INFORMATION
AND
SOFTWARE
TECHNOLOGY

www.elsevier.nl/locate/infsof

o Hee 7N
ELSEVIE Information and Software Technology 42 (2000) 245—255

Symbolic path-based protocol verification
Wen-Chien Lidf, Chyan-Goei Chung

Department of Computer Science and Information Engineering, National Chiao Tung University, 1001 Da-Sheuh Rd., Hsin-Chu, Taiwan 30050, ROC
Received 13 March 1999; received in revised form 11 June 1999; accepted 20 July 1999

Abstract

The principal problem in protocol verification is state explosion problem. In our work (W.C. Liu, C.G. Chung, Path-based Protocol
Verification Approach, Technical Report, Department of Computer Science and Information Engineering, National Chiao-Tung University,
Hsin-Chu, Taiwan, ROC, 1998), we have proposed a “divide and conquer” approach to alleviate this prolppath-tased approaci his
approach separates the protocol into a set of concurrent paths, each of which can be generated and verified independently of the others
However, reachability analysis is used to identify the concurrent paths from the Cartesian product of unit paths, and it is time-consuming.
Therefore, in this paper, we propose a simple and efficient checking algorithm to identify the concurrent paths from the Cartesian product,
using only Boolean and simple arithmetic operatic@2000 Elsevier Science B.V. All rights reserved.

Keywords:Protocol verification; Reachability analysis; Path-based approach

1. Introduction reachable states and is several orders of magnitude larger
than that of semantic ones, it still grows exponentially with
Communication protocols are concurrent software to the complexity of protocol. All reachable states must expli-
maintain, coordinate and govern the interactions of concur- citly or implicitly be memorized in areachability graph
rent processes in a distributed system. As protocols becomgRG) to avoid generating duplicate states and to exclude
increasingly large-scale and complex, the designs of correctthe infinite exploration. Due to the limited memory capa-
protocols are becoming challenging and difficult tasks. To city, on the basis of Ref. [3], the limit of the fully-search
deal the complexity and difficulty of protocol design, proto- reachability analysis is FGtates, and that of the controlled
col verification is introduced. It is a process to verify proto- partial search or known aglief strategy[3] is 10° states,
cols which are modeled as finite state machines with respectwhich intends to reduce the number of global states neces-
to the crucial logical properties, such as deadlock, livelock, sary to be explored. Although the technique of BDD [8] has
channel overflow, etc. Most verification approaches to date mad much progress in reducing the number of states [9], the
are based orreachability analysis(or known asstate efficient use of BDD depends on the problem domain, and
enumeratioh to enumerate all the reachable states from the conventional state enumeration technique outperforms
an initial one and to check whether all reachable statesthe BDD-based technique in some cases [10] and is still the
can satisfy the necessary properties [2—4]. Although suchmost general approach for protocol verification.
technique is simple, automatic and effective, it suffers from  The state explosion problem raises two issuasge
the “state explosion problehj4—6]. This problem asserts memory spaceand long verification time For the first
that the number of states grows exponentially with the issue, we have proposed thath-based approadi] under-
complexity of the protocol. Quantitatively speaking, a lying the concept o€oncurrent patho represent the execu-
protocol has at mosig|"((jm/+1)")™ states, wherey is tion behavior of the protocol into a partial-order
the number of local states for each umit,the number of representation as a set of unit paths [11,12]. This approach
message types,the number of units in the protocol, ahd treats the protocol as a set of concurrent paths so that each
the channel capacity, the number of messages in a channetoncurrent path can be generated and verified independently
[7]. Although this amount is the number of syntactically of the others. Thus, the memory required to store reachable
global states depends on the complexity of a concurrent path
* Corresponding author. Tel:+886-35712121; fax:+886-35727273. .rather t.han the whole protocpl, and the memo.r.y space .Issue
E-mail addresses:wcliu@csie.nctu.edu.tw (W.-C. Liu), cgchung 'S alleviated. However, the Issue of ang v_erlflcatlon time
@csie.nctu.edu.tw (C.-G. Chung). does not have a very good solution. Since, in our approach,

0950-5849/00/$ - see front mattér 2000 Elsevier Science B.V. All rights reserved.
Pll: S0950-5849(99)00060-9



246 W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245—-255

of states ofm and§ N § = ¢ fori # | (“¢” denotes an
empty set)M; the set of messages that can be sent fngm
tom, M; the empty for each andM; N My, = ¢ fori # p
orj# g, and O, and z represent the initial and terminal
states ofm that range oveB, respectively A; is a partial
mapping functionS X I; — S, andA;(s, X) is the state that
entered after then receives the messagein states, for
eachi. (I, = an=1 M; is the set of messages that can be
te: M. +req received bym,.)
Each modulem in the CFSM systenP is aFinite State
Machine(FSM) composed of states and transitions defined
by § and4;, respectively. Every two modules andm, are
the concurrent path is generated via the Cartesian product ofconnected by a dedicated communication channel to trans-
unit paths, each product member (denotedcascurrent mit the message iNl; from m; to m, which is modeled by a
path candidatgis an arbitrary combination of unit paths FIFO queue with channel capaclty limiting the number of
and is not always a concurrent path. We use reachability messages in the channel.
analysis to identify the concurrent paths from the candidates Fig. 1 shows a simple CFSM system with two modules in
by checking whether a candidate corresponds to a reala graphical form. The label attached to the transitionm
execution behavior in the protocol. Although, we use is of the formm —msg or my +msgfor the sendingand
several techniques to avoid the unnecessary check, reachreceiving transitions respectively, wherem (1 =<j =n)
ability analysis is still a time-consuming technique to is the module sending or receiving the messagsg
perform such a check. (msge M; or M;, respectively). (When there are only
In Ref. [1], reachability analysis is used to identify the two modules, the label om always denotes the other
last reachable global state with respect to a concurrent pathmodule and can be omitted.) The transitiois defined by
candidate. As long as the last state is identified, we canthe functionf(t) = A;(a(t), A(t)), where a(t) and B(t) are
classify the candidates as valid or invalid by checking if referred to as the heading and tail states, séspectively,
the last reachable global state is a real blocking state inandA(t) denotes the message to be sent or received in tran-
the system. If it is not, this candidate is identified as invalid. sition t.
However, for a communication finite state machine (CFSM)  The status of a CFSM system, at any moment of execu-
model, the execution completely depends on the messagédion, is depicted by the global state of the system recording
types and orders of sending and receiving. Thus, in this the states of the constituent modules and the contents of the
paper, we propose an approach to compute the last reacheommunication channels.
able global state using such relations. The computation uses
simple Boolean and arithmetic operations, and the checking Definition 2. A global state gof the CFSM systen® is a
speed has improved a lot. The remaining context is orga- pair g = (S C), whereSis an-tuple of state<s,, ...,s,) (S
nized as follows: In Section 2, we first overview the under- represents the current state of modmig, andC is a n*
lying protocol model, the CFSM model and the path-based tuple(c;, ..., Cin, Co1, ..., Can)- (Cj is @ Sequence of messages
approach [1]. Then in Section 3, we illustrate the new ranging overM; whose length is denoted gs;|. The
method to compute the last reachable state. Finally, we message sequencgrepresents the contents of the commu-
give a conclusion about our work. nication channel from modulg to my. Note that every; is
empty sinceM;; is empty.) (The brackets arourgland C
could be combined without confusion so tigas in the form

of (S, ..+, Sy C11s +++ C1ns €215 ++» Ciny)-)

t3:: m,. +alarm -

Fig. 1. A simple protocol.

2. Concepts of path-based protocol verification

2.1. CFSM model The system stays at a global initial state when it is initi-

alized and finally reaches a global terminal state on normal

Th lyi I l'in thi i )
e underlying protocol model in this paper to prescribe a execution.

protocol is the Communication Finite State Machine
(CFSM) model, which is a collection of modules commu-

nicating with each other via messages. Definition 3. Theglobal initial stateof P is a global state,

denoted a3, Gy = ((O))iL1.(&)j=1) (¢ denotes an empty
message sequence). Theobal terminal stateof P is a

Definition 1. A protocolP in the CFSM model, denoted as global state, denoted &, Gy — <<Zi>P:1»<8>Ej:1>-

a CFSM systenor shortly asystemis 5-tuple:

P= (<3>i“:1, (M=, (01, (Z s, <Ai>i”:1), The execution behavior of a CFSM system is defined by
the relation (calledglobal transitionsto differentiate with
wheren is the number of modules, i.ey, ..., m,, § the set module transitions) between the global states.



W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245-255 247

% the name of the node (global state) ani the text in the
0.0££ ellipse. For example, there are six trails in Fig. 2, each of

9 v G which corresponds to an execution sequence as follows:
1,0,req,€ @
g, a as

X1: 0o = 01 = G = g3 = 0a,
gs;/& 1: 9o 1 2 3 4

1,1,€€
a;

93
0,1,€,done
a,
9

Fig. 2. The reachability graph of the protocol in Fig. 1.

X2:00=01=05=0s = O,

X3:00= 01 =05 = 0o = 0y,

X4:090=9s =05 = 0s = 07,

X5 :0g = 0g = 0s = Jo = J7, and

Xs : 0o = Us = 010 = Y11 = O12-

Among them, the execution sequengeandxg are correct
execution sequences, whereas the sequeacesx,, andxs

are faulty ones (they deadlock git)

P However, reachability analysis suffers from the state
explosion problem because the size of the RG increases
exponentially with the complexity of protocol. As a result,
Cii = XChi and X € My 1) reachability analysis and its variations are unsuitable for
analyzing complex protocols.

Definition 4. A global transition is defined as a binary
relation “ = " on global states ofP (meaning thatP at
one global state can be transferred to the other in one ste
of execution)g = ¢ iff there existi, k andx satisfyings| =
Ai(s,X) in either of the following two conditions:

or
2.2. The path-based approach
; CikX if xe& Mik and |Cik| < hik P PP
Cik = G if xEM, and [c| = hy - @ Ipspecting reachabiltiy analysi;l anq it; variations, the
major hurdle to a successful verification is the enormous
where g=(SC), g =(S,C’), S =(s))r; and C' = size of the RG and the necessity to memorize the complete
(Cili=1- graph. However, as the properties to be verified depend on

the global states and the execution sequence (i.e. the safety
The first and the second conditions denote a blocking properties and some liveness properties), if all execution
receiving and a non-blocking sending (when the channel sequences (thus including all global states) are generated
reaches the channel capacity, the next sending action carseparately without constructing the RG, we can completely
be executed, but its messages are ignored and the channelerify the system by examining every execution sequence
content remains the same), respectively. The transition assoand its global states rather than the whole RG. The memory
ciative with A;(s, X) is referred to as the global transition requirement to store the global states is limited by the length

fromgto g’ of an execution sequence rather than the complete RG, and
the state explosion problem may be alleviated from such
Definition 5. A global statey’ is reachable frong if g =" divide and conquer approach.

* on

g’, where* =" is the reflexive and transitive closure of An execution sequence can be classifiedesminated

“ =" ¢ is said to be reachable with respect to the system if nonterminatedandinfinite. First of all, a terminated execu-

g = G,. tion sequence is a finite one ranging from the global initial
state to the global state in which every module reaches its

Definition 6. If ¢ is reachable frong, then all the global corresponding terminal state, suchxagndxg in Fig. 2. If

states traversed frogito g’ constitute asubsequencef the we project the sequence of transitions in a terminated execu-

system. Ifg = Gy, then the subsequence fragito g’ is an tion sequence onto the set of transitions of a modulensay

execution sequence we obtain a sequence afis transitions and this sequence
will be a path ofm.

One simple but effective method to enumerate all reach-

able global states and execution sequence®ashability Definition 7. Within a systenP, a pathp, in modulem, is

analysiswhich demonstrates the interactions among the defined as follows: p, =[S, --»S,S+1> -5t oo by --2]s

modules is a total order manner and which constructs thewheres; = O,, andt; is the transition frons to s, 4.

RG as the one shown in Fig. 2. In the RG, every node

denotes the global statg = (c), and every trail from the If we perform such projection of an execution sequence

starting node, such as nodgin Fig. 2, to a sink node, such  with respect to every module, we can get a set of path each

as nodeg,, g; andg;,, is an execution sequence, wherés of which belongs to a distinct module. For example,



248 W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245—-255

sequence in Fig. 2, if we project the transitions o, i.e. ordering among the transitions in a path [12]; the execution
[a1,a2,83,a4] ONto the transition ofn, andm,, we can getthe  sequence does the same execution behavior in a total-order
path fi1,t21] of my and fypta] of my, becauseyy = ty4, ap = manner, whose ordering relationship is explicitly defined by
t15, 83 = tyy, anday = ty;. the relation of global states. It should be noted that both

Second, a non-terminated execution sequence is a finitenotations exhibit the same “happen-before” relation of the
sequence with at least one module not reaching its terminaltransitions’ execution [13]. In Ref. [1], we have shown that
state. If we perform the projection of such execution the behavior of all execution sequences within a RG can be
sequence, we obtain the sequence of subpaths, and the behaquivalently represented by a set of concurrent paths and we
vior of the non-terminated execution sequence can be repre-can completely verify the protocol using this set.

sented by this set of subpaths. The advantage of using the notion of concurrent path
instead of that of execution sequence is three-fold: (1) all
Definition 8. An subpath (or infixu, of p, of modulem, concurrent paths can be generated automatically and within
is defined asi = [s, 1, ... §+ 136, i1, .. §1 if its length low space complexity; (2) the system is separated into a set
isj—i+1>0or[s;]ifitis empty, where =i =j =k of concurrent paths, each of which is much smaller then the

original system; and (3) the verification can be performed in
Definition 9. A prefix x, of p, is a subpath whose heading parallel. The first advantage results from the representation

state is the heading statemfand it is said to béncludedby of concurrent path, i.e. a set of module paths. The complete
Pa 1.€. Pa = Xa'W,, Where “-” is the subpath concatenation behavior of protocol is represented by the set of all concur-
operator, andy, is a subpath op,. If u, is empty,x, is rent paths, which are included by the Cartesian product of
denoted as a pure prefix. the sets of all module paths. The Cartesian product can be

generated easily, but each member of the product is an
However, any subpath must be included by at least one arbitrary combination of module paths and obviously not
path provided every state is reachable from the initial one. all members are concurrent paths. Thus, we have to identify
(This requirement should be satisfied for any correct system;the concurrent paths from Cartesian product. Each member
otherwise, there must be dead code.) Since the executionof Cartesian product is a simplified CFSM system and can
blocks at the tailing state of the subpath, the additional be executed. If it is a concurrent path, its execution finally
transitions in the path but not in the subpath are not execu-reaches the terminal global state or is blocked at an erro-
table. Thus, the behavior of such non-terminated executionneous state that no transitions in the original system can
sequence can also be represented by a set of paths. release this blocking situation. Otherwise, it cannot be
Third, an infinite execution sequence must imply that executed normally; its execution must be blocked at an
there exists a cyclic structure in it, as the number of global intermediate global state that the execution of the complete
states is finite and there exists a last global state (unless thesystem will not be blocked at and that is an anomaly of error.
structure of the path is similar to the infinite decimal which Thus, we can determine whether a member is a concurrent
should be rare). Thus, we can also classify the infinite path via its execution within the complexity of a concurrent
execution sequence into terminated or non-terminated path rather than the whole system.
according to the last global state reached, and it can also The second advantage is also obvious. The original
be represented by a set of paths. (These paths may haveystem is now divided into a set of concurrent paths, each
loops.) of which denotes partial behavior of, and is smaller than the
original system. As stated before, each of them can be
Definition 10. Within a systemP, a nonempty cyclic executed and thus verified independently using the algo-

path p, in module m, is defined as p,= rithm of reachability analysis to enumerate the potential

(S, een (S o0 §)"s oS 15 s o (s ), o0 B], Where execution sequence(s). Then, these potential execution
s; = O,, Scr1 = Zy and; is the transition frong to s (i = sequences can be checked for the required properties. As
1). The subpatfis, ....s;t, ....t;_1] is the loop ofp,. each concurrent path is smaller than the original system, the

memory requirement of reachability analysis is also much
Therefore, we can use a set of module paths to represent thesmaller. Therefore, the state explosion problem is alle-

behavior of the execution sequence: viated.

Furthermore, the conventional parallel verification algo-
Definition 11. Within a systemP, a concurrent pathis rithms such as in Ref. [14] rely on the message passing or
defined as an ordered set of patps,{,. ..., p,} (or denoted shared memory mechanisms to build the image of the whole
as {p;}i., for short), wherep, is a path ofm,. reachability graph. They occasionally have to exchange

newly generated global states among the parallel computers

The concurrent path represents the execution behavior into maintain the RG consistency. Thus, a great communica-

a partial-order manner, whose ordering relationship is impli- tion cost is required. Since each concurrent path is verified
citly defined by the precedence of sending and correspond-independently in our approach, it is naturally done in paral-
ing receiving transitions, and explicitly by the sequential lel. All the information to be exchanged is the verification



W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245-255 249

©
N

P, P, P

i

+b +b

e 99

+a
+f

5
y b 5

(a) Mismatch of Sending (b) Mismatch of Receiving (c) Another Cyclic Waiting  (d) Dependency Graph

_O

+
Y

O 6 -Ors OO

O-a-Or-Ows-Or -0
Ore-Ors-Or
O +-O--Ore-Or3 -0

O,_

(Cyclic Waiting)

Fig. 3. Unsuccessful execution examples.

result of each concurrent path and the communication cost isand the order of sending and receiving must be matched.

very low. Thus, to check such a condition, we can separate thegpath
into a sending sequeneg and a receiving sequenbg, and
check the equivalence af andby; for everyi andj, where

3. The symbolic method a;/bj is the sending/receiving message sequengg with

respect tqy and is defined as follows.
3.1. General ideas

One of the principal problems of the path-based approach pefinition 12. Given a concurrent path candidate -,
[1] concerns the time to check whether a concurrent path of the systen, for every patlp; in modulem, the sequence
candidate is valid or not, and the bottleneck of this approa- of the sending/receiving messagesjgh; with respect to
ch’s performance depends on the checking method. In REf-modulem, with & = w(p;,j), bj = »(p;,j), and the projec-
[1], we use reachability analysis upon candidates, but the tjon function w/v, being defined as
analysis is time-consuming. Thus, in this section, we -
propose a more efficient candidate checking method rather . { (A(t), r(i,)) if At) € M
than the reachability analysis. wp-D) = (Pl ) otherwise

Given a concurrent path candidatg}{{_;, we can clas-

sify it into the following categorievalid and invalid. A and

candidate is said to bealid, if there is at least one execution . AW, mpiL ) if A) € M
sequence corresponding to it; otherwise, itnigalid. The v, ) = ;. )
valid can be further classified as correct and erroneous. If its i, )) otherwise

corresponding execution sequences contain errors (such agherep, = {t;}-p and g is a subpath of p
deadlocks, livelocks), it is erroneous; otherwise, itis correct.
We can identify the category of a candidate as follows.

If &; andb; are not equal, there are unmatched messages

3.1.1. Valid (correct) that cannot be received successfully. One such example is

A candidate is correct means that all transitions must be shown in Fig. 3(a), where; = “ab” butb; = “ba” . In our
executed successfully; that is, all messages are sent andanodel, a receiving action can only be executed if the
received correctly, and the execution has no infinite loop required message is at the head of the channel. Thus, in
so that the transitions after the loop cannot be executed.Fig. 3(a), the message sequence that moguleants to
Thus, a candidate is correct if and only if the following receive is ba”, but that sent by modulg;, the channel
three conditions are satisfied: content is ‘alb’ where “a” is at the head of the channel.
Thus, the action i to receive messageb™, i.e. “+b”
cannot be executed arg is blocked. In general, Iea{j
and bji denote the longest prefixes af andb; that are
equivalent. Thera{j andbfi contain the maximally possible
The first condition says that if a message is to be receivedtransitions to be executed successfully, i.e. messages sent are
successfully, it must be sent first; that is, the type of messagereceived correctly. The transitions afh{fir are impossible to

1. match of sending;
2. match of receiving; and
3. no infinite loop.



250 W.-C. Liu, C.-G. Chung / Information and

be executed since the execution will be blocked at the first
transition afterbji due to incorrect sending fromy. As for
afj, the transitions aftea{j may be possibly executed.

Software Technology 42 (2000) 245-255

for the first condition; there are no cycles in the dependency
graph ofg; andb;; and there are no infinite loops, it is a
valid (correct) concurrent path candidate.

The second condition reflects the fact that a message
cannot be received successfully before its sending and it3.1.2. Valid (erroneous) or invalid
also cannot be received unless it is at the head of the Since the candidate is erroneous or invalid, it must block
communication channel. One such example is shown inat some global state due to disobeying the conditions
Fig. 3(b). This is a typical case of cyclic waiting, i.e. the mentioned above. However, as described in Section 2.2,
first transition of every path is waiting for the second transi- we have to distinguish these two types of blocking by check-
tion in another path to send the required message. To exam-ing whether the blocking global state is an anomaly or not.
ine such a situation, we can construct a directed graph of To do so, we have to identify the blocking global state.
dependencies as follows. Using the above checking method, we can generate the

Add a vertex denoting every transition in the candidate. dependency graph of a candidate and the cycle(s) in the
Add an edge for each dependent relation, denoting that agraph. For each path, if there are transitions involved in
transition has to be executed after anoth€All transitions the cycle and independent with any other transition(s)
in the same path must be executed sequentially; and a sendwithin the cycle and of the path, it is the blocking transition.
ing transition must be executed before its corresponding If there is no such transition, the blocking transition is the
receiving transition.) Thus, if this graph has any cycle, receiving transition depending (directly or indirectly) on the
there exists cyclic waiting. The dependency graph of Fig. blocking or non-executable (all transitions succeeding the
3(c) is shown in Fig. 3(d), and the heavy line shows there blocking transitions are non-executable) transitions of the
exists a cycle in the graph and it is the situation of receiving other path. We can identify the blocking global state via
mismatch. As for the third condition, if there are infinite these blocking transitions. Then, if the blocking global
loops in the behavior of a concurrent path candidate, therestate is also a blocking one within the original system, the
is at least one path with a loop. (If the candidate with infinite candidate is erroneous; otherwise, it is invalid.
loop behavior has only one path with a loop, the transitions  Therefore, in summary, if the concurrent path does not
in the loop must be sending transitiof)sTo simplify the include any loop, we can identify the category of a concur-
discussion, assume gl involve in the infinite loop beha-  rent path candidate by the following steps: first check the
vior, and eaclp; includes a loop, i.g3 = pi-(¢)*-p/, where equivalence of; andbj;, construct the dependency graph of
pi, ¢, andp{ are subpaths off, andc; is the loop corre-  ajj andbf;, use a cycle detection algorithm [15] to determine
sponding to the cyclic behavior. Since it renders the infinite the last reachable global state, and use this global state to
loop, the global states before entering and after leaving theidentify its category. Otherwise, we have to check if the
loop must be the same; that i/I; and {p!-(c)"}; (k global state before and after the loop in the path is the
denotes the corresponding number of loop cycles in the same. If they are, this is a valid (infinite loop) concurrent
cyclic behaviof) will reach the same state. To examine path. The basic algorithm to verify a concurrent path is
such a situation, we have to identify the global states before given below:

and after entering the loop. To do so, we can trga} verify_concurrent_patis,, p o)
_ | 1> M2s = Mn

and {p{-(c)"}"; as concurrent path candidates and use the e ) r .
technique to check the previous two conditions to determine begin/” check all possible cycles in the concurrent pdth

whether they can execute the last transition and the last
global state they reached. Therefore, if a candidate can
pass the above three conditions, bg.= aj andby; = bj

fori=1ton

if pi has a loop ang; = pi-(c)"-p{, then
G =pi

else
4 =D

entering_state= simple_chedqy, 0, ..., 0n)
I*  simple check determines the last global
sate using the method show above. It will be
replaced bysimple checR andsimple checld
method using the symbolic technique and thus
omitted here/

! Since dependent relations are transitive, they can be classified as direct
or indirect. For any dependent relation, $agepends o, if there exists a
transitiont, such that;; depends o, this dependent relation is indirect;
otherwise, it is direct. In our dependency graph, only the direct dependent
relations are included.

21f only one path has a loop and any receiving transitions is in the loop,
the loop is impossible to be executed infinitely because the corresponding
module has no loop and can provide only finite number of messages for that
receiving transition. After all messages are consumed, the loop stops at the

receiving transition. if {1, 0, ..., qn} IS in invalid/erroneous candidate

3 The value ofiss can be any value that is smaller than the threshold of . . .
the modulem. This threshold denotes the maximum possible number of report {ps, p,, ..., Pn} as invalid/erroneous candidate
loop times in that module. It can be determined by the protocol designer or break

follows the recommendation of [1], i.e. only one time of loop is enough to
cover most cyclic behavior. It should also be noted that it is unnecessary
that the values of ak;s are the same.

K_set= empty set
Repeat



W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245-255

fori=1ton
if p, has a loopthen

Let pi = pi(c)"p
for j = 1 to max k/* max_k denote the

maximal possible
number of loops
and is specified by
users’/
Letk =j
if the combinationtky, ks, ..., Kk,) is
not in theK_setthen
Add (kq, ks, ..., K,) into K_set
Let g = p}-c
Let g = g-p/
break
else
Qi/ =B
a4 =q

/* Obtain the global states after the cycle to
determine the errors of infinite lod
leaving_state= simple_cheadky;, 0y, ..., On)

if {d1,0y, ..., 0} is in invalid/erroneous candi-
date

report {p;, pa, ..
candidate

continue

. pn} a@s invalid/erroneous

if entering_state= leaving_statehen

report {p1, po, ---, pn} @s valid(infinite_loop)
I Check the complete concurrent pdth
simple_chedlq, a5, ..., qh)
if {041, 05, ....q5} is in invalid/erroneous candi-

date
report {p1, P>, ..., Pn} @s invalid/erroneous
candidate
continue
until (ky, ko, ..., K,) = (max_kmax_k...max_Kk

end cycle_check

3.2. Verification of two modules

Although the approach mentioned above is more efficient

251

As described above, there are two reasons of blocking:
mismatches of sending and receiving, and the former can be
checked by the equivalence &f andb,;; a,; andby,. Such
check is quite easy (by the Boolean exclusive or operation)
and we can use it as the first check to determine the maximal
possible reached transitions. lagb, ,b5;, a5, andb’, be the
maximal equivalent prefixes @i ,, b,;, a,; andb,,, respec-
tively. The transitions behinb,; andb’, are impossible to
be executed due to the incorrect order of sending.

Then, with respect td5; and b},, we have to check
whether the concurrent path will be blocked due the incor-
rect order of receiving. Instead of using the dependency
graph, we can identify the blocking due to incorrect receiv-
ing order with the help of the sequence of sending or receiv-
ing, denoted ago sequence of,.

Definition 13. The i/o sequenc®; of a pathp; of module
m; with respect to module, is defined by the function o, i.e.
ioj = o(p;, ), with o(p;, ) being defined as

o(p;, })
(+,0(pi,j)) if t is a receiving transition wit module m,
=1 (—,0(p},j)) if t is a receiving transition wit module m,
o(p},)) otherwise

wherep; = {t;} -p{ andt; is a transition ang; a subpath of
Pi.

With these two i/0 sequencés;, = 0(p;, 2) andioy; =
o(p,, 1) (p1/p,are the subpaths @f/p, corresponding tb’,
andbb,), we can use two counters andg, to denote the
number of messages in the channel to determine whether a
transition can be executed. Since the order of sending and
receiving are matched with respectftpandp,, a message
sent to the channel will be received successfully. If the value
of g, or g, is zero, it means the channel is currently empty
and no receiving is possible. When both counters have the
values of zeros and the next transitions to be executed are
both receiving transitions, then a blocking situation occurs
and the last reachable global state can be identified accord-
ingly.

We can perform such check using the algorithm below:

than the approach using reachability analysis in Ref. [1], the At first g; and g, are reset to zeros ard;, andio,; are

algorithm to detect a cycle in a directed graph is still time-

examined sequentially. When the inspection reaches a

consuming. To make further improvement, we provide a “—"in i0o5, Or i0s, Q; OF @, are, respectively, increased by
more efficient checking method to determine the last reach- one; when a 4" is regarded inio;, or i0,1,0, Or g, are,

able global state. To ease the discussion, we first present theespectively, decreased by one provided the valug, @i
verification of only two modules in this subsection and show q; does not become negative. If it would become negative,
that of more than two in next subsection. We first assume thecheck the other sequence to see whether it can be further

concurrent path candidate to be checkedgs f,} in the
case of two modules only; and let, = w(p;,2), ay =
(P2, 1), byp = ¥(p1, 2), andb,; = m(ps,, 1).

advanced to next transition. If it cannot (due to the fact that
its counter would become negative as well), it means that
both are blocked at the receiving transitions that will make



252 W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245—-255

its counter negative. This algorithm is formally described as s = «a (the xth transition inp;)
follows: fori=1to2

simple_chec&(p;, p,) forj=1to2

cj = revertg; —b;) /° revert converts the

g = . .
the sending message list @f with respect top fégg?séoo%l?ﬁ;her inthe
bij = Kow o :

the receiving message list gfwith respect top, i)peratorlso;h?str?nugogle;r: d

I* The following two statements compute sending .
match’/ g; —b!j returns a
. . . substring whose element

xor; = The position of the element in, porresponding y

. . belongs tay but nothy. */
to the first occurrence of non-zero valueasn @ b,
/" Compute the first non-identical elementin andb,, return the global states{, s,, C11, C12, C1, C27)
i
xor, = The position of the element i gorresponding
to the first occurrence of nereero value ina;, @ by,

end simple_check2

/" Compute the first non-identical elementip andb,; 3.3. Verification of more than two
¥
i0; = 0o(Py, 2), p1 the prefix of g with the length of xor In Section 3.2, we explained how to use simple Boolean

i0, = 0(py, 1), p, the prefix of p with the length of xor and arithmetic operations to compute the blocking transi-
g, =0; /* The number of messages in the channel tions and global states in the case of two modules. The

fromp,top, / similar concept can be applied to the case of more than
g, =0; /* The number of messages in the channel two modules using the sending, receiving and i/o sequences
from p, to p, */ of paths. However, we have to extend the variables used in
x; = 0; /* Next transition inp, to be inspected/ the algorithmsimple_check as follows:

X, = 0; /* Next transition inp, to be inspected/ The main extension concerns the i/o sequence, which
I* compute the receiving match now, for the case ofy, becomes a set of i/o sequences,
Repeat each of which, sayio; corresponds to communication

between two modulesny and m. Then, ioj = o(p;.]),
where; is a prefix ofp;, corresponds to the shorteb{t
for all j, andaj andbj; denote the longest prefixes which
are common irg; andb; . Since the i/o sequence of a path is

progress= False
it (i0yxy] =" ~") |
/* current transition is sending transitioh

Xt now separated into a set of i/o sequences, we cannot know
o " the original position of each sending and receiving action in
progress= True the path, and we have to record the original position in the
else ifg, > 0 then pathp; for each i/o action. Thus, the i/o sequence for the
/* current transition is receiving transition and the concurrent path candidate becont@s™?)/_,, whereact, is
message channel is not empty “—"or " +" denoting a sending or receiving transitiqgos
x; " denotes the original position of this action in the path, bnd
Oz is the number of elements in the sequence. For example, the
progress= True i/o sequences for the paths in Fig. 4 &g, = (-1, +°) and
if (ioa[Xe] =" =") 1013 = (+2, =% for py, i0p; = (+*, %) andiog = (=%, +%)
[* current transition is sending transitiéh for p,, andiog; = (=2, +°) andiog, = (+1, —*) for ps.
x5+ In addition, since there are different communication
o0 " channels between a module and its neighbors, each channel
progress= True between modulen andmy corresponds to a counte to
else ifg; > 0then record the number of messages in the channel. Two
I current transition is receiving transition and the types of additional counter are also required, the counter
message channel is not empty x; of pathp; to identify the next transition to be inspected
X ande; of the i/o sequenc®;; to record the next element to
O1-- be inspected.
progress= True Then for each action in the i/o sequence, if its original
until progress= False / no more transition to be position is identical to the countey, it means this action
executed/ should be executed at this moment. If it is a sending action;
I* identify the last global statd or receiving action and the corresponding channel counter is

fori=1to2 larger than zero, it can be executed and the related counters



Or&-Or2-Or2-Oxs-O

W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245-255 253

~

_O

+
'Y

+f

O

-Ors-Ore-O-
O +-Ora-Or e-0r-O

Fig. 4. Non-blocking example of concurrent path candidate.

are updated accordingly. If the result of the last step
shows the path counter exceeds the length of the path,
all transitions in this candidate can be executed; other-
wise, there is a blocking situation. We show inspection
steps of a non-blocking (as shown in Fig. 4) and blocking
examples (as shown in Fig. 3(c)) in Fig. 5(a) and (b),

respectively.

In the example of Fig. 5(a), the result of the last step (step
13) showing that the path counter exceeds the length of
the path and the fact that every channel is zero, identify
this candidate as correct. In that of Fig. 5(b), if there are

transitions that cannot be executed, the execution blocks at
these transitions. The detailed algorithm is as follows:

simple-checB(py, po, ---fh)
{

g; = the sending message list ofwith respect to p
b; = the receiving message list of with respect to p
xor; = The position of the element in porresponding
to the first occurrence of non-zero valuegn® by

/" compute the sending matéh

¥i = min([ ;=1 xor;)

ioj = i/o sequence of jpwith respect to pbefore the
(y; +Dth transition

I i0jj(i)-p=theith message is thgth transition in the
original path®/

/* |O|J(|)X:
“—"or“ +” denoting a sending or receiving action
Vi

/

g = 0 /" the current position irio; */
g; =0 /" the message number of the chanpet p;

x; =0 [" the next transition to be executedpn®/
progress= True [ flag to exit the checK/
[* compute the receiving matcih

Repeat
Path Pi P2 Ps
Step | Channel
Counters
1 z,=(0,0)=-! z,=(0, 0)' z;=(0, 0)'
2 z,=(0, 0y z,=(1,0)'=+ z,= (0, 0)'
3 z,=(0, 0)? z,=(0, 0)’=-* z;=(0, 0)'
4 z,=(1, 0)? z,=(0, 0)’°=-} z;=(0, 0)'
5 z,=(1,0) z,=(0,0)* z;=(0, I)'=+'
6 z,=(1,00 2,=(0,0)" z,= (0, 0)’=>-?
7 z,=(1, )=+ z,= (0, 0)* z;=(0, 0)°
8 z,=(1, Y=+ 2,=(0,0)* z;=(0, 0y
9 z,=(0, 0)'=>-* z,=(0, 0)* z,=(0, 0)°
10 z,=(0, 0)° z,= (0, 0)* z;=(1, 0=+
11 z,=(0, 0y z,=(0, 0)* z,=(0,0)'=-*
12 z,= (0,0 2= (0, 1)'=+ z,= (0, 0)
13 z,= (0, 00 Z,= (0, 0)° z,= (0, 0)°

Note:

5= (qIZ’qIJ y Z, =(qz|’qzs)x2 = (q:mqn)'J
z, = act ™ means the transition corresponding to the act”* in i/o sequence

S|

executed.
(a) I/O Sequence Inspection of the Example in Figure 4
Path P ) 2 Ds
Step | Channel

Counters

1 z,=(0,0)'=-' z,=(0, 0)' z,=(0, 0)'

2 z,=(0,0) z,=(1,0)'=+ z,= (0, 0)’

3 z,=(0, 0)’»+ z,=(0, 0)>»+* z;=(0, 0)'»+'
Note:

i0,,=(-', ), i0,~(+', %), i0;~(%, +), i0,7=(+%, ), i0,,~(-*, +*) and iz, =(+', %)
z, # act" means the transition corresponding to ac”* cannot executed.

(b) I/O Sequence Inspection of the Example in Figure 3 (c)

Fig. 5. Inspection by i/o sequences.




254 W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245—-255

Fori=1ton path candidate more efficiently. Both algorithms (simple_

Forj=1ton check2 and simple_check3) linearly ch%ck every transitions
in the paths with the time complexity 6f(n® = 1), wheren is

progress= false the number of modules amds the average of a path. For each
if i0j(€j)-p= X then iteration of check, only the exclusive-or, increment, and decre-
I” the corresponding transition ab;(g;) ment operations are required. Therefore, the long verification

should be executet time issue is also alleviated.
if io;(e;)-x="—" then /° a sending Although the checking method shown in this paper is

efficient in identifying the concurrent paths from the Carte-

transition”/ sian product of the module paths, the main limitation results

e/ /" increase the counter af; */ from the model. Since the channel between two modules is
qf{* [* increase no. of msg in independent of the others in the underlying CFSM model,
channelp, — p; */ the i/o sequences of paths can thus be inspected indepen-
x"* I"increase the counter @f */ dently of the others. There is the situation that the incoming
progress= true channels from different modules share a common queue
else/" ioj(gj)-x="+" a receiving transi- [16]. In this case, the receiving of a message does not
tion */ only depend on the match of sending and receiving of the

corresponding module, but also the execution speeds of all
the modules that may send messages at this moment. When
e,j++ /" increase the counter areceiving transition is waiting to receive a message from a

if x(j) > 0then

of io */ module but another module executes faster and sends a
q; /" decrease no. of msg message in advance, it occupies the head of the queue,
in channelp, — p; */ and this transition cannot be executed successfully. Thus,
x* /" increase the counter our algorithm to determine whether a message can be
of p */ received must check every possible combination in the

contents of common queue resulting from different execu-

progress= true tion speeds of modules.

Until progress= False / no more transition to be

executed/
/" identify the last global stat&
fori=1ton References
s = «a(the xth transition in p
fori=1ton [1] W.C. Liu, C.G. Chung, Path-based Protocol Verification Approach,
Technical Report, Department of Computer Science and Information
forj=1ton Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan,
N . ROC, 1998.
cj = revert(a; —by)/” revertconverts the string [2] C.H. West, P. Zafiropulo, Automated validation of a communications
to another in the reverse ordé&r protocol: the CCITT X.21 recommendation, IBM Journal of Research
and Development 22 (1) (1978) 60—71.
return the global statés,, s,, ..., Sy, C11, C12, -+ Cqn) [3] G.J. Holzmann, Design and Validation of Computer Protocols,

Prentice-Hall, Englewood Cliffs, NJ, 1991.

[4] F. Pong, M. Dubois, Verification techniques for cache coherence
protocols, ACM Computing Surveys 29 (1) (1997) 82-126.

[5] C.H. West, Protocol validation in complex systems in: Proceedings of
the Eighth ACM Symposium on Principles of Distributed Computing,

end simple_check3

4. Conclusion Austin, Texas, August 1989, pp. 303—312.
[6] A. Valmari, The State Explosion Problem, Lectures on Petri Nets I:
The “state explosion problem” in protocol verification Basic Models, LNCS 1491, Springer, Berlin, 1998.

raises two issues: large memory requirement and long veri- [71 Y- Kakuda, . Takada, T. Kikuno, On the complexity of protocol
validation problems for protocols with bounded capacity channels,

fication time. For the former issue, we have proposed the IEICE Trans. Fundamentals of Electronics Communications and
path-based approach to separate the protocols into a set of  computer Sciences E77 (1994) 658-667.

concurrent paths. Each one can be generated and verified [8] R.E. Bryant, Graph-based algorithms for Boolean function manipula-
independently of the others [1]. Thus, the memory to store tion, IEEE Transactions on Computers 35 (8) (1986) 677-691.
reachable global states depends on the complexity of a [® J:R- Burch, EM. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang,
concurrent path rather than the whole protocol, and the

memory space issue is alleviated. 470 check every transi o | iterations. H . h
. . . o check every transitions, we neaé¢ | iterations. However, in eac
As for the later issue, in this paper, we show a performance iteration, additional iteration is necessary to determine which transitions

improvement technique of the path-based approach tocan pe executed amomgmodules and the average valueni2. Thus, the
compute the last reachable global state of every concurrenthumber of iterations in average i = 1/2.



[10]

[11]

[12]

W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245—-255 255

Symbolic model checking: 1020 states and beyond, Information and [13] L. Lamport, Time, clocks, and the ordering of events in a distributed

Computation 98 (2) (1992) 142-170. system, Communications of ACM 21 (7) (1978) 558-565.

A.J. Hu, D.L. Dill, Efficient Verification with BDDS using Implicitly [14] U. Stern, D.L. Dill, Parallelizing the Murphi Verifier, Lecture Notes
Conjoined Invariants, Lecture Notes in Computer Science, 697, in Computer Science, 1254, Springer, Berlin, 1997, pp. 256-278
Springer, Berlin, 1993 Proceedings of Computer Aided Verification. Proceedings of the Computer Aided Verification (CAV ‘97), Haifa,
Fifth International Conference, CAV ‘93, Elounda, Greece, 28 June— Israel, June 22-25.

1 July. [15] A.V. Aho, J.E. Hopcroft, J.D. Ullman, Data Structures and Algo-
R.D. Yang, C.G. Chung, Path analysis testing of concurrent programs, rithms, Addison-Wesley, Reading, MA, 1983.

Information and Software Technology 34 (1) (1992) 43-56.

K.C. Tai, R.H. Carver, Testing of distributed programs, in: A.
Zomaya (Ed.), Parallel and Distributed Computing Handbook,
McGraw-Hill, New York, 1996.

[16] I1SO, Information technology—Open Systems Interconnection—
Estelle: a Formal Description Technique Based on an Extended
State Transition Model, 2, ISO/IEC, 1997 Standard 9074.



