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1 Introduction nel functions, sliding surfaces, and shape functions is thus devel-

. . . - oped in this study to update the coefficients associated with influ-
A learning system is capable of improving its performance OVl ce functions

time by interaction with its environment. A learning control sys-
tem is designed so that its learning controller can improve the

performance of closed-loop systems by generating command in-

puts to plants and utilizing feedback information from plant2 Tracking Control of Manipulator

Rather than proportional-derivative®D) type learning control |, general, the equation of motion fomeaxis manipulator can
methods in the pasil], fuzzy learning contro[2] and neural g expressed as

network based learning controllg8] have been presented. Yang

and Asada4] proposed an excitation scheduling method to enable M(q)§+C(q,q)g+G(q)+d(qg,q)=u )
an impedance control law to learn quasi-static, slow modes in th

lbeginning, foléogved by Ie?rr]ﬂng dfaster modesé[SEmilar to contro ocity, and acceleration vectorsrepresents thax 1 torque vec-

ers presented by Horowifs] and Messner et a6, a repetitive tor énerated by actuato ,is the symmetric positive defi-
robot controller was implemented with Cartesian trajectory de- g y ™1(9) y P

to determine stability and performance robustness of repetiti&%neralized gravitational force vector, ay,§) denotes the dis-
control systems8]. turbance. Define ar2dimensional state vectoras

mode control instead of PD control for feedback portion of a

repetitive learning control includé€l) the robust property of slid-

the transient dynamics of a variable structure control sy$&rns

accounted for by a reaching mode followed by a sliding mod&here

sliding mode dynamics, and second, the design of a learning al-

gorithm to ensure asymptotically stability.

tions). A class of function identification for learning algorithmand the disturbance is expressed by

compensation based on integral transforms was presented by 0

functions based on integral transforms. The inverse dynamics2 1 Sliding Mode Control. The manipulator is demanded

L . “Tnite generalized inertia matrixG(q,q) is the force(torque vector
scription[7]. A structured singular value method was also app"er%sulting from Coriolis and centripetal acceleratiogg) is the
This study presents a sliding mode based repetitive learning
control approach to robot control. The advantages of using sliding :[q
q
ing mode control dealing with model uncertainti€8) the flex-
ibility in using sliding mode control. It is known that, in general, X=A(X) +B(X)u+ v(X)
[10]. Therefore the design involves, first, the design of an appro-
priate sliding surface and a reaching mode method for the desired A(x)=
Sliding mode based repetitive learning control focuses on learn- B(x)=
ing rules that estimate feedforward teriirsverse dynamic func-
Messner et al.6]. This study employs a set of shape functions to .
approximate influence functions and estimates inverse dynamics —M7H(x)d(x)
function is estimated by the integral of a predefined kernel multj- K . ) Defi
plied by an estimated influence function. The influence functic?r? track a desired motiogy(t). Define an error vector

%ereq, g, andq are, respectively, thax 1 joint position, ve-

X1
X2

Thus Eg.(1) can be written as

X2
—M X)) C(x)x;— M~ L(x)G(x)

0
M~H(x)

v(X)=

used in integral transforms is approximated by a set of linear e
shape functions and this influence function is in turn represented e
by corresponding coefficients. An adaptation law employing ker- e= t
J edt
0
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e d

e ¢ mci(t): -K ®i(t)s i=1,2,...N (8)
s(e)=C(e)=[I A TI] t :é+Ae+Ffedt 2)
f edt 0 whereK, is a constant positive definite matrix.
0 Another approximation of the ideal feedforward compensation

where bothA andI" are positive definite matrices. In addition, aterm can be represented by

reaching law[11] is defined as T
. Wd(t):J
§=—-Qsgns)—Ks 3)

where gain®Q andK are diagonal matrices with positive elementsvhere the functiorK(,):RX[0,T] is a known Hilbert-Schmit
g; andk;, respectively. Chattering can be reduced by turihg kernel that satisfies

and k; in this reaching Ia|w.| Near the sliding surfacg=0. It .

follows from Eq. (3) that |;|~q;. By using a small gain, the 290 _

chattering amplitude can be reduced. Howewgggannot be cho- o Kt n7dr=k<e  K(t,7)=K({t+T,7) (10)
sen equal to zero since the reaching time would become infinite.

Moreover, when the state is not near the sliding surface a lgrgewhereas the influence functidife):[0,T]—R" is unknown. If a

K(t,nI(r)dr 9)
0

is employed to increase the reaching rate. kernel function is chosen to satisfy Ed.0), then the feedforward
Taking the time derivative of Eq2) gives termwg(t) can be estimated by influence functibft). The fol-
. ) lowing function adaptation law for estimating the unknown func-
s=et+Aetle tionswy(t) andl(s) was presented by Messner et [#]:
=Ae+Te—gs—M(q) 1 (C(q,§)q+G(q)+d(q,§)—u) T A
Wy(t)= f K(t,»)I(t,ndr (11)
4 0
Equating Egs(3) and (4) yields control input P
u=M(q){—Qsgns)—Ks—Ae—Te+gy} EA'(LT)Z—KLK(LT)S (12)
+C(q,0)q+G(q)+d(q,q) () The estimatedvy(t) is hence indirectly updated by the adaptation

2.2 Sliding Mode Based Repetitive Learning Control. ©f I(t,7), which is the estimate of the influence functibfr).
Tracking control is aimed at following a prescribed trajectory as !N the integral transform estimation, the feedforward term
closely as possible. Using inverse kinematics one can obtain jo#t(t) iS estimated through updating the influence functitt7)
position, velocity, and acceleration vectors denotedgy g4, according to the learning law E@L2). However, if the influence
anddy, respectively. The desired torque input of a manipulatof{inction, which belongs to the space of continuous T-period func-
denoted bywy(.):R.—R", is defined as tions, satisfies

Wy(t) =M (dg)Gq+C(dqg.9q) G+ G(dg) +d(dq.qq) sup |t 7)7% E (LD ()| <e
=r '

Definition Let C(T) denote a subset dE(T) (which is the te[0,T]
space of continuou3-period functionswy:R, —R") such that

O . . . ; it can be expressed by a set of shape functions. The unknown
everywy is piecewise continuously differentiable, and

influence function is proposed as
<k

d
sup &Wd(')

te[0,T]
Given a collection for shape functiofi®;} ande >0, there exists . .
a finite number of shape functiod®,,®,,®,,....®y} that uni- and the coefficient adaptation law becomes
formly approximate members @,(T) within ¢>0, i.e., for ev- P
ery wye C,(T), there exists constant vecto&,,C,,C,,...,C, —Ci(t,1)=—K.K(t,")D(7)s (14)
e R" such that o

N
it,n=2, C(t,Nd(n) (13)
i=0

N where @,(+) denotes a shape function a@j(+) its associated
sup wd(t)—Z Cid|<e coefficient. The advantage of the above learning rule is that only
te[0T] i=0 the associated coefficients for shape functions are updated in es-

timating the influence function, which can be in turn obtained by

na_linear combination of shape functions. It is unnecessary to save

%1l influence function values at every sampling instant, thus com-

puter memory space can be saved. Since the value of influence
N function f(t,r) is updated on the basis of previous vali(e,r

wd(t)EZ) Cidi(t) (6) —A7), the property of “interpolating” is achieved.
=

To estimate the desired torqug(t), it can be approximated by a
linear combination of appropriately selected period shape fu
tions ®; . Hence,

2.3 Stability Analysis. The stability of the present control

where C; e R" represent unknown coefficient vectors for eachethod for the robotic model represented by Eq.depends on
shape functionb; at an instant, antll denotes the total number of the following conditions.

shape functions. The estimated feedforward term is generated bysgndition 1: There exists an influence functiar(t, 7), such

determining the coefficient vectofs [7], i.e., that
N T
Wy(t)=>, Cii(t) ) M(q)i’+C(q,Q)v+G(q)+d(q,Q)=J K(t,7)a(t,7)dr
i=0 0
The coefficient vectors are updated on-line by conducting the fol- (15)
lowing estimation lawf 7]: wherev(t) e R" is a vector of smooth functions.
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Condition 2:Using a proper definition of matri€(q,q), both . T
M(q) andC(q,q) in Eqg. (1) satisfy MS=J

.
K(t,r)i(t,r)deJ’ K(t,7)a(t,7)d7
0 0

x"(M—2C)x=0 VxeR"

) —Cs—Ks—Qsgns)—d (22)
Hence, M —2C) is a skew-symmetric matrix. In particular, the . o . . .
element ofC(q,§) can be defined as where the following definition is used, which satisfies Condition
1,
1] oMy < (M My
Cy=5|a" g+ 2 (—T - )qk (16) . . (7
9 =1\ 9q;  dq M(a)8,+C(a,9)q,+G(a)= | K(t,7)a(t,)d7
0

Condition 3:1n robot control systems, the disturbanty,q)
due to friction, sensor noise, etc. is assumed to be bounded. GArgeneralized Lyapunov function is chosen as
erally speaking, unmodeled dynamics is bounded as follows:
, V(t)=3s"Ms+3e'K e (22)
ldil<Lo+Lylle]+Lole]

whereL,, L,, andL, are positive constants where K  =agl with o5>0. Taking the time derivative of Eq.
0s =1 2 .

Remark:If the structure conditions presented above are sati@-z) gives
fied, a sliding mode based repetitive learning controller for
achieving the trajectory tracking can be realized.

In the current study, the norm of vecteiis defined as

|x|—(i2nl x?) ’

and the norm of matrixA is defined as
|Al=( max ATA)2 +e'K e (24)

eigenvalue

V=s"Ms+s'Cs+e'K e (23)

Substituting Eq.(20) into Eq. (23) and employing Condition 2
give

.
\'/—sT[ f K(t,n)[1(t,7)— a(t,7)]d7—Ks—Q sgn(s) —d]

0

. T > TT -
The singular value of matrixA is defined as «(A) Now choosingA andI" such thats a(t,7)>s'I(t,7) yields

= (eigenvaluefA))? and a,(A) denotes the smallest singular t
value. For positive definite matriA=AT, the matrix property ~ V<-—s'Ks—s'Q sgr(s)—sTd+eTK|_(s—Ae—Ff edt)

[12] 0 (25)
XTAX= i A)|1X]|2 17
minl A @n From Condition 3, one has
will be employed in this work to formulate the learning control
method. t
In the following, a brief overview of the proposed sliding mode ~ —S'd=<['sll| Lo+L, ||s||+A|e|+1“‘ f edt| | +Loe|
based repetitive learning controller is given. The design problem 0
for the proposed sliding mode based repetitive learning controller <Lg|ls|+L4lls|2+[Am(A)Ly+ L[Sl el
is described as follows: For any given desired trajectqgy .
eR", qgeR", andgye R", with some or all of the manipulator
coefficient vectors unknown, derive a controller for the actuator +Law(D)]s] Oedt (26)

torque(force), and an adaptation law for the unknown coefficient
vectors, such that the manipulator joint positiq(t) precisely wherex,(A) denotes the maximum eigenvalues/aflt follows

tracksqq(t). that
To ensure the convergence of the trajectory tracking, define a
reference velocity vectoq as V== [hn(K) = Lol [ost N u(A)Ls+Lo]lsllel
. . t t t
4=, Ao T | eat (18) LDl [ et —oonirilel| [ eat
0 0

where bothA andI" denote positive definite matrices whose ei- _ 2 _
genvalues are str_ictly in the right-half plane. Therefore, the sliding ohm(A)lel*+[Lo=An(Q)]ls] @7)
surfaces defined in Eq(2) can be expressed by where \,(+) denotes the minimum eigenvalue of a matrix. A

t further manipulation of Eq(27) leads to

s=é+Ae+Ff edt=q—q;, (19)

0 [El
Consider the plant defined in E@), a repetitive learning control- v=—|ls] el tedt R ”teH
ler using sliding mode feedback control is proposed, i.e., 0 edt

0

u=Wy(t)—Qsgns)—Ks (20)

wherew,(t) can be estimated by the linear combination of shape
functions Eq.(7) or by the integral of kernel function and influ-
ence function Eq(11). The adaptation laws can be found in Egs.

)\m(K) ” ”_ LO_)\m<Q) 2+ [LO_)\m(Q)]Z
2 [P TN 20 m(K)

(8) and (12). Treatings=0, wheres is defined in Eq(19), as a (D) ftedt 2 (28)
sliding surface, by combining Eq$l) and (18) and using the M 0

property thas=g— @, , which follows from Egs(2) and(18), the

sliding mode equation reads where
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r )\m(K)i _ AM(K)L;+Lo+ o B LiAm(T) T
2 . 2 2
Mw(K)L;+Lo+o ohp(T
R_| — m(K)Li+Lo+og s A) Shml(T)
2 2
Laaw(D) oA p(T)
_ M7 = 7 Au(T
I 5 > m(I) ]

It is always feasible to adequately chodsgA, I', and o5 such
thatR is positive definite. Therefore, one can prescribe values
positive constantgy, o, ando to satisfy

g4 0 0
R=| 0 o, O[|+R (29)

whereR is a positive semidefinite matrix. With E¢9), it fol-
lows from Eq.(28) that

N

i.e.
V<-2W+e (31)
where s =[Lo— A n(Q) 122\ (K) and y=min(oy/A\y(M),o, /o9

in view of Eqs.(17) and(22). Solving Eq.(31) yields

V(t)iezy{V(O)— ;—y 2 (32)

2y

Therefore, substituting E¢22) andK, = o4l into Eq.(32) results
in

e*Z'y»t
o</ - {V( 0)- } 5o
et \/7
ES V(0)— —
Jos
<—e” VtV(O)—— + V5o (33)
Og 2

As a consequence,
lim|le] < \/~
mie|s _—
t—oo 2y

This completes the proof of the following theorem:
Theorem:For a robot model Eq(l) subject to sliding mode

based repetitive learning control, which is accounted for by Eg.

(19), the sliding surfaceS and the tracking erroe are uniformly
bounded if both gain matrice§ and Q in the reaching law are
adequately chosen. Furthermore, having learned a number
cycles, the ultimate tracking erreris bounded by

lim|le] < v/~
mie| -
t—ow 27

SZ[LO_

where
Am(Q) 122\ n(K) (34)
and

y=min(cg/A\y(M),o./og) (35)

According to Eq.(34), € can be made arbitrarily small by en-
larging gains in gain matriX, which makes the control effort to

Journal of Dynamic Systems, Measurement, and Control

grow. In practice, however, the minimum size of the error bound
of limited since too large control effort may not be available.

2.4 Chattering Elimination. Since the control law given
above is discontinuous across the sliding surfaed), it gives
rise to chattering in a trajectory tracking process. Chattering is
undesirable in practice because it introduces high control effort,
and furthermore, may excite unmodeled high frequency plant dy-
namics, which would result in instabilities. This problem can be
overcome by smoothing out the discontinuous control input in the
neighborhood of the sliding surfadéd3]. Therefore, this study
usess/(|s|+ &) in place of sgrg) for control law Eq.(20), i.e.,

u=Wqy(t) —Qs;— (36)
where
Sy
BARE
S5= :
Sn
[Snl + 81

and g; is a positive constant.

3 Implementation

As shown in Fig. 1, this study constructs a three-aRis 0
—Z direct-drive robot manipulator, where the first link is driven
by a NSK Megatorque motdri4], the second by a NSK Mega-
thrust motor, and the third by an electrothrust motor together with
ball screw.

., M:

Megathrust
Motor

M.

of

Strut Electrothrust

Ll

Megatorque
Motor

Fig. 1 Schematic diagram of direct-drive robot
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3.1 Discrete Control Law. In order to implement sliding ®,
mode control and the proposed method respectively using a DSP 1
controller, discrete equivalents of both control laws are formu-
lated in the following:

(@) Sliding Mode Control. The sliding mode control method
adopts a new reaching law E) to achieve the sliding surface.
The control input of each axis actuator can be discretized using a
zero-order hold. The discrete time form resulting from Eg).is b,
written as 1

o
z|=3 /

z[3
z9 b
5

z| b

Ue(k+1)=[|1+|2+(M3+M4)R(k)z]{—Qang{Sa(k)] 0

—Ksi— A, —eg(k)_e*’(k_l)} b

At 1
—Feee(kHa(k)d]+2M3R(k)VR(k)w(k) /\

o T 2T 3T T
+2M,R(K)Vr(K) @(K) +bye (k) + Ny sgii (k)] NoRN
(37)
by
Ur(k+1)=(M3+My)| —Qrsgrsr(k)]—Kgsr(k) 1
er(k)—er(k—1 A
g ek AtR( |~ Len(i +a%k) N ‘
o I 2T 3r T
N N N
—(M3+My)R(K) 0?(K) +brVg(K)
Fig. 2 Piecewise linear shape functions
+ urNR SgN[Vg(K)] (38)
1+m(r—t) for O=7<t
uz(k+ 1)—M4[_Qz sgn[sz(k)]—Kzsz(k) s
K(t,7)= 1-m(7—t) for t$7’<t+§ 40
L i ) o
z At w2z z 49 1+m(r—t+T) for t+T—§<T<T
TbzVz(K) 12Nz SgVz(K)] (39) te[s/2,T—s/2], as shown in Fig. @),
s
where A = diag(30, 30, 30)I' = diag(30, 30, 30),Q = diag(1,1,1), Lrm(r=t) for t—5=<r<t
and K=diag(100, 350, 380). Further, since friction is treated as K(t,7)= (41)
disturbanced(q,q) depicted in Eq(5), friction compensation has 1-m(r—t) f _ S
been incorporated in Eq§37)—(39). 4 or t<7<t+ 2

(b) The Present Method.Except for its employing shape If te[T—s/2,T], as shown in Fig. @),
functions to estimate influence functions, the structure of this
learning control method is the same as Iearning_control using in- 1-m(7—t+T) for O=r<t—T+ s
tegral transforms. The learning control law consists of Ef$), 2
(13), and(14). There are some typical shape functi¢as] such

as Fourier s_,eries shape functi_ons, polynomial shape functions, aqd K(t.7)= 1+m(7—t) for t— s <7<t (42)
piecewise linear shape functions, which can be used to approxi- 2

mate the periodic continuous functidift,7). This experiment 1-m(7—t) for t<r<T

employs a set of piecewise linear functions, as depicted in Fig. 2. . .

Accordingly, in each interval dfiT/N, (i +1)T/N], only two lin- The speed and acceleration profiles of the end-effector are pre-

ear shape functiong); and®; , ,, are required; i.e., there are onlyScribed as shown in Figs.(® and 4b), respectively. Figure 5
two corresponding coefficients; andc; . ,, to be updated at any depicts a spatial circular trajectory to be tracked. In addition, a
instant. For computational efficiency of a kernel function, a piec®!@nar square trajectory on the—Z plane, will also be carried
wise linear function shown in Fig. 3 is used as a kernel functidpt!t in experiments. Figure 6 depicts the control block diagram. To
for integral transforms. The piecewise linear functions is defind@Plement the present method, Eqs1), (13), and(14) are re-

as follows: written to become the discretized form:

Denote the spasof this piecewise linear function as the length n-1
of a subinterval where the function value is not zero. The piece- (k)= _E [K(k, DIk +K(k,1+1)T(k 1 +1)]aAt
wise linear function can be written as: 210
If te[0,s/2], as shown in Fig. @), (43)
44 | Vol. 122, MARCH 2000 Transactions of the ASME
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K(t,7) (m/s)
1.0
VUmas]”
m
1
0 t t+s  taT-2 T 7 ' ’
(a) 0 1 7-1 T (s
(a) O< i< &
(m/s?)
K(t,7)
1.0 1 T (s
- o 1
1
f
0 ta—% te tz+% T T (b)
(b) 3 <te<T-% Fig. 4 (a) Speed profile of end-effector and  (b) corresponding
acceleration profile
K(t,T)
X =0.25
1.0 =0 7
Zo = 0
m R =10
1 g =45
0 to-T+5 to—% ts T T
(e) T-3 <t <T
Fig. 3 The piecewise linear kernel function
N 8 (X0 ,¥0 ,20 )
(k! :Z kD) (44) X
k Y
Citk)=C(k=1D)=K K(k D (I) _ Zﬁ (At (45) Fig. 5 Desired spatial circular trajectory
whereK =diag(150,850,950)a=>5, and integral transforms are
computed by a trapezoid method. Moreover, the sliding surface i<, +
formulated as Y~
k T
e(k)—e(k—1) )
s(k)= T+Ae(|<)+r2 e(i) At (46)
=0
where A =diag(30,30,30), and=diag(30,30,30). It follows ¢ Learning e
from Eq.(46) that the control law Eq.20) becomes, in discretized Llew |
form, q
L + * g + u
u(k+1)=—Q sgris(k)]—K[s(k)]+y(k) D K —O—fuitit——=
where Q=diag(1,1,1), andK=diag(100,350,380). In this dis- i - d
crete control algorithmk represents an index for the feedback
portion of the controllerk andl indexes for the repetitive learning | f A -:l: .:.
portion, anda an integer that relates these indexes. For any give . [:I sgn(s)
k in a period of the pathk=ak=al. In other words, the adapta- e
tion parameter€; are updated at a rattimes slower than the
inner feedback loop. Each incrementkinepresents a time step of 4. - | +
At second, and each incrementlkimepresents a time step af\t O
second. In both sliding mode control and the present method, the
gains of the reaching law and sliding surface are the same. Fig. 6 Control block diagram of the present method
Journal of Dynamic Systems, Measurement, and Control MARCH 2000, Vol. 122 / 45
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DSP Motion

Controller T . .
T’Electrothrus orque Inpu
Driver "
RS232 | . Po;xhon I()utp:_lt
IBM PC TMS320C31 - DsA orce Inpu
" Resolver Output
L;'Megathrust
—1 Driver
Quadrature
Decoder
[Megatorque] Torque Input
Driver Resolver Output
PHA PHB

Fig. 7 Experimental setup

The radiusR of the desired spatial circle is denoted as 0.1 mange through learning. Hence, this sliding mode based repetitive
and periodT=10s. The maximum speet,,, is 0.068 m/s. The learning controller outperforms the sliding mode controller. The
side length of the planar square is 0.1 m while the maximutarge tracking error generated at the beginning of the first period is
speedv,, is 0.05 m/s. A total number of 100 linear shape funcarised from friction at robot joints and the prescribed acceleration
tions, i.e.N=100, are prescribed to approximate influence fun@ommand. It is difficult to quickly acquire knowledge of the fric-
tions. The kernel function is a piecewise linear function of slopon torque and the adequate motor torque corresponding to accel-
m=2; the spars of this piecewise linear function is hence 1.0 seceration commands at the outset of every learning period, since the
. . learning gains can not be infinitely large during the learning pro-
3.2 Experimental Results. To control a three-axiR-6-Z  oqq variation of a sliding surface is shown in Fig. 9 and confirms

direct-drive robot as shown in Fig. 1, which contains three S€VHiat the proposed control algorithm achieves its objective through

motors, this study employs an MX31 DSP integrated motion COsarnin : ; ; ;
. o ; g. Using the present method, Figs. 10 and 11 depict the first
troller endowed with a TI TMS320C31 digital signal processor, ggne and the fifth time learning results of a spatial circular trajec-

depicted in Fig. 7. Along th® axis is a direct-drive NSK Mega- torv. respectively. There is no significant improvement after five
thrust motor that enables the slider to undergo the force mo Erye{tior?s? ey s signii Improv WV

translational motion. For th@ axis, a direct-drive NSK Mega-

torque motor performs the torque mode rotational motion. In ad- (2) Planar Square Trajectory Tracking.Comparing with
dition, motion along theZ axis is achieved Yy a 3 phase DC Fig. 12a) for the sliding mode control result, the tracking error
servo-motor operating in torque mode, where the motor rotationseown in Fig. 12b) reduces to lie betweert1.5 mm. Using the
altered into translation by a screw mechanism installed on tpeesent method, Figs. 13 and 14, respectively, depict the first time
motor shaft. and the fifth time learning results for the desired trajectory. The
tracking accuracy is significantly improved through learning;

(1) Spatial Circular Trajectory Tracking. In contrast to Fig. however, the improvement after five iterations is not significant.

8(a), tracking errors in Fig. &) progressively reduce to a smaller
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The overshoot error at each of four corners are mainly caused by
decelerating approaching followed by accelerating departure, in
addition to direction alteration of the slider.

The authors have also carried out experiments using a conven-
tional controller—the PD control method. It is found that the de-
parture and arrival points always do not coincide due to cumula-
tive error during trajectory tracking. Moreover, concerning
tracking accuracy, both PD control and the first time learning in
the present method perform in a comparable manner.

4 Conclusion

This study has presented a new learning control algorithm with
robust properties to improve the performance in robot tracking
task. According to experimental results, the proposed control
method exhibits advantages described as follows:

1 Its error convergence is faster than the sliding mode control
method.

2 The time needed for the sliding surface reaching the sliding
surface is shorter in each of those trajectory tracking experiments.
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