Forest Leaves and Four-Cycles

H. L. Fu¹ and C. A. Rodger²

¹ DEPARTMENT OF APPLIED MATHEMATICS
NATIONAL CHIAO TUNG UNIVERSITY
HSIN CHU, TAIWAN
REPUBLIC OF CHINA
² DEPARTMENT OF DISCRETE AND STATISTICAL SCIENCES
120 MATH ANNEX
AUBURN UNIVERSITY, ALABAMA 36849-5307

Received March 12, 1999; revised

Abstract: In this article, we find necessary and sufficient conditions for the existence of a 4-cycle system of $K_n-E(F)$ for any forest F of K_n . © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 161-166, 2000

Keywords: cycles; forest; neighborhood design; decomposition

1. INTRODUCTION

The m-cycle $(v_0, v_1, \ldots, v_{m-1})$ is the graph with vertex set $\{v_i | i \in \mathbb{Z}_m\}$ and edge set $\{\{v_i, v_{i+1}\}, \{v_0, v_{m-1}\} | i \in \mathbb{Z}_{m-1}\}$. An m-cycle system of G is an ordered pair (V(G), C), where C is a set of m-cycles whose edges partition the edge set of G. There have been many results found on the existence of m-cycle systems of K_n and of $K_{m,n}$. Most recently, the set of integers n for which there exists an m-cycle system of K_n , where m is odd, has been completely settled [1]. It has also been common in the situation where no m-cycle system of K_n exists, to find the smallest set of edges E such that $K_n - E$ does have an m-cycle system. See [3, 6] for results on these problems.

Contract grant sponsor: NSF. Contract grant number: DMS 9531722 Contract grant sponsor: ONR. Contract grant number: N00014-97-1-1067

Another particularly interesting problem studied is to let H be one of a family of spanning subgraphs of K_n and find m-cycle system of $K_n - E(H)$; we say that H is the leave of the m-cycle system. This type of problem is somewhat different, because H grows with n. By using difference methods, inductive methods, and amalgamations of graphs, this problem has been solved if H is an 1-factor [1], and if m = 3, 4 or n (of course, n-cycles are Hamilton cycles) when H is any 2-factor of K_n [2, 4, 5]. In this article, we completely solve another of these problems, finding necessary and sufficient conditions for the existence of a 4-cycle system of $K_n - E(F)$ for any spanning forest F of K_n . We say that a forest F is odd, if all vertices in F have odd degree. To avoid confusion with cycles, let $\langle v_0, v_1, \ldots, v_{m-1} \rangle$ denote the path with vertex set $\{v_i|i\in\mathbb{Z}_m\}$ and edge set $\{\{v_i,v_{i+1}\}|i\in\mathbb{Z}_{m-1}\}$. Let $(A\cup B,K(A,B))$ denote a 4-cycle system of $K_{|A|,|B|}$ with bipartition A and B of the vertex set. The following is well known, and has been proved in more generality by Sotteau [7], but a proof is included here to keep the article self-contained.

Lemma 1.1. There exists a 4-cycle system of $K_{a,b}$ if and only if a and b are even.

Proof. The necessity is clear, and
$$((\mathbb{Z}_a \times \{0\}) \cup (\mathbb{Z}_b \times \{1\}), \{((2i,0), (2j,1), (2i+1,0), (2j+1,1)) | i \in \mathbb{Z}_{a/2}, j \in \mathbb{Z}_{b/2}\})$$
 proves the sufficiency.

2. RESULT

We begin with a small partial 4-cycle system that is vital in the proof of Theorem 2.1.

Lemma 2.1. There exists a 4-cycle system $(\{v_i|i \in \mathbb{Z}_8\}, C^*)$ of $K_8 - P$ with leave P consisting of the union of the four 2-paths $p_0 = \langle v_0, v_2, v_1 \rangle, p_1 = \langle v_2, v_6, v_3 \rangle, p_2 = \langle v_4, v_1, v_5 \rangle$, and $p_3 = \langle v_6, v_5, v_7 \rangle$.

Proof. Let
$$C^* = \{(v_0, v_6, v_1, v_7), (v_0, v_4, v_7, v_3), (v_0, v_1, v_3, v_5), (v_4, v_5, v_2, v_3), (v_4, v_6, v_7, v_2)\}.$$

A leaf pairing of size x in a forest F is a set L of x sets, each containing two leaves (vertices of degree 1) of F, such that each vertex appears in at most one set in L, and such that for each pair $\{v,w\}\in L$ there exists a vertex z in F that is adjacent to both v and w (so $d_F(v,w)=2$). It is easy to check that an odd tree T has a leaf pairing of size at least 4 unless T is K_2 or is one of the trees in Table I. Some of the vertices are labeled; this helps in the proof of Theorem 2.1.

Theorem 2.1. Let F be a forest of K_n that has at least one edge. There exists a 4-cycle system of $K_n - E(F)$ if and only if 4 divides $|E(K_n)| - |E(F)|$, F is odd and spanning, and n is even.

Proof. Since each such forest has a vertex v of degree 1, and since the other edges incident with v are partitioned into pairs by 4-cycles, n is even. Therefore, F is odd and spanning, and so the necessity is clear.

We begin proving the sufficiency by noting that, if $n \in \{2, 4, 6, 8\}$, then the necessary conditions require that F be a 1-factor; in each such case, it is trivial

TABLE I. All odd trees with at most 3 leaf pairs, excluding K_2 .

Leaf Pair Size	Tree
1	$K_{1,3} = $
2	$K_{1,5} =$
T_1 :	v_0 v_3 v_4 v_6 v_1 v_2 v_1 v_3 v_4 v_6 v_7
$egin{array}{cccccccccccccccccccccccccccccccccccc$	v_2 w_1 w_3 v_7
T_3 :	$v_0 \qquad v_3 \qquad v_4 \qquad v_5 \qquad v_5 \qquad v_7 \qquad v_6 \qquad v_6$
$egin{array}{c} v_0 \ T_4: \ v_1 \end{array}$	v_3 v_4 v_5 v_2 w_1 v_4 v_5 v_6 v_7

to find a 4-cycle system of $K_n-E(F)$. The remainder of the proof follows by induction, so suppose that for some even $n\geq 10$ and for all even n'< n there exists a 4-cycle system of $K_{n'}-E(F')$ for any odd spanning forest F' of $K_{n'}$ for which 4 divides $|E(K_{n'})|-|E(F')|$. Let F be any odd spanning forest of K_n for which 4 divides $|E(K_n)|-|E(F)|$. We consider several cases in turn. Let K_n have vertex set \mathbb{Z}_n .

Case 1. Suppose that F contains a leaf pairing of size 4, say $\{\{v_{2i},v_{2i+1}\}|i\in\mathbb{Z}_4\}$. Let $V=\{v_i|i\in\mathbb{Z}_8\}$ and $V'=\mathbb{Z}_n\backslash V$. For each $i\in\mathbb{Z}_4$, let w_i be adjacent to v_{2i} and v_{2i+1} in F; then, since $d_F(w_i)\geq 2$, we know $w_i\in V'$. For each $i\in\mathbb{Z}_4$, let $z_i\in V'\backslash\{w_i\}$ be a vertex "paired" with $w_i;z_i$ exists because both n and |V| are even, so |V'| is even. Note that $w_1,w_2,w_3,w_4,z_1,z_2,z_3$, and z_4 need not all be distinct.

Let F'=F-V. Then |E(F')|=|E(F')|-8, so, since 4 divides $\binom{n}{2}-|E(F)|$, it can easily be seen that 4 divides $\binom{n-8}{2}-|E(F')|$. Also, |V'|=n-8 is even

and F' is an odd spanning forest of K_{n-8} , so by induction there exists a 4-cycle system (V',C_1) of $K_{n-8}-E(F')$. For each $i\in\mathbb{Z}_4$, let c_i be the 4-cycle formed by adding the edges $\{v_{2i},z_i\}$ and $\{v_{2i+1},z_i\}$ to the 2-path p_i defined in Lemma 2.1, let $C_2=\{c_i|i\in\mathbb{Z}_4\}$, and let C^* be as defined in Lemma 2.1. Finally, let $C_3=\cup_{i\in\mathbb{Z}_4}K(\{v_{2i},v_{2i+1}\},V'\setminus\{z_i,w_i\})$. Then the edges $e_{2i}=\{v_{2i},w_i\}$ and $e_{2i+1}=\{v_{2i+1},w_i\}$ for $i\in\mathbb{Z}_4$ occur in no 4-cycle defined so far, which is good, because $E(F)=E(F')\cup\{e_i|i\in\mathbb{Z}_8\}$. So $(\mathbb{Z}_n,C_1\cup C_2\cup C_3\cup C^*)$ is a 4-cycle system of $K_n-E(F)$, as required.

Case 2. Suppose one component of F is K_2 with vertex set $\{n-2,n-1\}$. Since 4 divides $\binom{n}{2} - |E(F)|$, it is easy to check that 4 also divides $\binom{n-2}{2} - (|E(F)| - 1)$. Therefore, by induction there exists a 4-cycle system (\mathbb{Z}_{n-2}, C_1) of $K_{n-2} - E(F')$, where $F' = F - \{n-2, n-1\}$. Then $(\mathbb{Z}_n, C_1 \cup K(\mathbb{Z}_{n-2}, \{n-2, n-1\}))$ is a 4-cycle system of $K_n - E(F)$.

In view of Cases 1 and 2, it remains to consider the cases where F contains at most 3 leaf pairs and no component of F is K_2 . Trees with this property are listed in Table I. Notice that under this restriction that we just placed on F, if one component of F were to be $K_{1,5}$, then either $F=K_{1,5}$ or the other component of F would have to be $K_{1,3}$; since F is spanning, both these cases are excluded, since 4 divides neither $\binom{6}{2}-5$ nor $\binom{10}{2}-8$, respectively.

Case 3. Suppose that either $F \in T_1$ (see Table I), or $n \neq 12$ and F consists of two components, one of which is in T_1 and the other is $K_{1,3}$ (the necessary conditions preclude the possibility of n=10 in this case). Then since F is spanning, the vertices in $V=\{v_i|i\in\mathbb{Z}_8\}$ marked on the tree in T_1 in Table I are all distinct. Let $\{w_1,v_2\},\{w_1,v_3\},\{w_2,v_4\}$ and $\{w_2,v_5\}$ be edges in F, as is shown in Table I. Let $V'=\mathbb{Z}_n\backslash V$, and for each $i\in\{1,2\}$ let $z_i\in V'\backslash\{w_i\}$.

Let F'=F-V. Then |E(F')|=|E(F)|-8, |V'|=n-8, and F' is an odd spanning forest of K_{n-8} , so as in Case 1 by induction there exists a 4-cycle system (V',C_1) of $K_{n-8}-E(F')$. Using Lemma 2.1, let c_1 and c_2 be formed from the 2-paths p_1 and p_2 by adding the edges in $\{\{v_2,z_1\},\{v_3,z_1\}\}$ and $\{\{v_4,z_2\},\{v_5,z_2\}\}$, respectively, and let $C_2=\{c_1,c_2\}$. Finally, let $C_3=\{(v_1,v_2),(v_2,v_2)\}$, respectively, and let $C_2=\{c_1,c_2\}$. Finally, let $C_3=\{(v_1,v_2),(v_2,v_2)\}$, and $\{\{v_2,v_2\},\{v_3\}\}$ and $\{\{v_2,v_2\},\{v_3\}\}$ and the edges in the 2-paths p_0 and p_3 occur in no 4-cycle defined so far; these are precisely the edges in $E(F)\setminus E(F')$. So, with C^* as defined in Lemma 2.1, $(\mathbb{Z}_n,C_1\cup C_2\cup C_3\cup C^*)$ is a 4-cycle system of $K_n-E(F)$.

Each of the Cases 4 to 6 is similar to either Case 1 or Case 3, so the details of the proof there are omitted. Throughout Cases 4–6, we let $V=\{v_i|i\in\mathbb{Z}_8\},V'=\mathbb{Z}_n\backslash V,z_i\in V'\backslash \{w_i\}$ whenever w_i is defined, and F'=F-V. In each case, |E(F')|=|E(F)|-8 and F' is an odd spanning forest, so by induction there exists a 4-cycle system (V',C_1) of $K_{n-8}-E(F')$. With C^* defined in Lemma 2.1, form a 4-cycle system $(\mathbb{Z}_n,C_1\cup C_2\cup C_3\cup C^*)$ by defining C_2 and C_3 as follows.

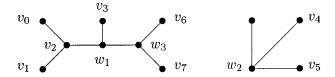


FIGURE 1. The forest F in Case 6.

Case 4. Suppose that $F \in T_2, T_3$, or T_4 , and if $F \in T_2$ or T_4 , then $n \neq 10$. Name the vertices as in Table I; if $F \in T_2$ or T_4 , then, since n > 10, we can assume that vertex $y \neq w_1$. For each $i \in \{1, 2, 3\}$, let c_i be the 4-cycle formed by adding the edges $\{v_{2i}, z_i\}$ and $\{v_{2i+1}, z_i\}$ to the 2-path p_i , and let $C_2 = \{c_1, c_2, c_3\}$. Let $C_3 = (\bigcup_{i \in \{1, 2, 3\}} K(\{v_{2i}, v_{2i+1}\}, V' \setminus \{w_i, z_i\})) \cup K(\{v_0, v_1\}, V')$.

Case 5. If $F \in T_4$ with n = 10, then proceed as in Case 4 with $\alpha = v_3$ and $w_1 = w_2$.

Case 6. If n=12 and F consists of two components, one of which is in T_1 and the other is $K_{1,3}$, then again proceed as in Case 4 with vertices labeled as in Fig. 1. Finally, there remains one case to consider.

Case 7. If $F \in T_2$ with n = 10, then let

$$\begin{split} V &= \{v_i | i \in \mathbb{Z}_6\} \cup \{w_i | i \in \mathbb{Z}_3\} \cup \{\infty\}, \text{ and let} \\ C &= \{(v_{2i}, v_{2j}, v_{2i+1}, v_{2j+1}) | 0 \le i < j \le 2\} \\ & \cup \{(v_{2i}, v_{2i+1}, w_{i+1}, w_{i+2}), (v_{2i+1}, \infty, v_{2i+2}, w_{i+2}) | i \in \mathbb{Z}_3\}, \end{split}$$

reducing the subscript of w modulo 3.

It may be of more use to state Theorem 2.1 in the following way.

Corollary 2.1. Let F be an odd spanning forest of K_n . There exists a 4-cycle system of $K_n - E(F)$ if and only if $|E(F)| \in \{(n/2) + 4i | 0 \le i \le (n-2)/8\}$.

Proof. Since F is spanning, clearly $|E(F)| \ge n/2$ (the size of a 1-factor of K_n), and, since F is a spanning forest, $|E(F)| \le n-1$ (the size of a spanning tree of K_n). If F_0 is a 1-factor, then $\binom{n}{2} - |E(F_0)| = n(n-1)/2 - n/2 = n(n-2)/2$, which is divisible by 4 for all even n; so F_0 satisfies the necessary conditions of Theorem 2.1. Since 4 must divide $|E(F_1)| - |E(F_2)|$ for any two forests F_1 and F_2 satisfying the conditions of Theorem 2.1, the corollary now follows.

References

- [1] B. Alspach and H. Gavlas, Cycle decompositions of K_n and $K_n I$, to appear.
- [2] H. Buchanan, Ph. D. dissertation, Univ West Virginia, 1996.
- [3] C. J. Colbourn and J. H. Dinitz (Editors), The CRC handbook of combinatorial designs, CRC, Boca Raton, Florida, 1996.

- [4] C. J. Colbourn and A. Rosa, Quadratic leaves of maximal partial triple systems, Graphs Combin 2 (1986), 317–337.
- [5] H. L. Fu and C. A. Rodger, Four-cycle systems with two-regular leaves, to appear.
- [6] C. C. Lindner and C. A. Rodger, "Decompositions into cycles II: cycle systems," Contemporary design theory, J. H. Dinitz and D. R. Stinson (Editors), Wiley, 1992, pp. 325–369.
- [7] D. Sotteau, Decompositions of $K_{m,n}(K_{m,n}^*)$ into cycles (circuits) of length 2k, J Combin Th (B) 30 (1981), 75–81.