
QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL

Qual. Reliab. Engng. Int.2000;16: 99–116

IMPLEMENTATION OF PETRI NETS USING A
FIELD-PROGRAMMABLE GATE ARRAY

S. K. YANG1∗AND T. S. LIU2

1Department of Mechanical Engineering, National Chin Yi Institute of Technology, Taichung 411, Taiwan, Republic of China
2Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, Republic of China

SUMMARY
Although Petri nets have various capabilities, the Petri net approach is done on paper. A field-programmable gate
array (FPGA) is implemented in this study so as to realize basic Petri net symbols, logic structures in Petri nets,
and specific functions for Petri nets by logic circuits. As an example, a Petri net for an early failure detection and
isolation arrangement (EFDIA) is implemented as an application-specific integrated circuit (ASIC) on a Xilinx
Demonstration Board. This ASIC is verified by three simulations dealing with three different failure scenarios of
a system, and the ASIC functions identically to the EFDIA Petri net. Accordingly, not only the EFDIA Petri net
but also any specific function Petri nets can be implemented by FPGA circuits. Copyright 2000 John Wiley &
Sons, Ltd.

KEY WORDS: Petri net implementation; FPGA; preventive maintenance; logic circuit; ASIC

1. INTRODUCTION

Sequential machines are composed of sequential logic
circuits. A sequential machine operates according
to a set of sequential conditions. These conditions
constitute states of the machine. Therefore sequential
machines are called state machines [1]. A state
machine is a synchronous machine if transitions
between states are driven by clock pulses. On the other
hand, asynchronous machines are driven by changes
of inputs, i.e. transitions between states may occur at
any time. There are two categories of state machines,
namely Moore machines and Mealy machines. The
output of a Moore machine is only related to
states of the machine, whereas a Mealy machine is
related to states and inputs of the machine [2]. State
machines have been widely used in design work in
many fields owing to systematic hardware design
methods and tangible implementation models. They
support not only synchronous but also asynchronous
implementations, which are efficient and easy to
design [3].

Petri nets [4] belong to the state machine family
and offer good modelling capability in parallelism
and synchronization. Accordingly, they are suitable to
perform modelling, analysis, verification, reduction,

∗Correspondence to: S. K. Yang, Department of Mechanical
Engineering, National Chin Yi Institute of Technology, Taichung
411, Taiwan, Republic of China. Email: skyang@chinyi.ncit.edu.tw.

synthesis [3], etc. A system can be modelled into
Petri nets to express not only static behaviours
such as logical relations between components of
the system, but also dynamic behaviours such as
operating sequence or failure occurrence of the
system. Although Petri nets have various capabilities,
the Petri net approach is done on paper. However,
because Petri nets are state machines, it is feasible
to realize Petri nets to perform those capabilities.
Petri nets can be represented by software or
hardware approaches. Software implementation for
Petri nets using computer language, e.g. Prolog and
CSPL, usually takes a long time [5]. Hardware
implementation is to realize state machines that are
converted from Petri nets to logic circuits. Hardware
implementation can be done by choosing one adequate
device from the logic device families [6] according to
the application, the complexity and the properties of
the Petri net.

The advances in semiconductor manufacturing
technology enable the production of higher-density
integrated circuits (ICs) such as VLSI (very-large-
scale IC) or ULSI (ultra-large-scale IC). Nowadays,
ICs are becoming smaller and more powerful but
faster and cheaper. As a result, application-specific
integrated circuits (ASICs) are widely used. In
practice, Petri nets can be implemented as ASICs
so as to perform specific functions without user
intervention. Early failure detection and isolation

Received 14 April 1999
Copyright 2000 John Wiley & Sons, Ltd. Revised 16 October 1999



100 S. K. YANG AND T. S. LIU

depicted in Reference [7], for example, can be
implemented as an ASIC. Furthermore, the ASIC
with early failure detection and isolation function
can be incorporated into a system to assist in the
decision making on preventive maintenance (PM)
for the system. Generally speaking, there are four
different approaches to ASIC design [8].

1. Full custom. All design works, from logic design
to layout and wire routing, are done by a
designer according to requests from the customer.
This method has the widest design flexibility
and the highest efficiency of the wafer. On
the other hand, it needs the longest design
time, experienced personnel and the highest non-
recurring engineering (NRE) cost. Moreover,
the product function is specific and with low
interchangeability.

2. Standard cell. Designers perform design works
by using circuits in the existing cell library. If the
needed circuit is not available, it will be designed
or purchased and then added to the cell library. In
contrast to full custom design, this method saves
design time and increases design flexibility.

3. Gate array. It is made of the semi-manufactured
wafer, which has logic gates in array form, to
execute design works merely by designing the
metal layer so as to connect the gates to the
desired IC. This method reduces the use of
masks for many layers of the wafer such that the
NRE cost is lowered. However, the wafer area is
increased owing to the fixed arrangement of the
array.

4. Programmable logic device (PLD). PLDs are
manufactured from existing structures such as
RAM, ROM or PLA [6], which enables designers
to write (for EEPROM-based components) or
download (for SRAM-based components) the
designed circuits to the PLD so as to perform on-
line verification. Consequently, it is not necessary
to manufacture a prototype IC by wafer factory
and package factory to verify its function. Hence
this method saves the most design time and NRE
cost. FPGAs and CPLDs are main tools for this
type of design.

2. FIELD-PROGRAMMABLE GATE ARRAY

Mainly because of its programmable capability, the
field-programmable gate array (FPGA) is becoming
popular not only in industry but also in academia. The
main features of FPGAs [6] are stated below.

1. Field-programmable. FPGAs can be
programmed by end-users. This feature saves the
time spent in factories including manufacturing
and waiting.

2. Reprogrammable. This feature makes FPGAs
suitable for teaching and research.

3. Rapid prototyping. The downloaded FGPA itself
is a prototype of the newly developing product.

4. No IC test and NRE cost. FPGAs avoid the NRE
cost and promote the efficiency of debugging
by vendor-supported simulation software or
simulator.

5. Fast time of market. Newly developed products
are put on the market in a short time.

6. In-circuit design verification.

Based on the above features, FPGAs are suitable for
hardware implementation of Petri nets. This study
employs a Xilinx FPGA [9] as the design tool to
implement Petri nets.

3. CIRCUITS CONVERTED FROM PETRI NETS

By using Xilinx Foundation [9], each of the Petri
net-converted circuits can be generated as a macro
symbol for the schematic toolbox. Detailed circuits
of corresponding macro symbols can be observed by
hierarchical push-and-pop functions.

3.1. Petri net symbols

The following five items are basic symbols for
Petri nets [10]. Corresponding circuits are shown in
Figure1.

1. Place, drawn as a circle, denotes event. A place
can be converted to a D-type flip-flop, which
represents the associated event occurrence by
output high Q. Q is high if D is high at the rising
edge of the clock pulses.

2. Token, drawn as a dot, contained in places,
denoting the data. In logic circuits, token can be
represented as a logic high signal.

3. Arc, drawn as an arrow, between places and
transitions. Arcs are connection wires between
components.

4. Immediate transition, drawn as a thin bar,
denoting event transfer with no delay time.
Therefore a connection point represents it.

5. Inhibitor arc, drawn as a line with a circle end,
between places and transitions. An inhibitor arc
can be converted to a connection wire with an
inverter. It inverts the relation between input (X)
and output (Y).

Copyright 2000 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2000;16: 99–116



IMPLEMENTATION OF PETRI NETS 101

Figure 1. Corresponding circuits for basic Petri net symbols

Figure 2(a). Structures of basic logic relations for Petri nets and corresponding circuits

3.2. Structures of basic logic relations

Basic logic structures of Petri nets and associated
logic circuits are presented below and illustrated in
Figures2(a)–2(e), where X, Y and CLK represent
input place, output place and clock respectively. All
D-type flip-flops are positive edge triggered.

1. TRANSFER. The token (logic high signal in the
circuit) in X transfers to Y through transition T
without delay time.

2. AND. Both X1 and X2 are signal high then Y is
high.

3. OR. Either X1 or X2 is high then Y is high.
4. TRANSFER AND. In this configuration, X feeds

high signal to both Y1 and Y2. It describes the
situation that X holds, then Y1 and Y2 hold at
the same time.

5. TRANSFER OR. X flip-flop triggers either
Y1 or Y2 depending on the earlier occurred
event between X1 and X2. It is a conditional

Copyright 2000 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2000;16: 99–116



102 S. K. YANG AND T. S. LIU

Figure 2(b). Structures of basic logic relations for Petri nets and corresponding circuits

Figure 2(c). Structures of basic logic relations for Petri nets and corresponding circuits

Copyright 2000 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2000;16: 99–116



IMPLEMENTATION OF PETRI NETS 103

Figure 2(d). Structures of basic logic relations for Petri nets and corresponding circuits

configuration that was described in Reference [7].
6. IDENTITY. It is a self-content circuit, which

supplies a token at any time for Petri nets.
7. INVERT (COMPLEMENT). The relation be-

tween X and Y is always inverted.
8. INHIBITION. The condition for high Y is low

X1 but high X2. It inhibits Y to be high whenever
X1 event occurs.

9. IMPLICATION. Y is triggered either by low X1
or by high X2.

10. NAND. Y is high if both X1 and X2 are low.
The transition T1 in Petri nets is involved in the
NAND gate such that T1 cannot be seen in the
logic circuit.

11. NOR. Y is triggered when both X1 and X2 are
low.

12. XOR. Y is high if X1 is not equal to X2. This
configuration is used to verify whether X1 and
X2 are not the same.

13. XNOR. XNOR is the complement of XOR,
which is used to verify whether X1 and X2 are
the same.

Generally, relations between places in a Petri net are
constructed by the above logic structures. Each circuit
for the structures can be generated into the toolbox as
a macro symbol for ease of Petri net circuit design.

3.3. Specific function arrangements

1. Reset. This function is used to release the token
that is held in a place by generating a token to fire
the output transition of the place. Since a token
is implemented by a logic high signal, the reset
function can be implemented as a push button
with a Vcc input.

2. Counter. It is used to count and record event
occurrence times. There are various types of
counters in Xilinx XACT libraries [11]. In a
Petri net dealing with system failures, the counter
should count up to a sufficient number and be
able to be cleared asynchronously. Therefore a
4-bit cascade binary counter with clock enable
and asynchronous clear (CB4CE) is adopted in

Copyright 2000 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2000;16: 99–116



104 S. K. YANG AND T. S. LIU

Figure 2(e). Structures of basic logic relations for Petri nets and corresponding circuits

Figure 3. Counter circuit converted from Petri net Figure 4. Timer circuit converted from Petri net

Copyright 2000 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2000;16: 99–116



IMPLEMENTATION OF PETRI NETS 105

Figure 5. Circuit of FREQDIV15

this study. The CB4CE is shown in Figure3 and
pin functions are described as follows.

(1) CE is the clock enable input, which is used
to enable the counter itself.

(2) C stands for the clock.
(3) Q0, Q1, Q2 and Q3 constitute four data

output bits. They increment when the CE is
high during the low-to-high clock transition.

(4) CEO is the counter enable output, which is
used to enable the next stage counter.

(5) TC denotes terminal count. It is high when
all Qs are high.

(6) CLR is the asynchronous clear. When CLR
is high, all other outputs are ignored and all
Qs and TC outputs go to logic level zero,
independent of clock transition.

3. Timed transition. It denotes event transfer with
delay time t . As shown in Figure4, it is
implemented by a timer with delay timet and
start–reset functions. The timer output becomes
high att time later than the arrival of a logic high
signal at the timer input. To achieve this function,
a two-level hierarchy configuration circuit is
used. The lower level is a frequency divider,
namely FREQDIV15 in this study, dividing the
input clock frequency by 15. The FREQDIV15
circuit is shown in Figure5, where the X74160

is a 4-bit BCD counter [11]. The FREQDIV15
sends a clock pulse out for every 15 input
clock pulses and clears X74160 at the positive
edge of the 16th clock pulse. The FREQDIV15
is generated to a macro symbol, as shown
in Figure 6, for the design toolbox of this
project file. The upper-level circuit of the timer
configuration is shown in Figure6. There is
an existing oscillator in Xilinx XACT libraries,
namely OSC4, which supplies five different
frequencies of clock, i.e. 15 Hz, 490 Hz, 16 kHz,
500 kHz and 8 MHz. The FREQDIV15 outputs
a 1 Hz clock by feeding the OSC4 15 Hz
clock into the FREQDIV15. The 1 Hz clock is
used as a time-base to generate theN-second
time delay for timed transition and merely lets
the FREQDIV15 follow a MOD-N frequency
divider. A MOD-20 frequency divider circuit, for
example, follows the FREQDIV15 in Figure6.
The D flip-flop and the AND gate construct a
switch to start and stop counting delay time of
timed transitions by the IN2 trigger signal and
the STOP signal respectively. The STOP signal
also resets the timer. Using the technique similar
to the DELAY20 and the five clock frequencies
provided by OSC4, a variety of delay times can
be implemented.

Copyright 2000 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2000;16: 99–116



106 S. K. YANG AND T. S. LIU

Figure 6. Circuit of DELAY20

Figure 7. Early failure detection and isolation arrangement (EFDIA)

4. EXAMPLE

The early failure detection and isolation arrangement
(EFDIA) depicted in Reference [7] and shown in
Figure7 is employed in this section to exemplify the
realization of Petri nets using an FPGA. All necessary
components have been constructed in Section3.

4.1. Circuit of EFDAI

Using circuits described in Section3, the logic
circuit of the EFDIA is constructed as shown in
Figure8. Each of H3 and H4 in Figure8 is a timer
composed of DELAY20. The EFDIA circuit can be
integrated into a 39-pin ASIC. Figure9 shows the
macro symbol for EFDIA. Hence the EFDIA Petri net
is realized to become an ASIC after downloading this
EFDIA macro to a Xilinx FPGA board.

The correspondence between EFDIA pin names
(Figure 9) and EFDIA Petri net symbol names
(Figure7) is listed below.

1. Input pins

(1) CPI-1W: clear signal, which is implicit in
Figure14, for Next Lower PW counter

(2) TI-1S: Next Lower TS
(3) SIN: Si
(4) PIA: PA

i
(5) IRW: ith Reset W
(6) IRR: ith Reset R
(7) IRE: ith Reset E
(8) CPIR: clear signal, which is implicit in

Figure14, for PR
i counter

(9) CPIM: clear signal, which is implicit in
Figure14, for PM

i counter
(10) CPIL: clear signal, which is implicit in

Figure14, for PL
i counter

Copyright 2000 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2000;16: 99–116



IMPLEMENTATION OF PETRI NETS 107

F
ig

ur
e

8.
C

irc
ui

to
fE

F
D

IA

Copyright 2000 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2000;16: 99–116



108 S. K. YANG AND T. S. LIU

Figure 9. EFDIA macro symbol

(11) CPIF: clear signal, which is implicit in
Figure14, for PF

i counter

2. Output pins

(1) PIT: PT
i

(2) PIB1: PB1
i

(3) IWS: ith WARNING SIGNAL
(4) PIE: PE

i
(5) PI-1WQ0–PI-1WQ3: Next Lower PW

counter
(6) PIRQ0–PIRQ3: PRi counter
(7) PILQ0–PILQ3: PLi counter
(8) PIFQ0–PIFQ3: PFi counter
(9) PIMQ0–PIMQ3: PMi counter

(10) PI: Pi
(11) PIB2: PB2

i
(12) NHPB2: Next Higher PB2

(13) ASFM: ASFM

4.2. Simulations for EFDIA

To verify the EFDIA logic circuit, i.e. Figure8,
the following three failure scenarios are simulated.

These simulations are all performed on a Xilinx Logic
Simulator.

4.2.1. The TI-1S is low and the PIA is high.This
simulation accounts for the case where the error signal
is not caused by the next lower subsystem (module)
and PM action for the malfunctioning subsystem
(module) takes place in time. The resultant timing
diagram for this simulation is shown in Figure10,
which is generated by a Xilinx Wave Viewer. A logic
high signal is sent to the SIN by the simulator, which
indicates that the monitored signal of theith place
exceeds the prescribed warning value. Subsequently,
each of PIB1, NHPB2, IWS and PIT is triggered. The
H4 timer, whose output is the H4OUT2 as shown
in Figure 6, starts counting. The delay time of the
H4 timer, which is denoted by TiU in Figure 7,
represents the time between the warning value and
the maximum allowed value for system performance,
i.e. the maintenance lead time [7]. If the PM action
is taken before the system failure occurs, i.e. before
the H4 timer completes counting, the PIA sends a
signal to start the H3 timer and to stop the H4 timer
at the same time. The delay time of the H3 timer

Copyright 2000 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2000;16: 99–116



IMPLEMENTATION OF PETRI NETS 109

represents the time for the PM action to complete.
As shown in Figure10, for example, the PIA signal
arises at the seventh count of the H4 timer. Owing to
the inhibition configuration of TiU transition, which is
constructed by theith WARNING SIGNAL and the
PA

i , TIU will not be triggered because the H4 timer
stops counting once the PIA is high. Hence PI remains
low from the beginning to the end of this case, i.e.
the system failure is avoided. The output signal of
the H3 timer is the H3OUT2 in Figure10. After H3
counts 20, i.e. after the correcting work for the system
error is completed, the PIM counter is triggered such
that the PIMQ0 becomes one. At the same time the
SIN becomes low and each of PIB1, NHPB2, IWS
and PIT in turn becomes low. On the other side of
the EFDIA, since PIB2 is low and PIB1 is high, TIE
becomes high, which triggers the PIL counter such that
the PILQ0 becomes one when IRE generates a trigger
signal. Consequently, the error time log number of the
ith subsystem increases by one. Since PIE is the error
indication flag for the EFDIA, PIE high indicates that
the error signal is from theith subsystem but not the
next lower one. The PIE timing curve is shown at the
bottom in Figure10.

4.2.2. The TI-1S is high and the PIA is high.
This simulation deals with an error signal arising from
the next lower subsystem but not theith subsystem
itself. The timing diagram for this simulation is shown
in Figure11. Owing to logic relations constrained by
the Petri net dealing with system failures [12], the SIN
becomes high after the high TI-1S signal. The high
SIN signal triggers each of PIB1, NHPB2, IWS and
PIT to become high. The H4 timer is triggered to count
by low PIA and high IWS. The low PIE indicates that
the error is not located in theith subsystem itself.
Triggering the IRW enables the PI-1WQ0 to become
one. Hence the warning time log number of the next
lower subsystem increases by one. Since the PIE is
low, the PIRQ0 can be triggered by an IRR signal and
high PIB1. In this simulation the PIA signal triggers
the H3 timer to count after an inspection for theith
subsystem but not a maintenance action. Once the H3
timer starts counting, the H4 timer counting stops.
When the PIMQ0 becomes one, i.e. the maintenance
log number of theith subsystem increases by one,
the SIN resumes low from high. The TI-1S resets
to low after the correcting work for the next lower
subsystem is completed. The PI signal remains low in
this simulation, i.e. a Pi failure never occurs.

4.2.3. The TI-1 is low and the PIA is low.This
last simulation accounts for error existing in theith

subsystem but without PM. The PIE is triggered to
high by high PIB1 and low PIB2. High PIE implies
that the error is located in theith subsystem. The H4
timer is triggered to count by the warning signal IWS
and low PIA. Since the PM action is not taken during
the maintenance lead time, i.e. the delay time of the H4
timer, the PIU becomes high after the H4 timer counts
20. As a result, the PI becomes high, representing Pi
failure occurring. The failure time log number of this
subsystem increases by one, i.e. the PIFQ0 becomes
one at this moment. The PILQ0 is also triggered by
the IRE signal to increase the error time log number
by one for theith subsystem. The timing diagram for
this simulation is shown in Figure12.

4.3. Implementation

The EFDIA logic circuit is implemented by
downloading its schematic diagram to a Xilinx FPGA
Demonstration Board. The board is a stand-alone
board for experimenting and developing prototypes
using the Xilinx FPGA architecture. Two FPGA
devices, namely XC3020A and XC4003E, have been
installed on the board. The XC4003E has higher
density and more input/output blocks and flip-flops
than the XC3020A [6]. Hence the XC4003E is
adopted in this study to implement the EFDIA. The
configuration of the XC4003E for implementing the
EFDIA is described as follows.

1. Power supply. The power for the Demonstration
Board is supplied by a battery set, which has three
AA (UM-3) batteries in series to supply+5 V
through the connector J9 of the board.

2. Downloading interface. The EFDIA schematic
diagram for configuring the XC4003E is down-
loaded from a personal computer through an
Xchecker cable [13] which connects either the
COM1 or COM2 port of the computer to the J2
connector of the board.

3. Input terminals. Switches SW3, SW4 and SW5
provide input signals for the XC4003E to
implement the EFDIA circuits. The SW3 is a
switch set with eight switches connecting to eight
general-purpose inputs on XC4003E input pins.
An XC4003E input pin is set to logic 1 when
the corresponding switch is on and to logic 0
when the corresponding switch is off. The SW4,
namely Reset Pushbutton, can apply an active-
Low reset signal to the XC4003E via pin 56 when
the SW2-7 switch is on. The SW5, namely Spare
Pushbutton, also applies an active-Low signal to
the XC4003E via pin 18.

Copyright 2000 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2000;16: 99–116



110 S. K. YANG AND T. S. LIU

F
ig

ur
e

10
.T

im
in

g
di

ag
ra

m
fo

r
‘T

I-
1S

is
lo

w
an

d
P

IA
is

hi
gh

’s
im

ul
at

io
n

Copyright 2000 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2000;16: 99–116



IMPLEMENTATION OF PETRI NETS 111

F
ig

ur
e

11
.T

im
in

g
di

ag
ra

m
fo

r
‘T

I-
1S

is
hi

gh
an

d
P

IA
is

hi
gh

’s
im

ul
at

io
n

Copyright 2000 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2000;16: 99–116



112 S. K. YANG AND T. S. LIU

F
ig

ur
e

12
.T

im
in

g
di

ag
ra

m
fo

r
‘T

I-
1S

is
lo

w
an

d
P

IA
is

lo
w

’s
im

ul
at

io
n

Copyright 2000 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2000;16: 99–116



IMPLEMENTATION OF PETRI NETS 113

Figure 13. Downloaded Demonstration Board

Copyright 2000 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2000;16: 99–116



114 S. K. YANG AND T. S. LIU

F
ig

ur
e

14
.I

/O
as

si
gn

m
en

to
fD

em
on

st
ra

tio
n

B
oa

rd
fo

r
E

F
D

IA
im

pl
em

en
ta

tio
n

Copyright 2000 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2000;16: 99–116



IMPLEMENTATION OF PETRI NETS 115

4. Output terminals. Three seven-segment displays
are included, with the U6 connecting to the
XC3020A and the U7 and U8 connecting to
the XC4003E. Each LED segment is turned on
by driving the corresponding FPGA pin Low
with logic 0. Decimal points serve as state and
error indicators. Besides, there are eight LEDs
connected to the I/O pins in each FPGA. LEDs
D1–D8 connect to the XC3020A, while D9–D16
connect to the XC4003E. Each LED is also
turned on by driving its corresponding FPGA pin
Low with logic 0. There are 16 extra I/O lines that
connect each FPGA.

Figure 13 shows two pictures of the downloaded
Demonstration Board. The I/O assignment on the
Demonstration Board for the EFDIA implementation
is shown in Figure14.

4.4. Results

According to timing diagrams for the simulations
in Section 4.2, i.e. Figures10–12, and operations
on the downloaded Demonstration Board, the EFDIA
logic circuit functions identically to the EFDIA Petri
net. All the capabilities of the EFDIA Petri net,
including alarm, early failure detection, fault isolation,
event count, system state description and automatic
shutdown or regulation, are preserved in the 39-pin
ASIC depicted in Section4.1. Hence the Petri net has
been realized by FPGA circuits.

5. APPLICATIONS

The capabilities of the EFDIA are very useful for
health monitoring, on-line failure prognostics and
preventive maintenance of a system. No matter what
scale the system is, the EFDIA is applicable. From
large systems such as power plants and chemical
plants to smaller systems such as automobiles
and machinery, a set of personal computers, or a
CD-ROM, is within the scope of EFDIA application.
Taking an automobile as an example, a warning
light shown on the panel denotes that a failure with
prescribed threshold is going to occur and where
the cause comes from, by equipping an EFDIA
ASIC to each of the sensing points corresponding
to places in the Petri net. Consequently, errors in an
automobile can be corrected before a failure occurs by
preventive maintenance. Accordingly, driving safety
can be ensured.

6. CONCLUSIONS

Although Petri nets are suitable to perform modelling,
analysis, verification, reduction, synthesis and so on,
the Petri net approach is done on paper. Since Petri
nets are state machines, however, they can be designed
to perform those capabilities. This paper has presented
a hardware implementation of Petri nets, including
basic symbols, basic logic structures and specific
functions for Petri nets. Besides, the Petri net with
early failure detection and isolation functions has
been implemented as a 39-pin ASIC on a Xilinx
Demonstration Board as an example. This ASIC
was verified by three simulations dealing with three
different failure scenarios of a system. The 39-pin
ASIC functions identically to the EFDIA Petri net.
Since Petri nets offer a convenient modelling paradigm
and various other functions, not only the EFDIA Petri
net but also any specific function Petri nets can be
implemented by FPGA circuits.

REFERENCES

1. Shaw AW.Logic Circuit Design; Fort Worth Saunder College
Publishing: Fort Worth, TX, 1993.

2. Roth Jr. CH.Fundamentals of Logic Design, (4th edn);
International Thomson Publishing: Taipei, 1995.

3. Chang N, Kwon WH, Park J. FPGA-based implementation
of synchronous Petri nets.Proceedings of the IECON’96
International Conference on Industrial Electronics, Control,
and Instrumentation, 1996; pp. 469–474.

4. Peterson JL.Petri Net Theory and the Modeling of Systems;
Prentice-Hall: Englewood Cliffs, NJ, 1985; pp. 166–172.

5. Stefano AD, Mirabella O. A fast sequence control device
based on enhanced Petri nets.Microprocessors and Microsys-
tems1991;15:179–186.

6. CIC. Training Course 12; Chip Implementation Center of
Nation Science Council: Taipei, 1998.

7. Yang SK, Liu TS. A Petri net approach to early failure
detection and isolation for preventive maintenance.Quality
and Reliability Engineering International1998;14:319–330.

8. Schroeter J.Surviving the ASIC Experience; Prentice-Hall:
Englewood Cliffs, NJ, 1992.

9. Xilinx. Foundation Series Quick Start Guide Version F1.4;
The Programmable Logic Company: San Jose, CA, 1998.

10. David R, Alla H. Petri nets for modeliing of dynamic
systems—a survey.Automatica1994;30:175–202.

11. Xilinx. XACT Libraries Guide; The Programmable Logic
Company: San Jose, CA, 1994.

12. Yang SK, Liu TS. Failure analysis for an airbag inflator by
Petri nets.Quality and Reliability Engineering International
1997;13:139–151.

13. Xilinx. Hardware User Guide; The Programmable Logic
Company: San Jose, CA, 1998.

Authors’ biographies:

S. K. Yang was born in Taiwan. He received his BS
and MS in automatic control engineering from Feng
Chia University, Taiwan in 1982 and 1985 respectively.
From 1985 to 1991 he was an assistant researcher and

Copyright 2000 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2000;16: 99–116



116 S. K. YANG AND T. S. LIU

instrumentation system engineer of Flight Test Group,
Aeronautic Research Laboratory, Chung Shan Institute
of Science and Technology, Taiwan. Since 1991 he has
been with the Department of Mechanical Engineering at
National Chin Yi Institute of Technology, Taiwan where
he is currently an associate professor. He received his
PhD in mechanical engineering from National Chiao Tung
University, Taiwan in 1999. His research interests are in
reliability, data acquisition and automatic control.

T. S. Liu received his BS from National Taiwan University
in 1979 and MS and PhD from the University of Iowa,
USA in 1982 and 1986 respectively, all in mechanical
engineering. Since 1987 he has been with the National
Chiao Tung University, Taiwan where he is currently a
professor. From 1991 to 1992 he was a visiting researcher
at the Institute of Precision Engineering, Tokyo Institute of
Technology, Japan. His current research interests include
reliability, design and motion control.

Copyright 2000 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int.2000;16: 99–116


	1 INTRODUCTION
	2 FIELD-PROGRAMMABLE GATE ARRAY
	3 CIRCUITS CONVERTED FROM PETRI NETS
	3.1 Petri net symbols
	3.2 Structures of basic logic relations
	3.3 Specific function arrangements

	4 EXAMPLE
	4.1 Circuit of EFDAI
	4.2 Simulations for EFDIA
	4.2.1 The TI-1S is low and the PIA is high.
	4.2.2 The TI-1S is high and the PIA is high.
	4.2.3 The TI-1 is low and the PIA is low.

	4.3 Implementation
	4.4 Results

	5 APPLICATIONS
	6 CONCLUSIONS

