Decoding of CISC instructions in superscalar
processors with high issue rate

R.-M.Shiu, J.-C.Chiu, S.-K.Cheng and J.J.-J.Shann

Abstract: The paper examines the design issues of decoders, including the primitive operation
(POP) translation strategies and the decoding rules, for CISC superscalar processors to exploit a
higher degree of parallel execution. Attention is focused on the x86 instruction set because of its
popularity. There are two different approaches regarding POP translation strategies: one is to
merge the address generation into load/store operations, and the other is to translate the isolated
address generation operations. Simulation results show that, in high issue-rate decoders, the latter
strategy improves the performance by 20 to 25%. Furthermore, considering the tradeoffs between
the hardware cost and performance, a cost-effective decoding rule suitable for current commercial

programs is recommended.

1 Introduction

The CISC instruction sets, such as x86 [1]. VAX [2], and
Java bytecode [3], possess individualities like variable
length, complex format, and complex semantics. For
those CISC processors that use modern superscalar tech-
niques to achieve higher performance via dynamic sche-
duling and out-of-order execution containing multiple
instruction in parallel [4-6], their decoding units (deco-
ders) have to translate the instructions into primitive
operations (POPs) using fixed instruction length, regular
formats, and simple functions to simplify the pipeline
design and dynamic scheduling mechanisms [7, §].

We examine the design issues for the decoders of CISC
superscalar processors to exploit a higher degree of parallel
execution in conjunction with the POP translation strate-
gies and the decoding rules. The x86 instruction set is
selected as an example because of its popularity. The x86
superscalar processors, such as Intel Pentium and Pentium
I/11I, AMD K5/K6, Cyrix M1/M2 [1, 9-14], have domi-
nated the PC market for years and now require more
powerful decoding techniques to achieve higher issue
rates in their next generation’s outlook.

The main difference of the strategies to translate the x86
instruction is that some decoders merge the address
generation into load/store operations, and others translate
isolated address-generation operations. The current
commercial x86 processors are using the former one
entirely. In this work, we observed that, in current issue
rate, merging the address generation into load/store opera-
tions can achieve higher performance since it saves on the
number of POPs translated. When higher issue rate is

© IEE, 2000
IEE Proceedings online no. 20000450
DOI: 10.1049/ip-cdt:20000450

Paper first received 21st December 1998 and in final revised form 14th
March 2000

The authors are with the Department of Computer Science and Information
Engineering, National Chiao Tung University, Hsinchu, Taiwan 30050,
R.O.C.

E-mail: jjshann@csie.nctu.edu.tw

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 2, March 2000

required, however, the method of translating isolated
address-generation operations to exploit a higher degree
of parallel execution becomes important.

Decoding rules used by current x86 superscalar proces-
sors are focal points that we want to improve as well. The
decoding rule decides what permutations of x86 instruc-
tions can be decoded in one clock cycle, which can limit
the fetch rule [15]. In this paper, we examine different
decoding rules and suggest a cost-effective one suitable for
current commercial programs.

2 Decoding rules of current x86 superscalar
processors

The instructions of x86 can be classified into four different
types as

(1) complex: must be decoded by micro-ROM.

(i1) general (G): is not necessary to be decoded by micro-
ROM and will be translated up to 4 POPs.

(ii1) type 1 simple (S;): can be translated to only one POP.
(iv) type 2 simple (S,): can be translated to 1 or 2 POPs.

A S, instruction can be classified as S,, and a S, instruc-
tion can also be classified as G.

Since the complex instructions are decoded by the
micro-ROM and cannot be contained in the decoding
rules, we denote a set of decoding rule by listing the
maximum value for of each type of instructions that can
be decoded in one cycle and by listing the maximum
numbers of x86 instructions being decoded (/) along
with POPs being generated (P) in one cycle. Assume that
the decoder can decode up to m x86 instructions and
translate them up to » POPs. Within these m instructions,
J, k, and r of them can be type G, S,, and S;, respectively
(m=j+k+r). Then, the decoding rule is denoted as
“ml:jG:kS,:rS:nP”

Likewise, the decoding rules of the current x86 proces-
sors using the notation described can be summarised as
follows. Pentium II/III is “31:1G:08S,:2S,:6P”, AMD K5 is
“41:4G:0S,:0S,:4P”, K6 is “2I:0G:2S,:0S,:4P or
11:1G:0S,:0S,:4P”, and K7 is “31:0G:3S,:0S,:6P or

101

11:1G:0S,:0S,:6P”. As for other x86 superscalar proces-
sors that do not provide out-of-order execution, such as
Pentium, M1/M2, and Rise m6, they are unnecessary to
translate instructions to POPs. Moreover, Pentium II/III
translate store operations into two POPs by putting store
address and data separately; and AMD K6/K7 merge load
and store operations into one instruction to become a load-
store POP. In this work, however, such details of translating
POPs are neglected for simplicity.

3 Primitive operation translation strategies

The major function of the decoder with respect to an x86
superscalar processor is to translate x86 instructions into
POPs. In this Section POP translation strategies are intro-
duced.

3.1 Translating X86 instructions to primitive
operations

Current x86 superscalar processors translate x86 instruc-
tions to POPs by using the same POP translation strategy
as the one that merges address generation into load/store
operations. Another strategy is to translate address genera-
tion to an isolated operation. We define these two POP
translation strategies as

NoAGU-POP: The generation of the address for a load/
store is included in the load/store POP (LD/ST).
AGU-POP: The generation of the address for a load/store
is kept apart from the load/store POP and, therefore, it
becomes an address generation POP (4G).

For example, the instruction Add mem [BX + SI], AX can
be translated by these two strategies

(a) NoAGU-POP:
1. LD templ, mem[BX + SIJ;

2. ADD temp2, templ, AX;
3. ST mem|BX + SI|, temp2;

// templ < mem[BX + SI];
// temp2 < templ + AX;
// mem[BX + SI| < temp?2;

(b) AGU-POP:

1. AG templ, BX, SI :

2. LD temp?2, mem[temp]1];
3. ADD temp3, temp2, AX;
4. ST mem[temp]1], temp3;

// templ < [BX + SI] :

// temp2 < mem[templ];
// temp3 < temp2 + AX;
// mem[templ] < temp3;

According to these two strategies two corresponding load/
store unit (LSU) mechanisms are shown in Fig. 1. In Fig.

result bus

X86 instructions X86 instructions

POPs POPs
|diSpatCher|—'| reorder buffer| |diSpatCherH reorder buffer |

LSuU

Fig. 1 Block diagrams of two LSU mechanisma

a LSU with address generation (NoAGU-POP)
b Isolated AGU (AGU-POP)

la, the address generation function (AGF) is combined
with the LSU. In Fig. 1, the separated AGU calculates the
addresses and forwards the addresses to the reservation
station (RS) of the LSU.

3.2 Mechanisms of load/store units

Two different LSU mechanisms can be derived as a result
of the two POP translation strategies mentioned. In regard
to NoAGU-POP, the execution of an LD/ST requires three
stages

(i) calculates the address of the LD/ST

(i) checks the dependency between the LD/ST and the
other LD/STs in LSU

(iii) access the cache data for the LD/ST.

As for AGU-POP, the execution of an LD/ST requires two
cycles to execute stage (ii) and (iii). We find that enhancing
the store buffer with the ability of snooping result buses is
important for high issue-rate decoding units. Therefore we
decided to build four LSU models: NoAGU _NoSNP,
AGU _NoSNP, NoAGU_SNP, and AGU_SNP, for
combining the strategies of POP translation (AGU or
NoAGU) with the snooping ability of store buffers (SNP
or NoSNP).

3.2.1 Load/store units without snooping ability:
In Fig. 2 two LSUs are demonstrated with no snooping
ability in the store buffers. In Fig. 2a, an LD/ST is
dispatched to the RS and the RS snoops the result buses
for the operands of the LD/ST POPs in the RS. An S7 must

from dispatcher . data
RIS l lwata) from dlspat_c.he.r address from dispatcher
: RS RS -
- B |
register T
address g ‘register address 1
calculation : AGF e & data
o dependency . AGU
L : address checking 5
& data |
dependency _4 |wsu I
checking i
o LSU | store Ibuf'fer cache access to data cache
cache access l (LD/ST done)
(LD/ST done) to data cache v

a

Fig. 2 LSUs in which store buffers have no snooping ability

a NoAGU _NoSNP
b AGU _NoSNP

102

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 2, March 2000

register in the store buffer to maintain the original order in
the program. When all the operands of an LD/ST are ready,
the LD/ST is issued to LSU. In Fig. 2b, an AGU is isolated
to execute AGs and has its own RS. After the address of an
LD/ST is calculated by AGU plus all its data operands are
ready, then the LD/ST is issued to LSU.

Figs. 3a and 3b illustrate the execution flows of stream
(a) and (b) mentioned in Section 3.1 for NoAGU _NoSNP
and AGU _NoSNP, respectively. With respect to
NoAGU _NoSNP, since both the data of the ST cannot be
snooped by the RS of the LSU until cycle 5 and the store
buffer cannot get the address for dependency checking
until cycle 6, the next LD from other instruction can only
be issued at cycle 7, if the same port is used. In contrast,
for AGU _NoSNP, the store buffer can get the address of
the ST for dependency checking at cycle 5, thus the next
LD from other instruction can be issued at cycle 6. The
execution path from an LD to the next LD is the critical
path for the most part. Therefore such reduction of the
cycles on this path can improve the performance signifi-
cantly.

3.2.2 Load/store units with snooping ability:
Figs. 4a and 4b depict NoAGU _SNP and AGU _SNP,
respectively. In Fig. 4a, the store buffer snoops the result
buses for the data operands of STs in the buffer. Therefore
there is no need for RSs to wait for the data operands of
STs and the RSs can soon pass the S7s to AGU when all
their operands for address calculation are ready. The
dependency checking can be started earlier as well without
waiting for the data operands. In Fig. 4b, the store buffer
snoops the result buses for the address calculated by AGU.
Therefore the store buffer can get the address without
waiting for the data operands.

Figs. 5a and 5b show the execution flows of the stream (a)
and (b) mentioned in Section 3.1 for NoAGU _SNP and
AGU _SNP, respectively. In both situations, the store buffer
can get the address far ahead in cycle 2, and thus the next LD
can be issued early in cycle 3 for the same port. Since the
execution path from an LD to the next LD is along the
critical path, such cycle reduction can improve the perfor-
mance significantly. In AGU _SNP, AG may be released
from the critical path, and thus achieve higher performance.

LD ADD ST AG LD ADD ST cycle
7 [K3 [5
address RS wait: RS wait : address RS wait: RS wait : RS wait: 1
calculation LDdata; ADD data: calculation |AG address LD data :AG address
¥ ¥ ¥ ¥
dependency RS wait : RS wait : dependgncy RS wait : RS wait :
checking LD data: ADD data: checking LD data : ADD data: 2
A Y Y Y
H S cache % 3
cache RSwait i RS wait : access RSwait : RS wait :
access LD data | ADDdata’ LD data :ADD data : 3
(LD done) ; B (LD done) : H
¥ —x
ADD RS wait ADD RS wait : 4
done ADD data done |ADD data:
address dependency 5
calculation checking next LD can
_ — <«— access cache
dependency cache | retire the x86 6
checking next LD can access instruction
—4—— +— access cache —
cache |retire the x86 -
access | instruction
a b

Fig. 3 Execution flows of instruction Add mem[BX+ SI], AX for LSU models in which store buffers have no snooping ability

a NoAGU _NoSNP
b AGU _NoSNP

result bus

from dispatcher result bus
T Fi { e from dispatchar (datd) fom dispatcher
S I P
RS RS —
address T register o]
calculation ' AGU result bus register eﬁdress
(data)
t 1 dependency o A(I'iU
checkin
dependency) 9 LSU |
checking
e LSU |_store Ibuf'fer cache access 10 data cache
cache access 1 (LD/ST done)
(LD/ST done) to data cache vy

a
Fig. 4 LSU models in which store buffers have snooping ability

a NoAGU _SNP
b AGU _SNP

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 2, March 2000

103

LD ADD ST AG LD ADD ST cycle
o 4 B + 4
address RSwait; address : address SBwait | RSwait | SBwait ;
calculation LD data: calculation : calculation | AG address LD data : AG address :
: }
dependency RS wait : dependency dependency | RS wait :dependency next LD can
checking LD data : checking checking LD data checking 2
: access cache
: = ; : —
cache o . next LD can cache Lo Lo
access RS wait : SB wait i access cache access RS wait RS wait : 3
(LD done) LD data i ADD data : (LD done) LD data ADD data :
¥ ¥
ADD SBwait | ADD RS wait 4
done | ADD data : done | ADDdata :
cache retire the x86 cache retire the x86
access instruction access instruction 5

Fig. 5 Execution flows of instruction Add mem[BX+ SI], AX for LSU models in which store buffers have snooping ability

a NoAGU _SNP
b AGU _SNP

4 Performance evaluation and analysis

This Section examines the design issues of the decoder
through simulation. First, we describe the simulation
environment and assumptions presumed in this work.
After that, the simulation results are analysed and demon-
strated in conjunction with some suggestions.

4.1 Simulation environment and simulation
model

We build our own trace-driven simulator whose environ-
ment is shown in Fig. 6. The SPECint95 benchmarks [14,
16] are compiled by GCC with their default optimisation
flags and executed on Linux OS. Then the system call
“ptrace” is used to get the trace files. We have run each
benchmark until it terminates, and the buffers in the
simulator are flushed every 500 thousand instructions to
simulate the situation of context switches. The comparison
of our simulation results are based on the total execution
cycles of all the benchmarks.

Our simulation models used in this work are based on a
superscalar processor containing six pipeline stages as
shown in Fig. 7; the block diagram of the processor is
shown in Fig. 8. The POPs are dispatched to the distributed
RSs orderly for out-of-order issue. In addition, the POPs
are orderly stored in the reorder buffer (ROB) and orderly
retired.

The assumptions made in our simulator are as follows:

e the accuracy of branch prediction is assumed to be
100%.

e If the fetcher fetches a branch instruction and the branch
is being taken, the succeeding instructions will not be
issued to the decoder until the next cycle is reached.

e The size of ROB and each RS is unlimited.

e The number of execution units is unlimited.

e The number of load/store ports to L1 cache is unlimited.
e The latency of ALU, AGU and BU is one cycle.

e We adopt data forwarding for LDs in LSU.

Four LSU models described in Section 3.2 have been
simulated. To clarify various parameters of our simulator,
we set three simulation conditions and summarise them in
Table 1. To compare the performances of these LSU
models. NoAGU _NoSNP with four POPs is regarded as
the baseline illustration.

104

Linux
ptrace()

source code

Fig. 6 Simulation environment

| fetch | decode| dispatch | RS | execution | retire |

fetch: fetch instructions from 1-cache

decode: decode predecoded x86 instructions into POPs
dispatch: schedule and dispatch POPs

RS: register POPs into reservation stations (RSs)
execution: execute POPs

retire: retire POPs

Fig. 7 Stages of pipeline for simulator

fetch
+ stall mx86 instructions
decode -:
+ decoder
n POPs
dispatch stall dispatcher

+ PR T S T S SR SO M. S 2
[Lo |[ms] [ws]}
+ -4, | roB
execution| ALY | | BU | | FPU | | Lsu | :_'f‘GL_J_:
I

Fig. 8 Block diagram of simulator

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 2, March 2000

Table 1: Parameter constrains under three different simulation conditions

Parameter Unlimited Fixed POPs and Fixed POPs and x86 instr.
condition variable x86 instr. with variable decoding rule

Strategy of POP NoAGU-POP NoAGU-POP AGU-POP

translation and AGU-POP and AGU-POP

Maximum x86 unlimited variable (m) 5

instr. fetching rate

Maximum POP variable (n) 8 8

decoding rate

Maximum POP n 8 8

dispatching rate

Maximum POP n 8 8

retiring rate

LSU snooping ability SNP and NoSNP SNP SNP

Maximum number unlimited unlimited variable (j)

of general instructions

Decoding rule nl:nG:0S,:0S;:nP

ml:8G:0S,:0S;:8P 51:/G:0S,:(5 —))S;:5P

51:/G:(4 — j)S,:1S;:8P

4.2 Determining number of POPs

We would like to find the saturation number of POPs
generated by the decoding unit under the unlimited condi-
tion. The simulation results are shown in Fig. 9. The
performance of the models in which the store buffers
have snooping ability is better than those that have no
such ability. Essentially, AGU _SNP has the best perfor-
mance. However, as the maximum number of the decoded
POPs is less than five, the performance of NoAGU _SNP is
better than that of AGU _SNP. This is due to the fact that
the total number of POPs with respect to AGU _SNP has
increased abruptly (about 42%), thus restraining the
speedup capability because of the limited of decoder’s
bandwidth. Based on these results, our recommendation
is that AGU _SNP is suitable for high issue rate and it can
be saturated at eight POPs under unlimited condition.

4.3 Variable number of X86 instructions

We would like to determine the saturation numbers of x86
instruction under eight POPs. Fig. 10 shows the speedup
for different numbers of x86 instructions decoded in these
four LSU models. It can be seen that AGU_SNP is
saturated at five instructions and others are saturated at
three.

1.6
1.4}
al2r
3
S
@
a
1.0
0.8 /
0.6)
0 2 4 6 8 10 12 14 16 18

max. no. of POPs
Fig. 9 Performances of four LSU models under unlimited condition

—4— AGU _SNP

—Hl- NoAGU _SNP
—A— AGU _NoSNP
—@- NoAGU _NoSNP

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 2, March 2000

0.6

1 2 3 4 5 6

max. no. of X86 instructions
Fig. 10 Speedup for different numbers of x86 instructions with 8 POPs
generated

—4— AGU _SNP

—Ml- NoAGU _SNP
—A— AGU _NoSNP
—@- NoAGU _NoSNP

4.4 Determining decoding rules

In the previous simulation the decoders use the loosest
decoding rules. In this Section we examine the different
decoding rules under five x86 instructions and eight POPs
using AGU_SNP, which are suggested in previous
Sections. We focus on two decoding rule sets:
“5I:jG:0S,:(5 —j)S;:8P” as rule set 1 and
“SI;jG:(4 — j)S,:1S,:8P” as rule set 2. In both rule sets,
the main parameter to be evaluated is the number of
general instructions j allowed to be decoded. Besides the
general instructions, rule set 1 and rule set 2 allow a
sequence of S; and S, type instructions to be decoded,
respectively.

Fig. 11 shows the performance of the decoding rules for
different numbers of G instructions with AGU _SNP.
Notice that the performance is saturated at two G instruc-
tions. This result arises from the fact that one-POP and
two-POP x86 instructions appear most frequently (more
than 80%) in our traces, as shown in Fig. 12.

In Fig. 13 two block diagrams originated from decoding
rules “51:2G:2S,:1S,:8P” and “5I:1G:3S,:1S,:8P” are
illustrated to compare the costs of decoders needed to
allow one against two general instructions. Since the
ratio regarding the sizes of translation table 1, 2, 3, and 4

105

51:2G:25,:18,:8P

16 §I:1G:38f:181:8P 1
1.4}
1.2}
g 10f

o
(9]
[9]

0.8
0.6
0.4r

0.2

0 1 1 1 1
1 2 3 4

no. of general decoders
Fig. 11 Number of general instructions for decoding rules of AGU _SNP
[0 51;/G:0S,:(5+)S, :8P
B 51:/G:(4-)S,:1S,:8P

:IFL I

2 POPs 3 POPs 4 POPs >4 POPs
no. of POPs

1POP

Fig. 12 Ratio of POP number

[NoAGU
W AGU

is about 11:9:8:2, the total sizes of the tables for the
decoder in Fig. 13a is about twice as those in Fig. 13b.
On the other hand, the ratio of the crossbar-area between
the fetcher and the decoder in Fig. 13a and 134 is about
1.5:1. Thus we need about 100% extra translation tables
and 50% extra crossbar area to achieve this additional 5%
improvement. Considering the hardware cost, we suggest
the decoding rule of “51:1G:3S,:1S,:8P” in AGU _SNP.

5 Conclusions

We have examined two important issues, the POP transla-
tion strategies and the decoding rules, for the design of
decoders in x86 superscalar processors. It is concluded that
separating the address generation from a load/store opera-
tion to become another POP can achieve higher perfor-
mance in high issue-rate microprocessors. And the
capability for store buffers to snoop the result buses can
further exploit a higher parallel execution degree. Further-
more, a cost-effective decoding rule suitable for high issue-
rate microprocessors is recommended.

The CISC instruction sets possess good application
compatibility and code density. Due to the recent advance-
ment in silicon technology, sophisticated decoding units
are capable of handling the complexity of instruction set.
Prudent design of the decoding units has become very
critical as the issue rate of a superscalar processor is
increased.

In this research we work on the development of exploit-
ing the machine parallelism for the next generation x 86
microprocessors without the support of compiler techni-
ques. If the instruction-level parallelism can be improved
by using compiler techniques, the POP translation strate-
gies we proposed will become more important, and the
decoding rules will be combined in conjunction with a
software scheduling rule to achieve higher performance.

X86 instructions

FO F1 F2 F3 F4 F5 F6 F7
1 1,2 1,2,3 1,2,3,4 1,234 1,2,3,4 1,2,3,4 1,2,4
table no. #
i i i i i i décoding unit i
: : : : : : . :
v A A v A A v v
POPs POPO POP1 POP2 POP3 _ POP4 POPS5 POP6 POP7
X86 instructions 10 | bl | | 12 | | 13 | | 14 |
Fo||F1||F2|]|F3 Fa F5 F& F7
table no. # 1 2 3 4 1 1,2 1,2 1,2
T T T T T T T T
1 \general, | | ! ! decoding unit !
— | a a a
A\ A\ v v A\ A\ A\ A\
POPs POPO POP1 POP2 POP3 POP4 POP5 POP6 POP7

Fig. 13 Design schemes of two decoding rules under AGU _SNP

10, 11: general instructions
12, 13: S, instructions

14: S, instructions

a 51:2G:28,:1S,:8P

b 51:1G:38,:1S,:8P

106

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 2, March 2000

6 Acknowledgments

This paper presents partial result of a long-term research
project financed by both the NSC of R.O.C. under contract
NSC 86-2622-E-009-009 and the industry.

7

1

References

INTEL. ‘Pentium II processor family developer’s manual’. Oct. 1997

WILSON, J.E., MELVIN, S.W., SHEBANOW, M.C., HWU, W.M., and
PATT, Y.N.: ‘On tuning the microarchitecture of an HPS implementa-
tion of the VAX’. Proceedings of the 20th international symposium on
microarchitecture, MICRO-20, 1987, pp. 162-167

LINDHOLM, T., and YELLIN, F.: “The Java virtual machine specifica-
tion” (Addison-Wesley, 1997)

JOHNSON, M.: ‘Superscalar microprocessor design’ (Prentice Hall,
1991)

SHRIVER, B., and SMITH, B.: ‘The anatomy of a high-performance
microprocessor: A systems perspective’ (IEEE Computer Society
Press, 1998)

INTRATER, G., and SPILLINGER, I.: ‘Performance evaluation of a
decoded instruction cache for variable instruction-length computers’.
Proceedings of 19th international symposium on Computer architec-
ture, ISCA *92, 1992, pp. 106-113

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 2, March 2000

SMOTHERMAN, M., and FRANKLIN, M.: ‘Improving CISC instruc-
tion decoding performance using a fill unit’. Proceedings of 28th
international symposium on Microarchitecture, MICRO-28, Nov.
1995, Ann Arbor, Michigan, USA, pp. 219-229

MELVIN, S.W., SHEBANOW, M.C., and PATT, Y.N.: ‘Hardware
support for large atomic units in dynamically scheduled machines’.
Proceedings of 21st international symposium on Microarchitecture,
MICRO-21, 1988, San Diego, California, USA, pp. 60-113
PAPWORTH, D.: ‘Tuning the Pentium Pro microarchitecture’, /[EEE
Micro, 1996, 16, (2), pp. 8-15

SLATER, M.: ‘AMD’s K5 designed to outrun pentium’, MicroProces-
sor Report, 1994, 8, (14)

CHRISTIE, D.: ‘Developing the AMD-KS5 Architecture’, I[EEE Micro,
1996, 16, (2), pp. 16-26

AMD INC.: AMD-K6 MMX Enhanced Processor data sheet, 1997
CYRIX: Cyrix 6 x 86MX Processor, July 15, 1997

CASE, B.: ‘SPEC95 Retires SPEC92,” MicroProcessor Report, 21
Aug. 1995

WALLACE, S., and BAGHERZADEH, N.: ‘Modeled and measured
instruction fetching performance for superscalar microprocessors’,
IEEE Trans. Parallel Distrib. Syst., 1998, 9, (6), pp. 570-578
POSTIFE, M.A., GREENE, D.A., TYSON, G.S., and MUDGE, T.N.:
‘Limits of instruction-level parallelism in SPEC95 applications’.
Presented at the international conference on Architectural support for
programming languages and operating systems, ASPLOS-VIII, Oct.
1998

107

	Abstract
	1 Introduction
	2 Decoding rules of currect x86 superscalar processors
	3 Primitive operation translation strategies
	4 Performance evaluation and analysis
	5 Conclusions
	6 Acknowledgments
	7 References

