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A Repetitive Learning Method
Based on Sliding Mode
for Robot Control
In order to make a robot precisely track desired periodic trajectories, this work propo
a sliding mode based repetitive learning control method, which incorporates chara
istics of sliding mode control into repetitive learning control. The learning algorithm
only utilizes shape functions to approximate influence functions in integral transforms
also estimates inverse dynamics functions based on integral transforms. It learns a
sampling instant the desired input joint torques without prior knowledge of the ro
dynamics. To carry out sliding mode control, a reaching law method is employed, w
is robust against model uncertainties and external disturbances. Experiments are
formed to validate the proposed method.@S0022-0434~00!02001-3#
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1 Introduction
A learning system is capable of improving its performance o

time by interaction with its environment. A learning control sy
tem is designed so that its learning controller can improve
performance of closed-loop systems by generating command
puts to plants and utilizing feedback information from plan
Rather than proportional-derivative~PD! type learning control
methods in the past@1#, fuzzy learning control@2# and neural
network based learning controller@3# have been presented. Yan
and Asada@4# proposed an excitation scheduling method to ena
an impedance control law to learn quasi-static, slow modes in
beginning, followed by learning faster modes. Similar to contr
lers presented by Horowitz@5# and Messner et al.@6#, a repetitive
robot controller was implemented with Cartesian trajectory
scription@7#. A structured singular value method was also appl
to determine stability and performance robustness of repet
control systems@8#.

This study presents a sliding mode based repetitive learn
control approach to robot control. The advantages of using slid
mode control instead of PD control for feedback portion of
repetitive learning control include:~1! the robust property of slid-
ing mode control dealing with model uncertainties;~2! the flex-
ibility in using sliding mode control. It is known that, in genera
the transient dynamics of a variable structure control system@9# is
accounted for by a reaching mode followed by a sliding mo
@10#. Therefore the design involves, first, the design of an app
priate sliding surface and a reaching mode method for the des
sliding mode dynamics, and second, the design of a learning
gorithm to ensure asymptotically stability.

Sliding mode based repetitive learning control focuses on le
ing rules that estimate feedforward terms~inverse dynamic func-
tions!. A class of function identification for learning algorithm
compensation based on integral transforms was presente
Messner et al.@6#. This study employs a set of shape functions
approximate influence functions and estimates inverse dyna
functions based on integral transforms. The inverse dynam
function is estimated by the integral of a predefined kernel mu
plied by an estimated influence function. The influence funct
used in integral transforms is approximated by a set of lin
shape functions and this influence function is in turn represen
by corresponding coefficients. An adaptation law employing k
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nel functions, sliding surfaces, and shape functions is thus de
oped in this study to update the coefficients associated with in
ence functions.

2 Tracking Control of Manipulator
In general, the equation of motion for an-axis manipulator can

be expressed as

M ~q!q̈1C~q,q̇!q̇1G~q!1d~q,q̇!5u (1)

whereq, q̇, and q̈ are, respectively, then31 joint position, ve-
locity, and acceleration vectors,u represents then31 torque vec-
tor generated by actuators,M (q) is the symmetric positive defi-
nite generalized inertia matrix,C(q,q̇) is the force~torque! vector
resulting from Coriolis and centripetal accelerations,G(q) is the
generalized gravitational force vector, andd(q,q̇) denotes the dis-
turbance. Define a 2n-dimensional state vectorx as

x5Fx1

x2
G5Fqq̇G

Thus Eq.~1! can be written as

ẋ5A~x!1B~x!u1n~x!

where

A~x!5F x2

2M 21~x!C~x!x22M 21~x!G~x!G
B~x!5F 0

M 21~x!G
and the disturbance is expressed by

n~x!5F 0
2M 21~x!d~x!G

2.1 Sliding Mode Control. The manipulator is demande
to track a desired motionqd(t). Define an error vector

e5F ė
e

E
0

t

edtG
wheree5q2qd and ė5q2q̇d . A sliding surfaces of n dimen-
sions is of the form:

he

ate
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s~e!5C~e!5@ I L G#F ė
e

E
0

t

edtG5ė1Le1GE
0

t

edt (2)

where bothL andG are positive definite matrices. In addition,
reaching law@11# is defined as

ṡ52Q sgn~s!2Ks (3)

where gainsQ andK are diagonal matrices with positive elemen
qi and ki , respectively. Chattering can be reduced by tuningqi
and ki in this reaching law. Near the sliding surface,si'0. It
follows from Eq. ~3! that uṡi u'qi . By using a small gain, the
chattering amplitude can be reduced. However,qi cannot be cho-
sen equal to zero since the reaching time would become infin
Moreover, when the state is not near the sliding surface a largki
is employed to increase the reaching rate.

Taking the time derivative of Eq.~2! gives

ṡ5ë1Lė1Ge

5Lė1Ge2q̈d2M ~q!21~C~q,q̇!q̇1G~q!1d~q,q̇!2u!

(4)

Equating Eqs.~3! and ~4! yields control input

u5M ~q!$2Q sgn~s!2Ks2Lė2Ge1q̈d%

1C~q,q̇!q̇1G~q!1d~q,q̇! (5)

2.2 Sliding Mode Based Repetitive Learning Control.
Tracking control is aimed at following a prescribed trajectory
closely as possible. Using inverse kinematics one can obtain
position, velocity, and acceleration vectors denoted byqd , q̇d ,
and q̈d , respectively. The desired torque input of a manipulat
denoted bywd(.):R1→Rn, is defined as

wd~ t !5M ~qd!q̈d1C~qd ,q̇d!q̇d1G~qd!1d~qd ,q̇d!

Definition: Let Ck(T) denote a subset ofC(T) ~which is the
space of continuousT-period functionswd :R1→Rn! such that
everywd is piecewise continuously differentiable, and

sup
tP@0,T#

U d

dt
wd~• !U<k

Given a collection for shape functions$F i% and«.0, there exists
a finite number of shape functions$F0 ,F1 ,F2 ,...,FN% that uni-
formly approximate members ofCk(T) within «.0, i.e., for ev-
ery wdPCk(T), there exists constant vectorsC0 ,C1 ,C2 ,...,Cn

PRn such that

sup
tP@0,T#

Uwd~ t !2(
i 50

N

CiF iU,«

To estimate the desired torquewd(t), it can be approximated by a
linear combination of appropriately selected period shape fu
tions F i . Hence,

wd~ t !>(
i 50

N

CiF i~ t ! (6)

where CiPRn represent unknown coefficient vectors for ea
shape functionF i at an instant, andN denotes the total number o
shape functions. The estimated feedforward term is generate
determining the coefficient vectorsĈi @7#, i.e.,

ŵd~ t !5(
i 50

N

ĈiF i~ t ! (7)

The coefficient vectors are updated on-line by conducting the
lowing estimation law@7#:
Journal of Dynamic Systems, Measurement, and Control
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Ĉi~ t !52KLF i~ t !s i51,2, . . . ,N (8)

whereKL is a constant positive definite matrix.
Another approximation of the ideal feedforward compensat

term can be represented by

wd~ t !5E
0

T

K~ t,t!I ~t!dt (9)

where the functionK(•,•):R3@0,T# is a known Hilbert-Schmit
kernel that satisfies

E
0

T

K~ t,t!2dt5k,` K~ t,t!5K~ t1T,t! (10)

whereas the influence functionI (•):@0,T#→Rn is unknown. If a
kernel function is chosen to satisfy Eq.~10!, then the feedforward
term wd(t) can be estimated by influence functionI (•). The fol-
lowing function adaptation law for estimating the unknown fun
tions wd(t) and I (•) was presented by Messner et al.@6#:

ŵd~ t !5E
0

T

K~ t,t! Î ~ t,t!dt (11)

]

]t
Î ~ t,t!52KLK~ t,t!s (12)

The estimatedŵd(t) is hence indirectly updated by the adaptati
of Î (t,t), which is the estimate of the influence functionI (t).

In the integral transform estimation, the feedforward te
ŵd(t) is estimated through updating the influence functionÎ (t,t)
according to the learning law Eq.~12!. However, if the influence
function, which belongs to the space of continuous T-period fu
tions, satisfies

sup
tP@0,T#

U Î ~ t,t!2(
i 50

N

Ĉi~ t,t!F i~t!U,«,

it can be expressed by a set of shape functions. The unkn
influence function is proposed as

Î ~ t,t!5(
i 50

N

Ĉi~ t,t!F i~t! (13)

and the coefficient adaptation law becomes

]

]t
Ĉi~ t,t!52KLK~ t,t!F i~t!s (14)

where F i(•) denotes a shape function andĈi(•) its associated
coefficient. The advantage of the above learning rule is that o
the associated coefficients for shape functions are updated in
timating the influence function, which can be in turn obtained
a linear combination of shape functions. It is unnecessary to s
all influence function values at every sampling instant, thus co
puter memory space can be saved. Since the value of influe
function Î (t,t) is updated on the basis of previous valueÎ (t,t
2Dt), the property of ‘‘interpolating’’ is achieved.

2.3 Stability Analysis. The stability of the present contro
method for the robotic model represented by Eq.~1! depends on
the following conditions.

Condition 1: There exists an influence functiona(t,t), such
that

M ~q!ẏ1C~q,q̇!y1G~q!1d~q,q̇!5E
0

T

K~ t,t!a~ t,t!dt

(15)

wherey(t)PRn is a vector of smooth functions.
MARCH 2000, Vol. 122 Õ 41
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Condition 2:Using a proper definition of matrixC(q,q̇), both
M (q) andC(q,q̇) in Eq. ~1! satisfy

xT~Ṁ22C!x50 ;xPRn

Hence, (Ṁ22C) is a skew-symmetric matrix. In particular, th
element ofC(q,q̇) can be defined as

Ci j 5
1

2 F q̇T
]Mi j

]q
1(

k51

n S ]Mik

]qj
2

]M jk

]qi
D q̇kG (16)

Condition 3: In robot control systems, the disturbanced(q,q̇)
due to friction, sensor noise, etc. is assumed to be bounded.
erally speaking, unmodeled dynamics is bounded as follows:

idi<L01L1i ėi1L2iei

whereL0 , L1 , andL2 are positive constants.
Remark:If the structure conditions presented above are sa

fied, a sliding mode based repetitive learning controller
achieving the trajectory tracking can be realized.

In the current study, the norm of vectorx is defined as

ixi5S (
i 51

n

xi
2D 1/2

and the norm of matrixA is defined as

iAi5~ max
eigenvalue

ATA!1/2

The singular value of matrix A is defined as a(A)
5(eigenvalue(ATA))1/2 andamin(A) denotes the smallest singula
value. For positive definite matrixA5AT, the matrix property
@12#

xTAx>amin~A!ixi2 (17)

will be employed in this work to formulate the learning contr
method.

In the following, a brief overview of the proposed sliding mod
based repetitive learning controller is given. The design prob
for the proposed sliding mode based repetitive learning contro
is described as follows: For any given desired trajectoryqd

PRn, q̇dPRn, and q̈dPRn, with some or all of the manipulato
coefficient vectors unknown, derive a controller for the actua
torque~force!, and an adaptation law for the unknown coefficie
vectors, such that the manipulator joint positionq(t) precisely
tracksqd(t).

To ensure the convergence of the trajectory tracking, defin
reference velocity vectorq̇r as

q̇r5q̇d2Le2GE
0

t

edt (18)

where bothL and G denote positive definite matrices whose e
genvalues are strictly in the right-half plane. Therefore, the slid
surfaces defined in Eq.~2! can be expressed by

s5ė1Le1GE
0

t

edt5q̇2q̇r (19)

Consider the plant defined in Eq.~1!, a repetitive learning control-
ler using sliding mode feedback control is proposed, i.e.,

u5ŵd~ t !2Q sgn~s!2Ks (20)

whereŵd(t) can be estimated by the linear combination of sha
functions Eq.~7! or by the integral of kernel function and influ
ence function Eq.~11!. The adaptation laws can be found in Eq
~8! and ~12!. Treatings50, wheres is defined in Eq.~19!, as a
sliding surface, by combining Eqs.~1! and ~18! and using the
property thats5q̇2q̇r , which follows from Eqs.~2! and~18!, the
sliding mode equation reads
42 Õ Vol. 122, MARCH 2000

rom: http://dynamicsystems.asmedigitalcollection.asme.org/ on 04/28/201
e

en-

tis-
or

r

l

e
em
ller

tor
nt

e a

i-
ing

pe
-
s.

Mṡ5E
0

T

K~ t,t! Î ~ t,t!dt2E
0

T

K~ t,t!a~ t,t!dt

2Cs2Ks2Q sgn~s!2d (21)

where the following definition is used, which satisfies Conditi
1,

M ~q!q̈r1C~q,q̇!q̇r1G~q!5E
0

T

K~ t,t!a~ t,t!dt

A generalized Lyapunov function is chosen as

V~ t !5
1
2 sTMs1

1
2 eTKLe (22)

where KL5sSI with sS.0. Taking the time derivative of Eq
~22! gives

V̇5sTMṡ1sTCs1eTKLe (23)

Substituting Eq.~20! into Eq. ~23! and employing Condition 2
give

V̇5sTH E
0

T

K~ t,t!@ Î ~ t,t!2a~ t,t!#dt2Ks2Q sgn~s!2dJ
1eTKLė (24)

Now choosingL andG such thatsTa(t,t).sTÎ (t,t) yields

V̇<2sTKs2sTQ sgn~s!2sTd1eTKLS s2Le2GE
0

t

edtD
(25)

From Condition 3, one has

2sTd<isiFL01L1S isi1Liei1GI E
0

t

edtI D 1L2iei G
<L0isi1L1isi21@lM~L!L11L2#isiiei

1L1lM~G!isi I E
0

t

edtI (26)

wherelM(L) denotes the maximum eigenvalues ofL. It follows
that

V̇<2@lm~K !2L1#isi21@sS1lM~L!L11L2#isiiei

1L1lM~G!isi I E
0

t

edtI2sSlm~G!iei I E
0

t

edtI
2sSlm~L!iei21@L02lm~Q!#isi (27)

where lm(•) denotes the minimum eigenvalue of a matrix.
further manipulation of Eq.~27! leads to

V̇<2F isi iei I E
0

t

edtI GRF isi
iei

I E
0

t

edtI G
2

lm~K !

2 F isi2
L02lm~Q!

lm~K ! G2

1
@L02lm~Q!#2

2lm~K !

2lM~G!I E
0

t

edtI 2

(28)

where
Transactions of the ASME
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R5F lm~K !

2
2L1 2

lM~K !L11L21sS

2
2

L1lM~G!

2

2
lM~K !L11L21sS

2
sSlm~L!

sSlm~G!

2

2
L1lM~G!

2

sSlm~G!

2
lM~G!

G

E

nd

is
ort,
dy-
be
the

n
-
ith
It is always feasible to adequately chooseK, L, G, andsS such
that R is positive definite. Therefore, one can prescribe values
positive constantssd , st , andsb to satisfy

R5F sd 0 0

0 st 0

0 0 sb

G1R̃ (29)

whereR̃ is a positive semidefinite matrix. With Eq.~29!, it fol-
lows from Eq.~28! that

V̇<2sdisi22stiei21
@L02lm~Q!#2

2lm~K !
(30)

i.e.

V̇<22gV1« (31)

where «5@L02lm(Q)#2/2lm(K) and g5min(sd /lM(M),st /sS)
in view of Eqs.~17! and ~22!. Solving Eq.~31! yields

V~ t !<e22gtFV~0!2
«

2gG1
«

2g
(32)

Therefore, substituting Eq.~22! andKL5sSI into Eq.~32! results
in

iei<Ae22g•t

sS
FV~0!2

«

2gG1
«

2g•sS

<
e2g•t

AsS
FV~0!2

«

2gG1/2

1A «

2g•sS

<
1

AsS

e2g•tFV~0!2
«

2gG1/2

1A «

2g
(33)

As a consequence,

lim
t→`

iei<A «

2g

This completes the proof of the following theorem:
Theorem:For a robot model Eq.~1! subject to sliding mode

based repetitive learning control, which is accounted for by
~19!, the sliding surfaceS and the tracking errore are uniformly
bounded if both gain matricesK and Q in the reaching law are
adequately chosen. Furthermore, having learned a numbe
cycles, the ultimate tracking errore is bounded by

lim
t→`

iei,A «

2g

where

«5@L02lm~Q!#2/2lm~K ! (34)

and

g5min~sd /lM~M !,st /sS! (35)

According to Eq.~34!, « can be made arbitrarily small by en
larging gains in gain matrixK, which makes the control effort to
Journal of Dynamic Systems, Measurement, and Control
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grow. In practice, however, the minimum size of the error bou
is limited since too large control effort may not be available.

2.4 Chattering Elimination. Since the control law given
above is discontinuous across the sliding surfaces50, it gives
rise to chattering in a trajectory tracking process. Chattering
undesirable in practice because it introduces high control eff
and furthermore, may excite unmodeled high frequency plant
namics, which would result in instabilities. This problem can
overcome by smoothing out the discontinuous control input in
neighborhood of the sliding surface@13#. Therefore, this study
usess/(usu1d) in place of sgn(s) for control law Eq.~20!, i.e.,

u5ŵd~ t !2Qsd2Ks (36)

where

sd5F s1

us1u1d1

]

sn

usnu1dn

G
andd i is a positive constant.

3 Implementation
As shown in Fig. 1, this study constructs a three-axisR2u

2Z direct-drive robot manipulator, where the first link is drive
by a NSK Megatorque motor@14#, the second by a NSK Mega
thrust motor, and the third by an electrothrust motor together w
ball screw.

Fig. 1 Schematic diagram of direct-drive robot
MARCH 2000, Vol. 122 Õ 43
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3.1 Discrete Control Law. In order to implement sliding
mode control and the proposed method respectively using a
controller, discrete equivalents of both control laws are form
lated in the following:

(a) Sliding Mode Control. The sliding mode control method
adopts a new reaching law Eq.~3! to achieve the sliding surface
The control input of each axis actuator can be discretized usin
zero-order hold. The discrete time form resulting from Eq.~5! is
written as

uu~k11!5@ I 11I 21~M31M4!R~k!2#H 2Qu sgn@su~k!#

2Kusu~k!2LuFeu~k!2eu~k21!

Dt G
2Gueu~k!1a~k!dJ 12M3R~k!VR~k!v~k!

12M4R~k!VR~k!v~k!1buv~k!1muNu sgn@v~k!#

(37)

uR~k11!5~M31M4!H 2QR sgn@sR~k!#2KRsR~k!

2LRFeR~k!2eR~k21!

Dt G2GReR~k!1aR
d~k!J

2~M31M4!R~k!v2~k!1bRVR~k!

1mRNR sgn@VR~k!# (38)

uZ~k11!5M4H 2QZ sgn@sZ~k!#2KZsZ~k!

2LZFeZ~k!2eZ~k21!

Dt G2Gzez~k!1aZ
d~k!J 1M4g

1bZVZ~k!1mZNZ sgn@VZ~k!# (39)

where L5diag(30, 30, 30)G5diag(30, 30, 30),Q5diag(1,1,1),
and K5diag(100, 350, 380). Further, since friction is treated
disturbanced(q,q̇) depicted in Eq.~5!, friction compensation has
been incorporated in Eqs.~37!–~39!.

(b) The Present Method.Except for its employing shape
functions to estimate influence functions, the structure of t
learning control method is the same as learning control using
tegral transforms. The learning control law consists of Eqs.~11!,
~13!, and~14!. There are some typical shape functions@15# such
as Fourier series shape functions, polynomial shape functions
piecewise linear shape functions, which can be used to app
mate the periodic continuous functionI (t,t). This experiment
employs a set of piecewise linear functions, as depicted in Fig
Accordingly, in each interval of@ iT/N,(i 11)T/N#, only two lin-
ear shape functions,F i andF i 11 , are required; i.e., there are on
two corresponding coefficients,ci andci 11 , to be updated at any
instant. For computational efficiency of a kernel function, a pie
wise linear function shown in Fig. 3 is used as a kernel funct
for integral transforms. The piecewise linear functions is defin
as follows:

Denote the spans of this piecewise linear function as the leng
of a subinterval where the function value is not zero. The pie
wise linear function can be written as:
If tP@0,s/2#, as shown in Fig. 3~a!,
44 Õ Vol. 122, MARCH 2000
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K~ t,t!55
11m~t2t ! for 0<t,t

12m~t2t ! for t<t,t1
s

2

11m~t2t1T! for t1T2
s

2
<t,T

(40)

If tP@s/2,T2s/2#, as shown in Fig. 3~b!,

K~ t,t!5H 11m~t2t ! for t2
s

2
<t,t

12m~t2t ! for t<t,t1
s

2

(41)

If tP@T2s/2,T#, as shown in Fig. 3~c!,

K~ t,t!55
12m~t2t1T! for 0<t,t2T1

s

2

11m~t2t ! for t2
s

2
<t,t

12m~t2t ! for t<t,T

(42)

The speed and acceleration profiles of the end-effector are
scribed as shown in Figs. 4~a! and 4~b!, respectively. Figure 5
depicts a spatial circular trajectory to be tracked. In addition
planar square trajectory on theX2Z plane, will also be carried
out in experiments. Figure 6 depicts the control block diagram.
implement the present method, Eqs.~11!, ~13!, and ~14! are re-
written to become the discretized form:

ŵd~ k̄!5
1

2 (
l 50

n21

@K~ k̄,l ! Î ~ k̄,l !1K~ k̄,l 11! Î ~ k̄,l 11!#aDt

(43)

Fig. 2 Piecewise linear shape functions
Transactions of the ASME
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Î ~ k̄,l !5(
i 50

N

Ĉi~ k̄,l !F i~ l ! (44)

Ĉi~ k̄,l !5Ĉ~ k̄21,l !2KLK~ k̄,l !F i~ l ! (
i 5k2a11

k

s~ i !Dt (45)

whereKL5diag(150,850,950),a55, and integral transforms ar
computed by a trapezoid method. Moreover, the sliding surfac
formulated as

s~k!5
e~k!2e~k21!

Dt
1Le~k!1G(

i 50

k

e~ i !Dt (46)

where L5diag(30,30,30), andG5diag(30,30,30). It follows
from Eq.~46! that the control law Eq.~20! becomes, in discretized
form,

u~k11!52Q sgn@s~k!#2K@s~k!#1ŵd~ k̄!

where Q5diag(1,1,1), andK5diag(100,350,380). In this dis
crete control algorithm,k represents an index for the feedba
portion of the controller,k̄ andl indexes for the repetitive learnin
portion, anda an integer that relates these indexes. For any gi
k̄ in a period of the path,k5ak̄5al. In other words, the adapta
tion parametersĉi are updated at a ratea times slower than the
inner feedback loop. Each increment ink represents a time step o
Dt second, and each increment ink̄ represents a time step ofaDt
second. In both sliding mode control and the present method
gains of the reaching law and sliding surface are the same.

Fig. 3 The piecewise linear kernel function
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Fig. 4 „a… Speed profile of end-effector and „b… corresponding
acceleration profile

Fig. 5 Desired spatial circular trajectory

Fig. 6 Control block diagram of the present method
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Fig. 7 Experimental setup
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The radiusR of the desired spatial circle is denoted as 0.1
and periodT510 s. The maximum speednmax is 0.068 m/s. The
side length of the planar square is 0.1 m while the maxim
speednmax is 0.05 m/s. A total number of 100 linear shape fun
tions, i.e.N5100, are prescribed to approximate influence fun
tions. The kernel function is a piecewise linear function of slo
m52; the spans of this piecewise linear function is hence 1.0 se

3.2 Experimental Results. To control a three-axisR-u-Z
direct-drive robot as shown in Fig. 1, which contains three ser
motors, this study employs an MX31 DSP integrated motion c
troller endowed with a TI TMS320C31 digital signal processor,
depicted in Fig. 7. Along theR axis is a direct-drive NSK Mega
thrust motor that enables the slider to undergo the force m
translational motion. For theu axis, a direct-drive NSK Mega-
torque motor performs the torque mode rotational motion. In
dition, motion along theZ axis is achieved by a 3 phase DC
servo-motor operating in torque mode, where the motor rotatio
altered into translation by a screw mechanism installed on
motor shaft.

(1) Spatial Circular Trajectory Tracking. In contrast to Fig.
8~a!, tracking errors in Fig. 8~b! progressively reduce to a smalle

Fig. 8 Position errors in Z-axis using „a… sliding mode control
and „b… the present method
CH 2000

ems.asmedigitalcollection.asme.org/ on 04/28/201
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range through learning. Hence, this sliding mode based repet
learning controller outperforms the sliding mode controller. T
large tracking error generated at the beginning of the first perio
arised from friction at robot joints and the prescribed accelera
command. It is difficult to quickly acquire knowledge of the fric
tion torque and the adequate motor torque corresponding to a
eration commands at the outset of every learning period, since
learning gains can not be infinitely large during the learning p
cess. Variation of a sliding surface is shown in Fig. 9 and confir
that the proposed control algorithm achieves its objective thro
learning. Using the present method, Figs. 10 and 11 depict the
time and the fifth time learning results of a spatial circular traje
tory, respectively. There is no significant improvement after fi
iterations.

(2) Planar Square Trajectory Tracking.Comparing with
Fig. 12~a! for the sliding mode control result, the tracking err
shown in Fig. 12~b! reduces to lie between61.5 mm. Using the
present method, Figs. 13 and 14, respectively, depict the first
and the fifth time learning results for the desired trajectory. T
tracking accuracy is significantly improved through learnin
however, the improvement after five iterations is not significa

Fig. 9 Sliding variables in R-axis using „a… sliding mode con-
trol and „b… the present method
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Fig. 10 Tracking result of the first time learning in Y-Z plane

Fig. 11 Tracking result of the fifth time learning in Y-Z plane

Fig. 12 Position errors in Z-axis using „a… sliding mode con-
trol and „b… the present method
Journal of Dynamic Systems, Measurement, and Control
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The overshoot error at each of four corners are mainly caused
decelerating approaching followed by accelerating departure,
addition to direction alteration of the slider.

The authors have also carried out experiments using a conv
tional controller—the PD control method. It is found that the de
parture and arrival points always do not coincide due to cumu
tive error during trajectory tracking. Moreover, concernin
tracking accuracy, both PD control and the first time learning
the present method perform in a comparable manner.

4 Conclusion
This study has presented a new learning control algorithm w

robust properties to improve the performance in robot trackin
task. According to experimental results, the proposed cont
method exhibits advantages described as follows:

1 Its error convergence is faster than the sliding mode cont
method.

2 The time needed for the sliding surface reaching the slidi
surface is shorter in each of those trajectory tracking experimen

Fig. 13 Tracking result of the first time learning in X-Z plane

Fig. 14 Tracking result of the fifth time learning in X-Z plane
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3 The accumulated errors generated at the initial time can
effectively reduced by introducing an integral term to the slidi
surface.

4 The choice of shape functions depends on the trajectory t
tracked. If the polynomial order of influence functions corr
sponding to a desired trajectory is high, higher order shape fu
tions, instead of current linear shape functions, should be ado
to improve the estimate for feedforward term.

5 Considering the coefficients adaptation law, i.e., Eq.~14!, the
proposed learning control requires fewer computer memory sp
since only associated coefficients for shape functions are upd
at every instant.

6 The more the total numberN of shape functions is used, th
more accurate the feedforward term estimate can accomp
However, for the sake of computational efficiency,N cannot be
too large.

7 The proposed method using shape functions to approxim
the influence function for feedforward term can be extended
higher degree-of-freedom robots in a straightforward mann
since the control algorithm for each axis undergoes its own le
ing process using the same shape function set.

8 By using the modified control law Eq.~36! the chattering
caused by the discontinuous control law Eq.~20! can be improved
to an acceptable extent.

9 The proposed method is robust since it can do without
dynamic model while successfully tracking the desired trajecto
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