

UMA/NUMA NUMA NUMA NUMA NUMA NUMA NUMA NUMA NUMA

No of  Processor S,M S,M S,M,L S,M,L S S,M S,M S

  Memory Access Rate 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200

Loop Style X D,I,R X X X X X X

Program Size — — — X — — — —

Loop Type 2-3, 9-10 2, 4-5 1, 4, 8 1, 4, 8 2, 5, 9, 11 1, 5, 6, 8, 10 2, 5, 9, 11 2, 4, 5, 6

Data Locality Yes Yes Yes Yes Yes Yes Yes Yes

Loop boundary X X X X X X Yes X

Loop Level X X X X X X X X

LCD DOALL DOALL DOALL DOALL DOALL DOALL DOALL DOALL

 Ease  of  implementation No No No No No No No No

Factor 0.5<a<1 — k K — b a,b A=
N
p2

Thread  Overhead l, n l l,n l,n l l,n l,n l

Comm.  Overhead l l l l l l,n,h l,n,h h

Sync.  Overhead 3, 4 5 3,4 3.4 5 3,4 4,5 3,4

Start Time X X X X X X X X

Table 4. The attributive table for UMA models.

UMA Model

DOALL DOACROSS

Static SS CSS GSS TSS Factoring AHS SSS Enhanced CSS

UMA/NUMA UMA UMA UMA UMA UMA UMA UMA/NUMA UMA/NUMA U MA

No of Processor X X X X X X X X X

Memory Access Rate 1:10:200 1:10:200 1:10:100 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200 1:10:200

Loop Style U,D,I X R,R U,I,R X X X X U

Program Size X X Large X X Large X X Large

Loop Type 1-10 X 1-2, 5-7, 9-10 2-3, 7-8 1, 3-4, 7, 11 3-4, 7-8 X 1-3, 5-11 1, 6-7

Data Locality X No No No No No Yes Yes X

Loop Boundary Yes X No X X X Yes Yes X

LCD DOALL DOALL DOALL(0,1) DOALL DOALL DOALL DOALL DOALL Doacross (>1)

 Ease of implementation X X X No X No No No No

Factor — — k — Ns, NF x=2 b,g a,k K

Thread Overhead l,n h l,n h n n n,h n,h l,n

Comm. Overhead X l l l l,n l l,n l,n l

Sync. Overhead X 1 2,3,4 2 3,4 3,4 4,5 4,5 3,4,5

Start Time Yes X Yes X X X Yes X Yes
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A knowledge system is a system that depends on a vast base of knowledge to perform
difficult tasks.  The knowledge is saved in a knowledge base separate from the inference
component.  This makes it convenient to append new knowledge or update existing knowl-
edge easily.  The rule-based approach is one of the forms commonly used in many knowl-
edge-based systems.  The primary difficulty in building a knowledge base is in acquiring
the desired knowledge.  To ease acquisition of knowledge, one popular technique is Reper-
tory Grid Analysis (RGA).  RGA is easy to use, but it suffers from the problem of missing
embedded meanings.  For example, when a doctor says that the symptoms of cold are
headache, coughing and sneezing, he may have those symptons.  However, in RGA, a per-
son is not considered to catch a cold unless that he has all of the symptoms.  To overcome
the problem, the concept of Attribute Ordering Table (AOT) is employed to elicit embed-
ded meanings by recording the importance of each.  A knowledge-based system is com-
posed of two parts: the development environment and the runtime environment.  The former
is used to build the knowledge base while the latter is used to solve the problem.  In this
paper, the development environment is not discussed.  The runtime environment contains
five components, which are briefly described as follows:

∑ Knowledge Base: This component contains knowledge required to solve the problem of
determining an appropriate parallel loop-scheduling algorithm to be applied. The knowl-
edge is constructed as a rule base.  This type of system uses knowledge encoded in the
form of production rules, i.e., If ... Then ... rules.

∑ Inference Engine: The inference engine is the interpreter of the knowledge stored in the
knowledge base.  It examines the contents of the knowledge base and the data, includ-
ing the system characteristics and the loop attributes, provided by the machine architec-
ture and programmers to draw a conclusion, an appropriate parallel loop-scheduling
algorithm.  The inference engine attempts to find connections between the input at-
tributes explained in section three and the selected loop-scheduling algorithm accord-
ing to RGA and AOT. An example of applying RGA/AOT is shown in Table 6.  ‘X’ means

Fig. 5. The system architecture of IPLS.
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that the attribute has no relation with the scheduling algorithm. ‘D’ means that the
attribute dominates the scheduling algorithm; i.e., if the attribute is not equal to the entry
value, it is impossible to apply the scheduling algorithm.  For those entries that are not
labeled ‘X’ or ‘D’, integer numbers are used to represent the relative degree of impor-
tance for an attribute that does not dominate the object but is of some degree of impor-
tance relative to other attributes.  A larger integer number implies that the attribute is
more important to the object.  According to the table, four rules can be generated.  As we
observe, [A1, S1] = 1, 5, 6, [A2, S1] = YES, [A3, S1] = X; hence, the resulting rule will be
generated.
RULE:
If (A1 is in 1, 5, 6) and (A2 = YES) Then Choose S1
We illustrate the inference of IPLS with an example. Input data: hungry
Rule 1: If ( thirsty ) Then ( drink water )
Rule 2: If ( hungry ) Then ( eat sandwich )
Inference: Rule 2 is matched because of the input data, so a result is obtained, that is,
“eat a sandwich”.

Table 6. The repertory grid and the attribute ordering table.

S1 S2 S3 S4

A1 1,5,6/D X/X 3/D 2,4/D

A2 YES/D X/X YES/D X/X

A3 X/X NO/2 NO/D X/X

∑ Scheduling Algorithm Library: In the library, there are twelve representative scheduling
algorithms that are classified as UMA or NUMA models.  Whenever any new typical
scheduling strategy is developed, the rule can be modified easily, and the new strategy
is added into the library.

∑ Profile Information: After the program applying the selected loop scheduling algorithm
is executed, some information about the number of iterations, the maximal time of iterations,
the minimal time of iterations, the total time used by the program, the number of
synchronizations, the number of remote memory accesses, and the workload distribu-
tion of each processor will be recorded and saved in a profile file.  The profile file will be
referred to in order to modify the attributes by means of the refining system.

∑ Refining System: When a program is embedded with a parallel loop scheduling algorithm,
if we can refine some attributes, such as the values of the factors in the loop-scheduling
algorithm, by using the profile information derived from the record of executing process
of the program, then the refining procedure, in order to get ideal values, will modify the
factors.  It is obvious that this will make the parallelism of program better and improve
the performance.

3.3 Refining System

In many parallel loop-scheduling algorithms, there are some attributes, such as factors,
which influence the performance of an executed program.  For example, the adaptive hybrid
scheduling algorithm has two factors, b and g, determining the fetching processor whether or
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not to fetch more iterations form the work queue in the dynamic level after executing the
iterations from the static level.  These two factors, b and g, should be adjusted by the
programmers according to the properties of parallel computers.  However, appropriately
selecting the values of b and g on different systems is difficult.  If we can refine the values of
the factors in the loop-scheduling algorithm by using the profile information derived from
the record of the execution process of the program, it is obvious that the new factors cycli-
cally modified by the refining procedure will make the parallelism of program more clear and
improve the performance.  This method stated also has feedback-learning ability and is
intelligent.  In this paper, a refining system based upon profile information consisting of the
following seven items will be included in our model.

∑ the number of iteration;
∑ the maximal time of iterations;
∑ the minimal time of iterations;
∑ the total time of program;
∑ the number of synchronizations;
∑ the number of remote memory accesses;
∑ the workload distribution of each processor.

Refining attributes without modifying rules in the knowledge base is a problem, but
it is solved in our refining system by storing attribute data into a file called Attri_file and
using the data type of the structure (record) as a condition testing of antecedent of if
statement in rules.  When a loop is executed and profile information is generated, the refining
system will input profile information to modify the attributes in Attri_file; therefore, the rules
in the knowledge base do not need to be changed, and the inference engine does not need
to be recompiled.

There are several situations in which the refining system is suggested to be used.
Firstly, when IPLS is constructed completely, some attributes in the knowledge base maybe
crude, which may prevent an appropriate loop scheduling from being selected.  Secondly,
when IPLS is ported to a new system environment, some attributes of the computer system,
such as the memory access rate, need to be changed to reflect the selection of scheduling
method.  In addition, the non-optimal values of features in the knowledge base may cause
an appropriate loop-scheduling algorithm to consume much execution time.  Therefore, these
features shall be refined to reduce the execution time of the program if the executable code is
executed repeatedly.  The programmer can determine whether or not to use the refining
system before deriving an ideal loop-scheduling algorithm for the program.  When the refin-
ing system is used, the programmer can also decide how many loop-scheduling algorithms
are to be selected by the inference engine.  The flow chart of the refining system is shown in
Fig. 6.

3.4 The Algorithm of IPLS and an Example

In this section, we will describe our algorithm for the intelligent parallel loop schedul-
ing system (IPLS).  The algorithm consists of four phases.  The following attributes will be
obtained from the input file and the parameters of the computer system.

1. How many processors are in the system?
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2. Which machine model of the system architecture? (UMA/NUMA)
3. What is the memory access rate (the speed ratio of the cache, memory and network)?
4. What kind of loop type is present? (1-11; 11 types)
5. What is the level of program size?
6. What kind of loop style is used? (1-4; 4 style methods)
7. Is there strongly affinity? (yes/no)
8. Is the loop bound known during compiler time? (yes/no)
9. Is the loop nested? (yes/no)

10. How large loop carries dependence distance?

A certainty factor (CF) value for each question expresses the importance of that question.

Output: If there is more than one suggestion, the one with the optimal evaluation number
among the thread overhead, communication overhead and synchronization overhead will be
chosen. There are four phases in the process for constructing the algorithm.

∑ Phase 1: Get the loop attributes from the input file.
∑ Phase 2: Call the inference engine to draw a conclusion using the rules; that is, find

the most suitable loop scheduling method.

Fig. 6. Flow chart of the refining system.
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∑ Phase 3: Apply the Single-to-multiple thread translator (s2m) [20] to adopt the appropri-
ate scheduling so as to partition the loop on multiprocessor systems.

∑ Phase 4: While the loop is being executed, the profile information is generated and
referenced in order to modify the attributes.

For example, the program segment of Adjoint Convolution is shown in Fig. 7.  The
attributes of the system, the number of processors, machine model, and memory access
rate, are detected by the system automatically.  Let us describe the four phases used in this
example.

Fig. 8. The multithreaded program segment of Adjoint Convolution.

Void FORALL1 (loop)
Struct loop_args *  loop;
{
int i, k, n;
n = 1000;
for (i = loop->begin; i <= loop->end; ++i)

for (k = i; k <= n * n; ++k)
A[i-1] += x * b [k-1] *  c[n*n+i-k-1];

}

          Fig. 7. The program segment of Adjoint Convolution.

n = 1000;
for (i = 1; i <= n *  n; ++i)

for (k = i; k <= n *  n; ++k)
A[i-1] + = x * b [k-1] * c [n * n + i - k - 1];

∑ Phase 1: The following attributes can be obtained from the input file.
1. The loop is the 4th type (AC).
2. The program size is large.
3. The loop has decreasing workload, which means it is the 3rd style.
4. There is slight affinity in this example, that means no.
5. The loop bound is known during compiler time.
6. The loop is nested.
7. Loop carried dependence distance is zero, that means DOALL.

∑ Phase 2: Post to inference, IPLS finds that the constraints of TSS are satisfied and deter-
mines that TSS is the most suitable algorithm.

∑ Phase 3: The TSS is invoked to transform the loop into a multithread program as shown
as Fig. 8.  The TSS algorithm partitions and schedules the iterations of Adjoint
Convolution.

∑ Phase 4: While the loop is being executed, the profile information is generated and refer-
enced so as to modify the attributes in the knowledge base.



YUN-WOEI FANN, CHAO-TUNG YANG, SHIAN-SHYONG TSENG AND CHANG-JIUN TSAI190

4. EXPERIMENTAL RESULTS

In this section, two parts of an experiment will be examined for IPLS.  The first part of
the experiment is based on a UMA system.  The other is simulation of a NUMA system by
using a UMA system.

4.1 Experimental Environment

Our target machine was a two Pentium-133 CPU multiprocessor system, running the
Windows NT multithreaded OS that supports Win32 API functions.  The system included a
512K external cache, 64MB shared-memory, and a 64-bit high-speed frame bus.  Our pro-
gramming tool was visual C++, which provides Win32 API function call.  Due to the symmet-
ric architecture, computation tasks could be easily distributed to any available processor.

4.2 Applications

Ten popular application programs were chosen and executed in UMA and NUMA
environments.  These applications were discussed in section 3 and represent different loop
types.  We tested these applications as follows to show the feasibility and generalization of
IPLS.
1. Adjoint Convolution: The loop in this application has a decreasing workload; only the

outer loop can be parallelized and the i th iteration takes O(N2 - i) time.  It has no data
affinity to exploit.

2. Reverse Adjoint Convolution: This program has an increasing workload.  As the loop
bound i increases from 1 to N2, the workload also increases from O(1) to O(N2).

3. Gaussian Elimination: This program has a small load imbalance across iterations and has
some data affinity between matrix references.  The inner loop can be parallelized.

4. Matrix Multiplication: This, the most commonly used program in parallel processing,
has a uniform workload.  Since Matrix A rows and Matrix B columns are referenced
constantly, and the elements of both Matrices are not modified, and a local cache, if
available, will be very useful to the system.

5. All Pairs Shortest Paths: The workload of the i th iteration of the inner parallel loop
depends on A[i][k], and it takes O(1) or O(N) times to complete the work.  Because each
processor’s work queue initially contains about N/P consecutive iterations, the total
loads for all the processors are about the same.  Load imbalance is not significant.  The
i th iteration always accesses the ith row of the matrix.  Therefore, the application has to
exploit the affinity effect.

6. Successive Over-Relaxation (SOR): All the iterations of the SOR parallel loop take
about the same time to execute, and each iteration always accesses the same set of data.
Exploiting processor affinity may improve performance better than balancing the workload
can.  In this application, each parallel iteration has a locality rate of one and a data set of
N array elements. The computational granularity of each parallel iteration is O(N).

7. Jacobi Iteration: In the JI program, the top 20% of the rows of elements in the non-singular
matrix A are nonzero elements, which are generated by a random number generator.  The
iterations of the parallel loop have a different workload, which is determined by the
distribution of nonzero elements in A, so exploiting load imbalance will improve the
performance.  However, the workload of each parallel iteration is not changed when it is
executed repeatedly.
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8. LU Decomposition: This consists of an outer sequential loop and a parallel loop.  In the
innermost loop, one of the rows of the matrix A is modified based on the pivot row k.

9. Gauss-Jordan Elimination: The iteration granularity of Gauss-Jordan Elimination is small
and is independent of the program size.  The amount of variance in the iteration length is
small, too.  Programs of this kind are more suitable for static scheduling schemes than
self-scheduling schemes.  To outperform the static scheduling scheme problems, self-
scheduling schemes must be able to achieve load balance with very small scheduling
overhead.

10. Transitive Closure: The characteristic of this program is that the workload depends on
the input data. Each iteration takes either O(1) or O(N) time.  Since the input data af-
fects the amount of execution time, the workload is randomly.

4.3 Experimental Results on a UMA System

Because the restriction of the operating system to programmers, a system function
call for binding any thread onto a specific processor is not available and only dynamic
scheduling is allowed to use on this experiment.  There were two kinds of experiments on
a UMA system and a NUMA system.  One studied the execution time and speedup of above
ten applications, and the other examined a combined case that included ten applications in
a program.

4.3.1 The implementation on the UMA system

Let us examine the implementation on the UMA system, which was a 2-processor
machine; the execution time and the corresponding speedup are shown in Table 7 and Fig. 9,
respectively.

Table 7. The execution time (ms)/speedup of 11 applications obtained by applying different
scheduling algorithms.

Applications SERIAL CSS/2 GSS TSS Factoring SSS AHS IPLS

Adj-Con 20104/1 15042/1.337 15055/1.335 10398/1.933 13974/1.439 12359/1.627 12352/1.628 as  TSS

Gauss_Eli 365359/1 256945/1.422 197157/1.853 202922/1.8 195016/1.873 208055/1.756 196852/1.856 as Factoring

Gauss_Jor 7765/1 4245/1.829 5587/1.39 5599/1.387 5266/1.475 4333/1.792 4391/1.768 as CSS/2

Jacobi_Iter 14047/1 10109/1.39 12836/1.094 12656/1.11 13125/1.07 9802/1.433 9758/1.44 as AHS

LU 40995/1 28094/1.459 33521/1.223 34356/1.193 33071/1.24 28505/1.438 28432/1.442 as CSS/2

Matrix_Mul 23453/1 12281/1.91 12095/1.939 12229/1.918 12214/1.92 12187/1.924 12203/1.922 as CSS/2

Radj_Con 27235/1 21274/1.28 14719/1.85 15587/1.747 15255/1.785 14336/1.9 15477/1.76 as SSS

Saor 109062/1 76891/1.418 82594/1.32 83943/1.299 86742/1.257 38126/1.41 77680/1.404 as CSS/2

Spath 63063/1 57032/1.106 58867/1.071 43146/1.462 310469/1.543 295922/1.619 296078/1.618 as SSS

Tran_Clos 479188/1 298312/1.606 308844/1.552 325430/1.472 310469/1.543 295922/1.619 296078/1.618 as SSS

If_Then 17125/1 9682/1.769 9693/1.767 8595/1.992 8667/1.976 8656/1.978 8620/1.987 as AHS
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GSS performed poorly for Adjoint Convolution because the workload of the iterations
is decreasing and TSS is the most efficient algorithm for Adjoint Convolution (shown in Fig.
5.1(a)).  CSS/2 was suitable for the applications like Gauss Jordan Elimination with a random
unbalanced workload, LU Decomposition with a decreasing imbalanced workload, and SOR
with a uniform balanced workload (shown in Fig. 5.1(c), (e), (h)) respectively. The factoring
scheduling algorithm wass suitable for Gauss Elimination with a random balanced workload
(shown in Fig. 5.1 (b)).  SSS was suitable for applications like Reverse Adjoint Convolution
with an increasing imbalanced workload, All Pairs Shortest Paths with a random balanced
workload, and Transitive Closure with a random unbalanced workload (shown in Fig. 5.1(g),
(i), (j)), respectively.  AHS was suitable for Jacobi Iteration with a random unbalanced workload
(shown in Fig. 5.1(d)).  We can find that none of six scheduling algorithms under UMA
system was suitable for all applications.  IPLS could choose an appropriate scheduling
algorithm and get good performance for most of the applications except Matrix Multiplica-
tion and If_Then.  In the case of Matrix Multiplication, IPLS did not apply the optimal
approach, GSS, but chose CSS/2 because the workload of iterations in this program is uniform.
However, the number of processors, 2, was so small that CSS could not exploit the ability
fully.  In the case of the If_Then application, IPLS did not apply the optimal approach, TSS,
but chose AHS because AHS is suitable for a random workload of iterations in the program.
The reason for not selecting an optimal approach was similar to that for the case of Matrix
Multiplication.  Although the selection of scheduling algorithms was not absolutely accurate,
we could solve the problem by refining the attributes causing the error.  The refining system
in IPLS will be used afterwards. Traditionally, once a scheduling algorithm is used, it will be
used through out the entire program.  But IPLS can always choose an appropriate schedul-
ing algorithm according to the behaviors of the loops among one program.  A comparison of
results obtained using KPLS and IPLS on a UMA system is shown in Table 8.

In the second experiment, IPLS chose different scheduling algorithms for each loop in
the combined program integrated from the above eleven applications.  For example, accord-
ing to the loop behaviors, IPLS selected TSS for the Adjoint Convolution part of the com-
bined program and chose factoring for the Gauss Elimination part, instead of choosing only
one scheduling method. Table 9 and Fig. 10 show, respectively, the experimental execution
time and the corresponding speedup for the combined program.

Fig. 9. The speedup of 11 applications by applying different loop scheduling.
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4.3.2 The simulation results on the UMA system

To overcome the problem of the limit of only 2 processors in the UMA system in our
experiment, we simulated multiprocessor systems with 4, 8, 16 and 32 processors on our
target machine with 2 processors, and the results are shown in Table 10.

From the simulation on the UMA system, some significant results were obtained: On
the UMA system, generally speaking, the greater the number of processors, the better the
performance of the applications with DOALL loops while applying each scheduling algorithm,
and the number of processors also influenced the selection of loop scheduling algorithms.

Fig. 10. The speedup of the combined program for different kinds of loop scheduling.

Table 9. The execution time (ms)/speedup of the combined program for different
scheduling algorithms.

Applications Serial CSS/2 GSS TSS Factoring SSS AHS IPLS

All 1167396/1 789907/1.477 750968/1.554 754511/1.547 755346/1.545 709657/1.645 700640/1.666 693687/1.683

Table 8. A comparisons of results obtained by applying KPLS and IPLS.

Applications Best Loop Scheduling KPLS Result IPLS Result

Adj_Con TSS as TSS as TSS

Gauss_Eli Factoring as Factoring as Factoring

Gauss_Jor CSS/2 as CSS/2 as CSS/2

Jacobi_Iter AHS as TSS as AHS

LU CSS/2 as CSS/2 as CSS/2

Matrix_Mul GSS as CSS/2 as CSS/2

Radj_Con SSS as Factoring as SSS

SOR CSS/2 as CSS/2 as CSS/2

Spath SSS as TSS as SSS

Tran_Clos SSS as TSS as SSS

If_Then AHS as TSS as AHS
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Table 10. The execution time (ms) of 11 applications for different scheduling algorithms
on the UMA system with 4, 8, 16 and 32 processors.

Adjoint Convolution

Processor number Serial CSS GSS TSSFactoring SSS AHS IPLS

4 20104 8637 8684 4944 4942 6773 6921 as TSS

8 20104 4628 4662 2493 2471 3551 3637 as TSS

1 6 20104 2393 2392 1256 1237 1809 1844 as TSS

3 2 20104 1218 1216 652 621 916 939 as TSS

Gauss Elimination

Processor number Serial CSS GSS TSSFactoring SSS AHS IPLS

4 365359 134685 95052 907644 95910 103430 103539 as GSS

8 365359 68619 50178 55819 51179 54171 54089 as GSS

1 6 365359 35075 27418 30796 28368 28966 28974 as GSS

3 2 365359 18771 16853 17521 17483 16843 16859 as GSS

Gauss-Jordan Elimination

Processor number Serial CSS GSS TSSFactoring SSS AHS IPLS

4 7765 2153 2692 2453 2456 2618 2618 as CSS

8 7765 1207 1702 1460 1462 1615 1590 as CSS

1 6 7765 732 1159 941 956 1076 1061 as CSS

3 2 7765 501 862 705 716 777 775 as CSS

Jacobi Iteration

Processor number Serial CSS GSS TSSFactoring SSS AHS IPLS

4 14047 3599 4216 4293 4518 5094 4246 as CSS

8 14047 1996 2468 2352 2692 2895 2490 as CSS

1 6 14047 1068 1581 1438 1676 1773 1650 as CSS

3 2 14047 631 1026 1058 1123 1060 1065 as CSS

LU Decomposition

Processor number Serial CSS GSS TSSFactoring SSS AHS IPLS

4 40995 10475 11501 11717 11978 11227 11296 as CSS

8 40995 5771 6470 6148 6748 6355 6344 as CSS

1 6 40995 3357 3798 4165 3891 3473 3470 as CSS

3 2 30995 2172 2373 2408 2236 2336 2331 as CSS

Matrix Multiplication

Processor number Serial CSS GSS TSSFactoring SSS AHS IPLS

4 23453 5909 5955 5846 5943 5946 5841 as CSS

8 23453 2975 3025 3118 2994 3168 3111 as CSS

1 6 23453 1489 1638 2107 1512 1778 1762 as CSS

3 2 23453 755 859 782 759 920 903 as CSS

Reverse Adjoint Convolution

Processor number Serial CSS GSS TSSFactoring SSS AHS IPLS

4 27235 11934 6937 6832 6820 7110 7134 as GSS

8 27235 6360 3451 3542 3412 3585 3264 as GSS

1 6 27235 3381 1741 1877 1781 1859 1884 as GSS

3 2 27235 1695 879 946 899 945 959 as GSS

SOR

Processor number Serial CSS GSS TSSFactoring SSS AHS IPLS

4 109062 21805 29204 29572 30108 29124 29166 as CSS

8 109062 14538 5616 15634 16169 15545 15572 as CSS

1 6 109062 7939 8565 9797 8822 8915 8865 as CSS

3 2 109062 4221 4693 4668 4713 5261 5297 as CSS

All Pairs Shortest Paths

Processor number Serial CSS GSS TSSFactoring SSS AHS IPLS

4 63063 16095 17052 17223 17591 16898 17100 as CSS

8 63063 8292 9539 8759 9835 9507 9365 as CSS

1 6 63063 4468 5560 5802 5725 5455 5452 as CSS

3 2 63063 2790 3708 3698 3159 3723 3711 as CSS

Transitive Closure

Processor number Serial CSS GSS TSSFactoring SSS AHS IPLS

4 479188 126258 122581 126527 124971 123302 122999 as SSS

8 479188 64412 64423 64318 65088 63336 63724 as SSS

1 6 479188 33470 34509 34121 35588 34331 34903 as SSS

3 2 479188 18206 19611 22358 19960 18974 19026 as SSS
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In the case of Adjoint Convolution, if the number of processors was less than 8, TSS was the
appropriate scheduling algorithm; otherwise, the factoring scheduling algorithm is the opti-
mal choice whereas the difference of execution time between TSS and factoring was not
distinct.  In the case of Matrix Multiplication, if the number of processors was large enough,
equal to or greater than 8, CSS was the optimal scheduling algorithm because of the uniform
workload of iterations.  In the case of Transitive Closure, when the number of processors
was 4, the chunk size of the static phase in SSS was reasonable, so the execution time of the
program while applying SSS was shorter than that of the other algorithms.  When the number
of processors was more than 4, CSS produced the optimal results.  In addition, no matter how
many processors were used, there was no distinct difference in the performance of Transi-
tive Closure when different scheduling algorithms where used.  For other applications like
Gauss Elimination, Gauss-Jordan Elimination, Jacobi Iteration, LU Decomposition, SOR and
All Pairs Shortest Paths, the influence of the number of processors on the selection of an
appropriate scheduling algorithm was not obvious.  When the number of processors was
equal to or greater than 32, the execution times of Gauss Elimination, Matrix Multiplication,
LU Decomposition, SOR, and Transitive Closure were almost the same.  This shows that the
selection of scheduling algorithms for the six applications has less influence on the perfor-
mance if the number of processors is large enough on a UMA system.  Although the selec-
tion of scheduling algorithms was not completely accurate, we could solve this problem by
refining the attributes causing the error.  The refining system in IPLS will be used afterwards.

4.4 The Simulation Result on the NUMA System

The memory access cost between a UMA system and a NUMA system is different
because a NUMA system will consume more on memory access if the data is not in local
memory.  In a NUMA system, the hierarchy of memory can be divided into three levels:
cache, local memory and remote memory.  According to the experimental results, the
memory access rate of the three levels was about 1:10:200.  Each time, synchronization
took 5 microseconds (ms), remote communication took 30 ms, and the thread manage-
ment overhead waas 1.006 ms.  In addition, since the transfer speed of the bus is much
faster than network, the cost of communication and synchronization could be neglected.
The simulations for clustering NUMA system with 16 and 32 processors were conducted
on the UMA system.  In order to understand the influence of architecture of the clustering
NUMA model on the performance of program execution, there were two different num-
bers of processors in a cluster as shown in Table 11.

In this simulation, Gauss Elimination, Jacobi Iteration and SOR were selected because
they have strong data locality and different loop styles.  Seven kinds of loop-scheduling
algorithms, including AFS [7], CAFS [16], LAFS [17], MAFS [13], DAFS [10], adaptive sched-
uling [18] and IPLS, were considered.  Table 12 shows the execution times of three applica-
tions when different scheduling algorithms were applied.

In the simulations of Gauss Elimination, Jacobi Iteration and SOR, no matter what the
structure of the clustering NUMA system was, AFS was not selected because it would result
in many remote memory accesses and high synchronization cost.  As shown in Table 12, no
matter how many processors were in a cluster, CAFS was suitable for SOR and Jacobi
Iteration.  This was because if the workload of iterations was uniform, an idle processor only
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Table 12. The executiom times (ms) for 3 applications on the NUMA model.

Gauss Elimination

Configuration Serial AFS CAFS LAFS MAFS DAFS Adaptive IPLS

16(2) 367449 25668 33305 23226 23166 23194 21843 as adaptive

16(4) 367449 25468 33152 23100 23166 22742 21654 as adaptive

32(4) 362095 17151 16929 11441 11620 11547 13487 as LAFS

32(8) 362095 16951 15524 11404 11590 11324 13239 as DAFS

Jacobi Iteration

Configuration Serial AFS CAFS LAFS MAFS DAFS Adaptive IPLS

16(2) 13436 1089 880 930 1047 1146 1211 as CAFS

16(4) 13436 1049 873 887 1027 1097 1178 as CAFS

32(4) 13378 479 431 485 511 604 635 as CAFS

32(8) 13378 439 430 438 506 572 603 as CAFS

SOR

Configuration Serial AFS CAFS LAFS MAFS DAFS Adaptive IPLS

16(2) 108383 7712 6875 6980 7274 7085 7937 as CAFS

16(4) 108383 7562 6871 6859 7214 6932 7805 as LAFS

32(4) 108311 4588 3437 3491 4358 4435 4638 as CAFS

32(8) 108311 4378 3435 3452 4265 4356 4564 as CAFS

Table 11. The number of processors in a cluster.

   The number of processors on NUMA 16 32

   The number of processors in a cluster 2 4 4 8

searched the most loaded processor in its local cluster instead of migrating iterations by
means of remote memory accesses.  When the number of processors in the whole system or
in a cluster was larger, the execution time was shorter.

In the execution phase of LAFS, when imbalance occurred, if the queues of processors
in a local cluster were all empty, an idle processor migrated iterations from the remote clusters.
Therefore, LAFS could balance the uniform and non-uniform workload of iterations efficiently.
When there were 4 processors in a cluster on a 16-processor system, LAFS was suitable for
Gauss Elimination.  Table 12 shows that when there were 4 processors in a cluster on a 32-
processor system, LAFS was also suitable for SOR application. The more processors in a
cluster, the more efficient was program execution because LAFS reduced the remote memory
access times.  DAFS could collect the information needed by the re-initialization phase about
balancing the workload of each processor, but the large scale about processors will result in
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more overheads.  When there were 8 processors in a cluster on 32-processor system, DAFS
was an appropriate scheduling algorithm for Gauss Elimination.  Adaptive scheduling ex-
ploited the potential for using the dynamic execution history to adaptively adjust the chunk
size so as to reduce synchronization and loop allocation overheads and to maintain a better
load balance.  Therefore, adaptive scheduling was not suitable for the multiprocessor sys-
tem with a larger number of processors, especially more than 16, because of excessive overhead.
As shown in Table 12, when the number of processors was 16, adaptive scheduling was
suitable for Gauss Elimination.  However, the architecture of clustering NUMA systems and
the number of processors influenced the selection of a loop scheduling strategy for a loop.
This was taken into consideration as shown in Table 5, so IPLS could correctly choose the
appropriate scheduling algorithms for the three applications on clustering NUMA systems
with different structures.

4.5 An Example Showing How to Refine Attributes

We found that IPLS could not choose an appropriate scheduling for the case of Matrix
Multiplication on the UMA system with two processors as shown in Table 13.

To improve the poor selection ability, the refining system in IPLS was used to modify
the attributes in the knowledge base.  During the first iteration, first of all, the refining system
selected three algorithms, CSS/2, TSS and factoring, in the scheduling library according to
the attributes of Matrix Multiplication, and transformed the application into three multithreaded
programs by applying three chosen algorithms.  Secondly, the multithreaded programs were
executed, and the profile information of each program was recorded.  Then, the refining
system analyzed the profile information to refine the attributes in the knowledge base.  Finally,
we found that factoring was better than the two other algorithms.  Table 14 shows the results
of using the refining system in three rounds.  It is found that IPLS chose the most appropriate
algorithm, GSS, after two rounds, and that the results after the third round had converged
into stability.  This shows the feasibility of using therefining system.

To summarize the above experimental and simulation results, IPLS can choose a suit-
able loop-scheduling algorithm for each kind of loop.  Once IPLS gets enough information
from the system environment and the loop, it can make a correct decision for that loop.
Since none of loop-scheduling algorithms can fit all applications, our approach will be a
good choice for a parallel compiler.

Table 13. The execution time (ms) of Matrix Multiplication when different schedul-
ing algorithms were applied.

Application Serial CSS GSS TSS Factoring SSS AHS IPLS

Matrix_Mul 23453 12281 12095 12229 12214 12187 12203 as CSS/2

Table 14. The results of refining the IPLS in three rounds.

1st round 2nd round 3rd round
Three algorithms CSS/2 GSS SSS

selected by Factoring Factoring GSS
refining system TSS SSS AHS

Result Factoring GSS GSS
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5. CONCLUSION AND FUTURE WORK

In the paper, we have proposed a new approach that uses knowledge-based tech-
niques to select some appropriate loop-scheduling algorithms according to loop behaviors
and system states.  A rule-based system, called IPLS, has been developed that uses RGA
and AOT to integrate existing loop scheduling algorithms for UMA and NUMA systems,
and that makes good use of their advantages for loop parallelism.  Based on the results for
algorithms used to assign parallel loops on multiprocessor systems, it is believed that the
program can save execution time and achieve a high level of speedup.  In addition, the
refined system of IPLS can automatically adjust the attributes in the knowledge base ac-
cording to profile information so as to match the characteristics of the system environment,
especially for NUMA systems.  Therefore, IPLS has the feedback-learning ability. Whereas,
the adjustment of attributes does not need to modify the rules and recompile the inferring
engine.  Experiments on a NUMA system could not be implemented due to the operating
system constraints and the lack of hardware.  In the near future, IPLS will be improved so
that it can automatically detect the attributes of system states and loop information instead
of requiring the programmer’s input.  Other directions of research are the implementation
of prefetching, and exploration of the distinct relationship between the cache size and the
selection of a scheduling method.  In addition, finding a way to construct a precise algo-
rithm for adjusting the factors of loop scheduling strategies so as to avoid overshoot is one
of our future goals.
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