
Symbolic path-based protocol verification

Wen-Chien Liu* , Chyan-Goei Chung

Department of Computer Science and Information Engineering, National Chiao Tung University, 1001 Da-Sheuh Rd., Hsin-Chu, Taiwan 30050, ROC

Received 13 March 1999; received in revised form 11 June 1999; accepted 20 July 1999

Abstract

The principal problem in protocol verification is state explosion problem. In our work (W.C. Liu, C.G. Chung, Path-based Protocol
Verification Approach, Technical Report, Department of Computer Science and Information Engineering, National Chiao-Tung University,
Hsin-Chu, Taiwan, ROC, 1998), we have proposed a “divide and conquer” approach to alleviate this problem, thepath-based approach. This
approach separates the protocol into a set of concurrent paths, each of which can be generated and verified independently of the others.
However, reachability analysis is used to identify the concurrent paths from the Cartesian product of unit paths, and it is time-consuming.
Therefore, in this paper, we propose a simple and efficient checking algorithm to identify the concurrent paths from the Cartesian product,
using only Boolean and simple arithmetic operations.q 2000 Elsevier Science B.V. All rights reserved.

Keywords:Protocol verification; Reachability analysis; Path-based approach

1. Introduction

Communication protocols are concurrent software to
maintain, coordinate and govern the interactions of concur-
rent processes in a distributed system. As protocols become
increasingly large-scale and complex, the designs of correct
protocols are becoming challenging and difficult tasks. To
deal the complexity and difficulty of protocol design, proto-
col verification is introduced. It is a process to verify proto-
cols which are modeled as finite state machines with respect
to the crucial logical properties, such as deadlock, livelock,
channel overflow, etc. Most verification approaches to date
are based onreachability analysis(or known as state
enumeration) to enumerate all the reachable states from
an initial one and to check whether all reachable states
can satisfy the necessary properties [2–4]. Although such
technique is simple, automatic and effective, it suffers from
the “state explosion problem” [4–6]. This problem asserts
that the number of states grows exponentially with the
complexity of the protocol. Quantitatively speaking, a
protocol has at mostuqun��umu11�h��nn states, whereq is
the number of local states for each unit,m the number of
message types,n the number of units in the protocol, andh
the channel capacity, the number of messages in a channel
[7]. Although this amount is the number of syntactically

reachable states and is several orders of magnitude larger
than that of semantic ones, it still grows exponentially with
the complexity of protocol. All reachable states must expli-
citly or implicitly be memorized in areachability graph
(RG) to avoid generating duplicate states and to exclude
the infinite exploration. Due to the limited memory capa-
city, on the basis of Ref. [3], the limit of the fully-search
reachability analysis is 105 states, and that of the controlled
partial search or known asrelief strategy[3] is 108 states,
which intends to reduce the number of global states neces-
sary to be explored. Although the technique of BDD [8] has
mad much progress in reducing the number of states [9], the
efficient use of BDD depends on the problem domain, and
the conventional state enumeration technique outperforms
the BDD-based technique in some cases [10] and is still the
most general approach for protocol verification.

The state explosion problem raises two issues:large
memory spaceand long verification time. For the first
issue, we have proposed thepath-based approach[1] under-
lying the concept ofconcurrent pathto represent the execu-
tion behavior of the protocol into a partial-order
representation as a set of unit paths [11,12]. This approach
treats the protocol as a set of concurrent paths so that each
concurrent path can be generated and verified independently
of the others. Thus, the memory required to store reachable
global states depends on the complexity of a concurrent path
rather than the whole protocol, and the memory space issue
is alleviated. However, the issue of long verification time
does not have a very good solution. Since, in our approach,

Information and Software Technology 42 (2000) 245–255

INFSOF 4045

0950-5849/00/$ - see front matterq 2000 Elsevier Science B.V. All rights reserved.
PII: S0950-5849(99)00060-9

www.elsevier.nl/locate/infsof

* Corresponding author. Tel.:1886-35712121; fax:1886-35727273.
E-mail addresses:wcliu@csie.nctu.edu.tw (W.-C. Liu), cgchung

@csie.nctu.edu.tw (C.-G. Chung).

the concurrent path is generated via the Cartesian product of
unit paths, each product member (denoted asconcurrent
path candidate) is an arbitrary combination of unit paths
and is not always a concurrent path. We use reachability
analysis to identify the concurrent paths from the candidates
by checking whether a candidate corresponds to a real
execution behavior in the protocol. Although, we use
several techniques to avoid the unnecessary check, reach-
ability analysis is still a time-consuming technique to
perform such a check.

In Ref. [1], reachability analysis is used to identify the
last reachable global state with respect to a concurrent path
candidate. As long as the last state is identified, we can
classify the candidates as valid or invalid by checking if
the last reachable global state is a real blocking state in
the system. If it is not, this candidate is identified as invalid.
However, for a communication finite state machine (CFSM)
model, the execution completely depends on the message
types and orders of sending and receiving. Thus, in this
paper, we propose an approach to compute the last reach-
able global state using such relations. The computation uses
simple Boolean and arithmetic operations, and the checking
speed has improved a lot. The remaining context is orga-
nized as follows: In Section 2, we first overview the under-
lying protocol model, the CFSM model and the path-based
approach [1]. Then in Section 3, we illustrate the new
method to compute the last reachable state. Finally, we
give a conclusion about our work.

2. Concepts of path-based protocol verification

2.1. CFSM model

The underlying protocol model in this paper to prescribe a
protocol is the Communication Finite State Machine
(CFSM) model, which is a collection of modules commu-
nicating with each other via messages.

Definition 1. A protocolP in the CFSM model, denoted as
a CFSM systemor shortly asystem, is 5-tuple:

P� kSil
n
i�1; kMij l

n
ij�1; kOil

n
i�1; kZil

n
i�1; kDil

n
i�1

� �
;

wheren is the number of modules, i.e.m1;…;mn; Si the set

of states ofmi and Si > Sj � f for i ± j (“f ” denotes an
empty set),Mij the set of messages that can be sent frommi

to mj , Mii the empty for eachi, andMij > Mpq � f for i ± p
or j ± q; and Oi and Zi represent the initial and terminal
states ofmi that range overSi , respectively,Di is a partial
mapping function:Si × Ii ! Si , andDi�s; x� is the state that
entered after themi receives the messagex in states, for
each i. (Ii �

Sn
j�1 Mji is the set of messages that can be

received bymi .)
Each modulemi in the CFSM systemP is a Finite State

Machine(FSM) composed of states and transitions defined
by Si andDi, respectively. Every two modulesmi andmj are
connected by a dedicated communication channel to trans-
mit the message inMij from mi to mj , which is modeled by a
FIFO queue with channel capacityhij limiting the number of
messages in the channel.

Fig. 1 shows a simple CFSM system with two modules in
a graphical form. The label attached to the transitiont in mi

is of the formmj:2msg; or mj:1msg for the sendingand
receiving transitions, respectively, wheremj �1 # j # n�
is the module sending or receiving the messagemsg
(msg[Mij or Mji ; respectively). (When there are only
two modules, the label ofmi always denotes the other
module and can be omitted.) The transitiont is defined by
the functionb�t� � Di�a�t�; l�t��; wherea�t� andb�t� are
referred to as the heading and tail states oft, respectively,
andl�t� denotes the message to be sent or received in tran-
sition t.

The status of a CFSM system, at any moment of execu-
tion, is depicted by the global state of the system recording
the states of the constituent modules and the contents of the
communication channels.

Definition 2. A global state gof the CFSM systemP is a
pair g� kS;Cl; whereS is a n-tuple of statesks1;…; snl (si

represents the current state of modulemi), andC is a n2-
tuplekc11;…; c1n; c21;…; cnnl. (cij is a sequence of messages
ranging overMij whose length is denoted asucij u. The
message sequencecij represents the contents of the commu-
nication channel from modulemi to mj : Note that everycii is
empty sinceMii is empty.) (The brackets aroundS and C
could be combined without confusion so thatg is in the form
of ks1;…; sn; c11;…; c1n; c21;…; cnnl:)

The system stays at a global initial state when it is initi-
alized and finally reaches a global terminal state on normal
execution.

Definition 3. Theglobal initial stateof P is a global state,
denoted asG0, G0 � kkOil

n
i�1; k1ln

i;j�1l (1 denotes an empty
message sequence). Theglobal terminal stateof P is a
global state, denoted asGT, GT � kkZil

n
i�1; k1ln

i;j�1l.

The execution behavior of a CFSM system is defined by
the relation (calledglobal transitionsto differentiate with
module transitions) between the global states.

W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245–255246

Fig. 1. A simple protocol.

Definition 4. A global transition is defined as a binary
relation “) ” on global states ofP (meaning thatP at
one global state can be transferred to the other in one step
of execution):g) g0 iff there existi, k andx satisfyings0i �
Di�si ; x� in either of the following two conditions:

cki � xc0ki and x [Mki �1�
or

c0ik �
cikx if x [Mik and ucik u , hik

cik if x [Mik and ucik u � hik

:

(
�2�

where g� kS;Cl; g0 � kS0;C 0l; S0 � ks0il
n
i�1 and C 0 �

kc0ij l
n
i;j�1:

The first and the second conditions denote a blocking
receiving and a non-blocking sending (when the channel
reaches the channel capacity, the next sending action can
be executed, but its messages are ignored and the channel
content remains the same), respectively. The transition asso-
ciative with Di�si ; x� is referred to as the global transition
from g to g0.

Definition 5. A global stateg0 is reachable fromg if g)p

g0; where“)p ” is the reflexive and transitive closure of
“) ”. g0 is said to be reachable with respect to the system if
g� G0:

Definition 6. If g0 is reachable fromg, then all the global
states traversed fromg to g0 constitute asubsequenceof the
system. Ifg� G0; then the subsequence fromg to g0 is an
execution sequence.

One simple but effective method to enumerate all reach-
able global states and execution sequences, isreachability
analysis which demonstrates the interactions among the
modules is a total order manner and which constructs the
RG as the one shown in Fig. 2. In the RG, every node
denotes the global stategi � kcl; and every trail from the
starting node, such as nodeg0 in Fig. 2, to a sink node, such
as nodesg4, g7 andg12, is an execution sequence, wheregi is

the name of the node (global state) andc is the text in the
ellipse. For example, there are six trails in Fig. 2, each of
which corresponds to an execution sequence as follows:

x1 : g0) g1) g2) g3) g4;

x2 : g0) g1) g5) g6) g7;

x3 : g0) g1) g5) g9) g7;

x4 : g0) g8) g5) g6) g7;

x5 : g0) g8) g5) g9) g7; and

x6 : g0) g8) g10) g11) g12:

Among them, the execution sequencesx1 andx6 are correct
execution sequences, whereas the sequencesx2, x3, x4, andx5

are faulty ones (they deadlock atg7.)
However, reachability analysis suffers from the state

explosion problem because the size of the RG increases
exponentially with the complexity of protocol. As a result,
reachability analysis and its variations are unsuitable for
analyzing complex protocols.

2.2. The path-based approach

Inspecting reachabiltiy analysis and its variations, the
major hurdle to a successful verification is the enormous
size of the RG and the necessity to memorize the complete
graph. However, as the properties to be verified depend on
the global states and the execution sequence (i.e. the safety
properties and some liveness properties), if all execution
sequences (thus including all global states) are generated
separately without constructing the RG, we can completely
verify the system by examining every execution sequence
and its global states rather than the whole RG. The memory
requirement to store the global states is limited by the length
of an execution sequence rather than the complete RG, and
the state explosion problem may be alleviated from such
divide and conquer approach.

An execution sequence can be classified asterminated,
non-terminatedandinfinite. First of all, a terminated execu-
tion sequence is a finite one ranging from the global initial
state to the global state in which every module reaches its
corresponding terminal state, such asx1 andx6 in Fig. 2. If
we project the sequence of transitions in a terminated execu-
tion sequence onto the set of transitions of a module, sayml ,
we obtain a sequence ofmls transitions and this sequence
will be a path ofml :

Definition 7. Within a systemP, a pathpa in modulema is
defined as follows: pa � �s1;…; si ; si11;…; t1;…; ti ;…�;
wheres1 � Oa; and ti is the transition fromsi to si11:

If we perform such projection of an execution sequence
with respect to every module, we can get a set of path each
of which belongs to a distinct module. For example,

W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245–255 247

Fig. 2. The reachability graph of the protocol in Fig. 1.

sequencexl in Fig. 2, if we project the transitions ofx1, i.e.
[a1,a2,a3,a4] onto the transition ofm1 andm2, we can get the
path [t11,t21] of m1 and [t12,t22] of m2 becausea1 � t11; a2 �
t12; a3 � t22; anda4 � t21:

Second, a non-terminated execution sequence is a finite
sequence with at least one module not reaching its terminal
state. If we perform the projection of such execution
sequence, we obtain the sequence of subpaths, and the beha-
vior of the non-terminated execution sequence can be repre-
sented by this set of subpaths.

Definition 8. An subpath (or infix)ua of pa of modulema

is defined asu� �si ; si11;…; sj11; ti ; ti11;…; tj� if its length
is j2i11 . 0 or [si ;] if it is empty, where 1# i # j # k:

Definition 9. A prefix xa of pa is a subpath whose heading
state is the heading state ofpa and it is said to beincludedby
pa; i.e. pa � xa·ua; where “·” is the subpath concatenation
operator, andua is a subpath ofpa: If ua is empty,xa is
denoted as a pure prefix.

However, any subpath must be included by at least one
path provided every state is reachable from the initial one.
(This requirement should be satisfied for any correct system;
otherwise, there must be dead code.) Since the execution
blocks at the tailing state of the subpath, the additional
transitions in the path but not in the subpath are not execu-
table. Thus, the behavior of such non-terminated execution
sequence can also be represented by a set of paths.

Third, an infinite execution sequence must imply that
there exists a cyclic structure in it, as the number of global
states is finite and there exists a last global state (unless the
structure of the path is similar to the infinite decimal which
should be rare). Thus, we can also classify the infinite
execution sequence into terminated or non-terminated
according to the last global state reached, and it can also
be represented by a set of paths. (These paths may have
loops.)

Definition 10. Within a systemP, a nonempty cyclic
path pa in module ma is defined as pa �
�s1;…; �si ;…; sj�p;…sk11; t1;…; �ti ;…; tj21�p;…; tk�; where
s1 � Oa; sk11 � Za andti is the transition fromsi to si11�i $
1�: The subpath�si ;…; sj ; ti ;…; tj21� is the loop ofpa:

Therefore, we can use a set of module paths to represent the
behavior of the execution sequence:

Definition 11. Within a systemP, a concurrent pathis
defined as an ordered set of paths {p1; p2;…; pn} (or denoted
as {pi}

n
i�1 for short), wherepi is a path ofmi :

The concurrent path represents the execution behavior in
a partial-order manner, whose ordering relationship is impli-
citly defined by the precedence of sending and correspond-
ing receiving transitions, and explicitly by the sequential

ordering among the transitions in a path [12]; the execution
sequence does the same execution behavior in a total-order
manner, whose ordering relationship is explicitly defined by
the relation of global states. It should be noted that both
notations exhibit the same “happen-before” relation of the
transitions’ execution [13]. In Ref. [1], we have shown that
the behavior of all execution sequences within a RG can be
equivalently represented by a set of concurrent paths and we
can completely verify the protocol using this set.

The advantage of using the notion of concurrent path
instead of that of execution sequence is three-fold: (1) all
concurrent paths can be generated automatically and within
low space complexity; (2) the system is separated into a set
of concurrent paths, each of which is much smaller then the
original system; and (3) the verification can be performed in
parallel. The first advantage results from the representation
of concurrent path, i.e. a set of module paths. The complete
behavior of protocol is represented by the set of all concur-
rent paths, which are included by the Cartesian product of
the sets of all module paths. The Cartesian product can be
generated easily, but each member of the product is an
arbitrary combination of module paths and obviously not
all members are concurrent paths. Thus, we have to identify
the concurrent paths from Cartesian product. Each member
of Cartesian product is a simplified CFSM system and can
be executed. If it is a concurrent path, its execution finally
reaches the terminal global state or is blocked at an erro-
neous state that no transitions in the original system can
release this blocking situation. Otherwise, it cannot be
executed normally; its execution must be blocked at an
intermediate global state that the execution of the complete
system will not be blocked at and that is an anomaly of error.
Thus, we can determine whether a member is a concurrent
path via its execution within the complexity of a concurrent
path rather than the whole system.

The second advantage is also obvious. The original
system is now divided into a set of concurrent paths, each
of which denotes partial behavior of, and is smaller than the
original system. As stated before, each of them can be
executed and thus verified independently using the algo-
rithm of reachability analysis to enumerate the potential
execution sequence(s). Then, these potential execution
sequences can be checked for the required properties. As
each concurrent path is smaller than the original system, the
memory requirement of reachability analysis is also much
smaller. Therefore, the state explosion problem is alle-
viated.

Furthermore, the conventional parallel verification algo-
rithms such as in Ref. [14] rely on the message passing or
shared memory mechanisms to build the image of the whole
reachability graph. They occasionally have to exchange
newly generated global states among the parallel computers
to maintain the RG consistency. Thus, a great communica-
tion cost is required. Since each concurrent path is verified
independently in our approach, it is naturally done in paral-
lel. All the information to be exchanged is the verification

W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245–255248

result of each concurrent path and the communication cost is
very low.

3. The symbolic method

3.1. General ideas

One of the principal problems of the path-based approach
[1] concerns the time to check whether a concurrent path
candidate is valid or not, and the bottleneck of this approa-
ch’s performance depends on the checking method. In Ref.
[1], we use reachability analysis upon candidates, but the
analysis is time-consuming. Thus, in this section, we
propose a more efficient candidate checking method rather
than the reachability analysis.

Given a concurrent path candidate {pi}
n
i�1; we can clas-

sify it into the following categoriesvalid and invalid. A
candidate is said to bevalid, if there is at least one execution
sequence corresponding to it; otherwise, it isinvalid. The
valid can be further classified as correct and erroneous. If its
corresponding execution sequences contain errors (such as
deadlocks, livelocks), it is erroneous; otherwise, it is correct.
We can identify the category of a candidate as follows.

3.1.1. Valid (correct)
A candidate is correct means that all transitions must be

executed successfully; that is, all messages are sent and
received correctly, and the execution has no infinite loop
so that the transitions after the loop cannot be executed.
Thus, a candidate is correct if and only if the following
three conditions are satisfied:

1. match of sending;
2. match of receiving; and
3. no infinite loop.

The first condition says that if a message is to be received
successfully, it must be sent first; that is, the type of message

and the order of sending and receiving must be matched.
Thus, to check such a condition, we can separate the pathpi

into a sending sequenceaij and a receiving sequencebij ; and
check the equivalence ofaij andbij for everyi andj, where
aij =bij is the sending/receiving message sequence ofpi with
respect topj and is defined as follows.

Definition 12. Given a concurrent path candidate {pi}
n
i�1

of the systemP, for every pathpi in modulemi ; the sequence
of the sending/receiving messages isaij =bij with respect to
modulemj ; with aij � m�pi ; j�; bij � n�pi ; j�; and the projec-
tion functionm=n; being defined as

m�pi ; j� �
�l�ti�;m�p0i ; j�� if l�ti� [Mij

m�p0i ; j� otherwise
;

(
and

n�pi ; j� �
�l�ti�; n�p0i ; j�� if l�ti� [Mji

n�p0i ; j� otherwise

(
wherepi � { ti} ·p0i and p0 i is a subpath of pi.

If aij andbij are not equal, there are unmatched messages
that cannot be received successfully. One such example is
shown in Fig. 3(a), whereaij � “ab” but bji � “ba” . In our
model, a receiving action can only be executed if the
required message is at the head of the channel. Thus, in
Fig. 3(a), the message sequence that modulepj wants to
receive is “ba,”, but that sent by modulepi ; the channel
content is “ab” where “a” is at the head of the channel.
Thus, the action inpj to receive message “b”, i.e. “1b”
cannot be executed andpj is blocked. In general, leta0ij
and b0ji denote the longest prefixes ofaij and bji that are
equivalent. Thena0ij andb0ji contain the maximally possible
transitions to be executed successfully, i.e. messages sent are
received correctly. The transitions afterb0ji are impossible to

W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245–255 249

Fig. 3. Unsuccessful execution examples.

be executed since the execution will be blocked at the first
transition afterb0ji due to incorrect sending fromaij : As for
a0ij , the transitions aftera0ij may be possibly executed.

The second condition reflects the fact that a message
cannot be received successfully before its sending and it
also cannot be received unless it is at the head of the
communication channel. One such example is shown in
Fig. 3(b). This is a typical case of cyclic waiting, i.e. the
first transition of every path is waiting for the second transi-
tion in another path to send the required message. To exam-
ine such a situation, we can construct a directed graph of
dependencies as follows.

Add a vertex denoting every transition in the candidate.
Add an edge for each dependent relation, denoting that a
transition has to be executed after another.1 (All transitions
in the same path must be executed sequentially; and a send-
ing transition must be executed before its corresponding
receiving transition.) Thus, if this graph has any cycle,
there exists cyclic waiting. The dependency graph of Fig.
3(c) is shown in Fig. 3(d), and the heavy line shows there
exists a cycle in the graph and it is the situation of receiving
mismatch. As for the third condition, if there are infinite
loops in the behavior of a concurrent path candidate, there
is at least one path with a loop. (If the candidate with infinite
loop behavior has only one path with a loop, the transitions
in the loop must be sending transitions.2) To simplify the
discussion, assume allpi involve in the infinite loop beha-
vior, and eachpi includes a loop, i.e.pi � p0i ·�ci�p·p00i ; where
p0i ; ci ; and p00i are subpaths ofpi ; and ci is the loop corre-
sponding to the cyclic behavior. Since it renders the infinite
loop, the global states before entering and after leaving the
loop must be the same; that is, {p0i}

n
i�1 and {p0i ·�ci�ki } n

i�1 (ki

denotes the corresponding number of loop cycles in the
cyclic behavior3) will reach the same state. To examine
such a situation, we have to identify the global states before
and after entering the loop. To do so, we can treat {p0i}

n
i�1

and {p0i ·�ci�ki } n
i�1 as concurrent path candidates and use the

technique to check the previous two conditions to determine
whether they can execute the last transition and the last
global state they reached. Therefore, if a candidate can
pass the above three conditions, i.e.aij � a0ij and bij � b0ij

for the first condition; there are no cycles in the dependency
graph ofaij andbij ; and there are no infinite loops, it is a
valid (correct) concurrent path candidate.

3.1.2. Valid (erroneous) or invalid
Since the candidate is erroneous or invalid, it must block

at some global state due to disobeying the conditions
mentioned above. However, as described in Section 2.2,
we have to distinguish these two types of blocking by check-
ing whether the blocking global state is an anomaly or not.

To do so, we have to identify the blocking global state.
Using the above checking method, we can generate the
dependency graph of a candidate and the cycle(s) in the
graph. For each path, if there are transitions involved in
the cycle and independent with any other transition(s)
within the cycle and of the path, it is the blocking transition.
If there is no such transition, the blocking transition is the
receiving transition depending (directly or indirectly) on the
blocking or non-executable (all transitions succeeding the
blocking transitions are non-executable) transitions of the
other path. We can identify the blocking global state via
these blocking transitions. Then, if the blocking global
state is also a blocking one within the original system, the
candidate is erroneous; otherwise, it is invalid.

Therefore, in summary, if the concurrent path does not
include any loop, we can identify the category of a concur-
rent path candidate by the following steps: first check the
equivalence ofaij andbji ; construct the dependency graph of
a0ij andb0ji , use a cycle detection algorithm [15] to determine
the last reachable global state, and use this global state to
identify its category. Otherwise, we have to check if the
global state before and after the loop in the path is the
same. If they are, this is a valid (infinite loop) concurrent
path. The basic algorithm to verify a concurrent path is
given below:

verify_concurrent_path(p1;p2;…;pn)
begin/p check all possible cycles in the concurrent pathp/

for i � 1 to n

if pi has a loop andpi � p0i ·�ci�p·p00i ; then
qi � p0i

else
qi � pi

entering_state� simple_check�q1; q2;…;qn�
/p simple_check determines the last global
sate using the method show above. It will be
replaced bysimple_check2 andsimple_check3
method using the symbolic technique and thus
omitted here.p/

if { q1;q2;…;qn} is in invalid/erroneous candidate

report {p1;p2;…;pn} as invalid/erroneous candidate
break

K_set� empty set
Repeat

W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245–255250

1 Since dependent relations are transitive, they can be classified as direct
or indirect. For any dependent relation, sayti depends ontj ; if there exists a
transitiontk such thatti depends ontj ; this dependent relation is indirect;
otherwise, it is direct. In our dependency graph, only the direct dependent
relations are included.

2 If only one path has a loop and any receiving transitions is in the loop,
the loop is impossible to be executed infinitely because the corresponding
module has no loop and can provide only finite number of messages for that
receiving transition. After all messages are consumed, the loop stops at the
receiving transition.

3 The value ofkjs can be any value that is smaller than the threshold of
the modulemi : This threshold denotes the maximum possible number of
loop times in that module. It can be determined by the protocol designer or
follows the recommendation of [1], i.e. only one time of loop is enough to
cover most cyclic behavior. It should also be noted that it is unnecessary
that the values of allkis are the same.

for i � 1 to n

if pi has a loopthen

Let pi � p0i ·�ci�p·p00i
for j � 1 to max_k /p max_k denote the

maximal possible
number of loops
and is specified by
usersp/

Let ki � j
if the combination�k1; k2;…; kn� is
not in theK_setthen

Add �k1; k2;…; kn� into K_set
Let qi � p0i ·c

ki
i

Let q0i � qi·p
00
i

break

else
qi � pi

q0i � qi

/p Obtain the global states after the cycle to
determine the errors of infinite loopp/
leaving_state� simple_check�q1;q2;…;qn�
if { q1;q2;…;qn} is in invalid/erroneous candi-
date

report {p1;p2;…;pn} as invalid/erroneous
candidate
continue

if entering_state� leaving_statethen
report {p1;p2;…;pn} as valid(infinite_loop)

/p Check the complete concurrent pathp/
simple_check�q01;q02;…; q0n�
if { q01;q

0
2;…;q0n} is in invalid/erroneous candi-

date
report {p1;p2;…;pn} as invalid/erroneous
candidate

continue

until �k1; k2;…; kn� � �max_k;max_k;…max_k�
end cycle_check

3.2. Verification of two modules

Although the approach mentioned above is more efficient
than the approach using reachability analysis in Ref. [1], the
algorithm to detect a cycle in a directed graph is still time-
consuming. To make further improvement, we provide a
more efficient checking method to determine the last reach-
able global state. To ease the discussion, we first present the
verification of only two modules in this subsection and show
that of more than two in next subsection. We first assume the
concurrent path candidate to be checked is {p1;p2} in the
case of two modules only; and leta12 � m�p1;2�; a21 �
m�p2;1�; b12 � n�p1;2�; andb21 � n�p2; 1�.

As described above, there are two reasons of blocking:
mismatches of sending and receiving, and the former can be
checked by the equivalence ofa12 andb21; a21 andb12. Such
check is quite easy (by the Boolean exclusive or operation)
and we can use it as the first check to determine the maximal
possible reached transitions. Leta012; ,b

0
21; a

0
21 andb012 be the

maximal equivalent prefixes ofa12; b21; a21 andb12, respec-
tively. The transitions behindb021 andb012 are impossible to
be executed due to the incorrect order of sending.

Then, with respect tob021 and b012, we have to check
whether the concurrent path will be blocked due the incor-
rect order of receiving. Instead of using the dependency
graph, we can identify the blocking due to incorrect receiv-
ing order with the help of the sequence of sending or receiv-
ing, denoted asi/o sequence ofpi :

Definition 13. The i/o sequenceioij of a pathpi of module
mi with respect to modulemj is defined by the function o, i.e.
ioij � o�pi ; j�; with o�pi ; j� being defined as

o�pi ; j�

�
�1; o�p0i ; j�� if ti is a receiving transition w:r:t module mj

�2; o�p0i ; j�� if ti is a receiving transition w:r:t module mj

o�p0i ; j� otherwise

;

8>><>>:
wherepi � { ti} ·p0i and ti is a transition andp0i a subpath of
pi :

With these two i/o sequencesio12 � o� �p1;2� and io21 �
o� �p2; 1� (�p1= �p2are the subpaths ofp1=p2 corresponding tob012

andb021), we can use two countersq1 andq2 to denote the
number of messages in the channel to determine whether a
transition can be executed. Since the order of sending and
receiving are matched with respect to�p1 and �p2, a message
sent to the channel will be received successfully. If the value
of q1 or q2 is zero, it means the channel is currently empty
and no receiving is possible. When both counters have the
values of zeros and the next transitions to be executed are
both receiving transitions, then a blocking situation occurs
and the last reachable global state can be identified accord-
ingly.

We can perform such check using the algorithm below:
At first q1 and q2 are reset to zeros andio12 and io21 are
examined sequentially. When the inspection reaches a
“2” in io12 or io21, q1 or q2 are, respectively, increased by
one; when a “1” is regarded inio12 or io21,q2 or q1 are,
respectively, decreased by one provided the value ofq2 or
q1 does not become negative. If it would become negative,
check the other sequence to see whether it can be further
advanced to next transition. If it cannot (due to the fact that
its counter would become negative as well), it means that
both are blocked at the receiving transitions that will make

W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245–255 251

its counter negative. This algorithm is formally described as
follows:

simple_check2�p1;p2�
aij �
the sending message list ofpi with respect topj

bij �
the receiving message list ofpiwith respect topj

/p The following two statements compute sending
matchp/
xor1 � The position of the element in p1 corresponding
to the first occurrence of non-zero value ina21 % b12

/p Compute the first non-identical element ina21 andb12
p/
xor2 � The position of the element in p2 corresponding
to the first occurrence of non2zero value ina12 % b21

/p Compute the first non-identical element ina12 andb21
p/
io1 � o� �p1;2�; p̄1 the prefix of p1 with the length of xor1
io2 � o� �p1;1�; p̄2 the prefix of p2 with the length of xor2
q1 � 0; /p The number of messages in the channel
from p1 to p2

p/
q2 � 0; /p The number of messages in the channel
from p2 to p1

p/
x1 � 0; /p Next transition inp1 to be inspectedp/
x2 � 0; /p Next transition inp2 to be inspectedp/
/p compute the receiving matchp/
Repeat

progress� False
if �io1�x1� � “ 2” �
/p current transition is sending transitionp/

x11
1

q11
1

progress� True
else ifq2 . 0 then
/p current transition is receiving transition and the
message channel is not emptyp/

x11
1

q222

progress� True
if (io2�x2� � “ 2” �
/p current transition is sending transitionp/

x11
2

q11
2

progress� True
else ifq1 . 0 then
/p current transition is receiving transition and the
message channel is not emptyp/

x11
2

q122

progress� True
until progress� False /p no more transition to be
executedp/
/p identify the last global statep/
for i � 1 to 2

si � a (the xith transition inpi)
for i � 1 to 2

for j � 1 to 2

cij � revert�aji 2bij � /p revert converts the
string to another in the
reverse orderp/
/p “2” is the quotient
operator on strings and
“aji 2bij “ returns a
substring whose element
belongs toaji but notbij.

p/

return the global state (s1; s2; c11; c12; c21; c22)

end simple_check2

3.3. Verification of more than two

In Section 3.2, we explained how to use simple Boolean
and arithmetic operations to compute the blocking transi-
tions and global states in the case of two modules. The
similar concept can be applied to the case of more than
two modules using the sending, receiving and i/o sequences
of paths. However, we have to extend the variables used in
the algorithmsimple_check2 as follows:

The main extension concerns the i/o sequence, which
now, for the case ofpi ; becomes a set of i/o sequences,
each of which, sayioij corresponds to communication
between two modulesmi and mj. Then, ioij � o� �pi ; j�;
where �pi is a prefix ofpi , corresponds to the shortestb0ji
for all j, anda0ij andb0ji denote the longest prefixes which
are common inaij andbji : Since the i/o sequence of a path is
now separated into a set of i/o sequences, we cannot know
the original position of each sending and receiving action in
the path, and we have to record the original position in the
path pi for each i/o action. Thus, the i/o sequence for the
concurrent path candidate becomes�actposi

i �li�1; whereacti is
“2” or “ 1” denoting a sending or receiving transition,posi
denotes the original position of this action in the path, andl
is the number of elements in the sequence. For example, the
i/o sequences for the paths in Fig. 4 areio12 � �21

;13� and
io13 � �12

;24� for p1, io21 � �11
;22� andio23 � �23

;14�
for p2, andio31 � �22

;13� and io32 � �11
;24� for p3.

In addition, since there are different communication
channels between a module and its neighbors, each channel
between modulemi andmj corresponds to a counterqij to
record the number of messages in the channel. Two
types of additional counter are also required, the counter
xi of pathpi to identify the next transition to be inspected
andeij of the i/o sequenceioij to record the next element to
be inspected.

Then for each action in the i/o sequence, if its original
position is identical to the counterqi ; it means this action
should be executed at this moment. If it is a sending action;
or receiving action and the corresponding channel counter is
larger than zero, it can be executed and the related counters

W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245–255252

are updated accordingly. If the result of the last step
shows the path counter exceeds the length of the path,
all transitions in this candidate can be executed; other-
wise, there is a blocking situation. We show inspection
steps of a non-blocking (as shown in Fig. 4) and blocking
examples (as shown in Fig. 3(c)) in Fig. 5(a) and (b),
respectively.

In the example of Fig. 5(a), the result of the last step (step
13) showing that the path counter exceeds the length of
the path and the fact that every channel is zero, identify
this candidate as correct. In that of Fig. 5(b), if there are

transitions that cannot be executed, the execution blocks at
these transitions. The detailed algorithm is as follows:

simple-check3�p1;p2;…pn�
{

aij � the sending message list of pi with respect to pj
bij � the receiving message list of pi with respect to pj
xorij � The position of the element in pi corresponding
to the first occurrence of non-zero value inaji % bij

/p compute the sending matchp/
yi � min�Qj�1:n xorij �
ioij � i=o sequence of pi with respect to pj before the
�yj11�th transition

/p ioij �i�·p� the ith message is thepth transition in the
original pathp/
/p ioij �i�·x�
“ 2” or “ 1” denoting a sending or receiving action
p/
eij � 0 /p the current position inioij

p/
qij � 0 /p the message number of the channelpj ! pi
p/
xi � 0 /p the next transition to be executed inpi

p/
progress� True /p flag to exit the checkp/
/p compute the receiving matchp/
Repeat

W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245–255 253

Fig. 4. Non-blocking example of concurrent path candidate.

Fig. 5. Inspection by i/o sequences.

For i � 1 to n

For j � 1 to n

progress� false
if ioij �eij �·p� xi then
/p the corresponding transition ofioij �eij �
should be executedp/

if ioij �eij �·x� “ 2” then /p a sending
transitionp/

e11
ij /p increase the counter ofioij

p/
q11

ji /p increase no. of msg in
channelpi ! pj

p/
x11

i /p increase the counter ofpi
p/

progress� true
else /p ioij �eij �·x� “ 1” a receiving transi-
tion p/

if xi�j� . 0 then

e11
ij /p increase the counter

of ioij
p/

q22
ij /p decrease no. of msg

in channelpj ! pi
p/

x11
i /p increase the counter

of pi
p/

progress� true
Until progress� False /p no more transition to be
executedp/
/p identify the last global statep/
for i � 1 to n

si � a(thexith transition in pi)
for i � 1 to n

for j � 1 to n

cij � revert�aji 2bij �/p revertconverts the string
to another in the reverse orderp/

return the global state�s1; s2;…; sn; c11; c12;…; cnn�
end simple_check3

4. Conclusion

The “state explosion problem” in protocol verification
raises two issues: large memory requirement and long veri-
fication time. For the former issue, we have proposed the
path-based approach to separate the protocols into a set of
concurrent paths. Each one can be generated and verified
independently of the others [1]. Thus, the memory to store
reachable global states depends on the complexity of a
concurrent path rather than the whole protocol, and the
memory space issue is alleviated.

As for the later issue, in this paper, we show a performance
improvement technique of the path-based approach to
compute the last reachable global state of every concurrent

path candidate more efficiently. Both algorithms (simple_
check2 and simple_check3) linearly check every transitions
in the paths with the time complexity ofO�n2 p l�4, wheren is
the number of modules andl is the average of a path. For each
iterationof check, only the exclusive-or, increment, and decre-
ment operations are required. Therefore, the long verification
time issue is also alleviated.

Although the checking method shown in this paper is
efficient in identifying the concurrent paths from the Carte-
sian product of the module paths, the main limitation results
from the model. Since the channel between two modules is
independent of the others in the underlying CFSM model,
the i/o sequences of paths can thus be inspected indepen-
dently of the others. There is the situation that the incoming
channels from different modules share a common queue
[16]. In this case, the receiving of a message does not
only depend on the match of sending and receiving of the
corresponding module, but also the execution speeds of all
the modules that may send messages at this moment. When
a receiving transition is waiting to receive a message from a
module but another module executes faster and sends a
message in advance, it occupies the head of the queue,
and this transition cannot be executed successfully. Thus,
our algorithm to determine whether a message can be
received must check every possible combination in the
contents of common queue resulting from different execu-
tion speeds of modules.

References

[1] W.C. Liu, C.G. Chung, Path-based Protocol Verification Approach,
Technical Report, Department of Computer Science and Information
Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan,
ROC, 1998.

[2] C.H. West, P. Zafiropulo, Automated validation of a communications
protocol: the CCITT X.21 recommendation, IBM Journal of Research
and Development 22 (1) (1978) 60–71.

[3] G.J. Holzmann, Design and Validation of Computer Protocols,
Prentice-Hall, Englewood Cliffs, NJ, 1991.

[4] F. Pong, M. Dubois, Verification techniques for cache coherence
protocols, ACM Computing Surveys 29 (1) (1997) 82–126.

[5] C.H. West, Protocol validation in complex systems in: Proceedings of
the Eighth ACM Symposium on Principles of Distributed Computing,
Austin, Texas, August 1989, pp. 303–312.

[6] A. Valmari, The State Explosion Problem, Lectures on Petri Nets I:
Basic Models, LNCS 1491, Springer, Berlin, 1998.

[7] Y. Kakuda, Y. Takada, T. Kikuno, On the complexity of protocol
validation problems for protocols with bounded capacity channels,
IEICE Trans. Fundamentals of Electronics Communications and
Computer Sciences E77 (1994) 658–667.

[8] R.E. Bryant, Graph-based algorithms for Boolean function manipula-
tion, IEEE Transactions on Computers 35 (8) (1986) 677–691.

[9] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang,

W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245–255254

4 To check every transitions, we needn p l iterations. However, in each
iteration, additional iteration is necessary to determine which transitions
can be executed amongn modules and the average value inn/2. Thus, the
number of iterations in average isn2 p l=2:

Symbolic model checking: 1020 states and beyond, Information and
Computation 98 (2) (1992) 142–170.

[10] A.J. Hu, D.L. Dill, Efficient Verification with BDDS using Implicitly
Conjoined Invariants, Lecture Notes in Computer Science, 697,
Springer, Berlin, 1993 Proceedings of Computer Aided Verification.
Fifth International Conference, CAV ‘93, Elounda, Greece, 28 June–
1 July.

[11] R.D. Yang, C.G. Chung, Path analysis testing of concurrent programs,
Information and Software Technology 34 (1) (1992) 43–56.

[12] K.C. Tai, R.H. Carver, Testing of distributed programs, in: A.
Zomaya (Ed.), Parallel and Distributed Computing Handbook,
McGraw-Hill, New York, 1996.

[13] L. Lamport, Time, clocks, and the ordering of events in a distributed
system, Communications of ACM 21 (7) (1978) 558–565.

[14] U. Stern, D.L. Dill, Parallelizing the Murphi Verifier, Lecture Notes
in Computer Science, 1254, Springer, Berlin, 1997, pp. 256–278
Proceedings of the Computer Aided Verification (CAV ‘97), Haifa,
Israel, June 22–25.

[15] A.V. Aho, J.E. Hopcroft, J.D. Ullman, Data Structures and Algo-
rithms, Addison-Wesley, Reading, MA, 1983.

[16] ISO, Information technology—Open Systems Interconnection—
Estelle: a Formal Description Technique Based on an Extended
State Transition Model, 2, ISO/IEC, 1997 Standard 9074.

W.-C. Liu, C.-G. Chung / Information and Software Technology 42 (2000) 245–255 255

