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1. INTRODUCTION

The m-cycle (v0, v1, . . . , vm−1) is the graph with vertex set {vi|i ∈ Zm} and edge
set {{vi, vi+1}, {v0, vm−1}|i ∈ Zm−1}. An m-cycle system of G is an ordered pair
(V (G), C), where C is a set of m-cycles whose edges partition the edge set of G.
There have been many results found on the existence of m-cycle systems of Kn

and of Km,n. Most recently, the set of integers n for which there exists an m-cycle
system of Kn, where m is odd, has been completely settled [1]. It has also been
common in the situation where no m-cycle system of Kn exists, to find the smallest
set of edges E such that Kn −E does have an m-cycle system. See [3, 6] for results
on these problems.
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Another particularly interesting problem studied is to let H be one of a family
of spanning subgraphs of Kn and find m-cycle system of Kn −E(H); we say that
H is the leave of the m-cycle system. This type of problem is somewhat different,
because H grows with n. By using difference methods, inductive methods, and
amalgamations of graphs, this problem has been solved if H is an 1-factor [1], and
if m = 3, 4 or n (of course, n-cycles are Hamilton cycles) when H is any 2-factor
of Kn [2, 4, 5]. In this article, we completely solve another of these problems,
finding necessary and sufficient conditions for the existence of a 4-cycle system of
Kn − E(F ) for any spanning forest F of Kn. We say that a forest F is odd, if all
vertices inF have odd degree. To avoid confusion with cycles, let 〈v0, v1, . . . , vm−1〉
denote the path with vertex set {vi|i ∈ Zm} and edge set {{vi, vi+1}|i ∈ Zm−1}.
Let (A ∪ B, K(A, B)) denote a 4-cycle system of K|A|,|B| with bipartition A and
B of the vertex set. The following is well known, and has been proved in more
generality by Sotteau [7], but a proof is included here to keep the article self-
contained.

Lemma 1.1. There exists a 4-cycle system of Ka,b if and only if a and b are even.

Proof. The necessity is clear, and ((Za × {0}) ∪ (Zb × {1}), {((2i, 0), (2j, 1),
(2i + 1, 0), (2j + 1, 1))|i ∈ Za/2, j ∈ Zb/2}) proves the sufficiency.

2. RESULT

We begin with a small partial 4-cycle system that is vital in the proof of Theorem 2.1.

Lemma 2.1. There exists a 4-cycle system ({vi|i ∈ Z8}, C∗) of K8 − P with
leaveP consisting of the union of the four 2-pathsp0 = 〈v0, v2, v1〉, p1 = 〈v2, v6, v3〉,
p2 = 〈v4, v1, v5〉, and p3 = 〈v6, v5, v7〉.

Proof. Let C∗ = {(v0, v6, v1, v7), (v0, v4, v7, v3), (v0, v1, v3, v5), (v4, v5, v2, v3),
(v4, v6, v7, v2)}.

A leaf pairing of size x in a forest F is a set L of x sets, each containing two
leaves (vertices of degree 1) of F , such that each vertex appears in at most one set
in L, and such that for each pair {v, w} ∈ L there exists a vertex z in F that is
adjacent to both v and w (so dF (v, w) = 2). It is easy to check that an odd tree T
has a leaf pairing of size at least 4 unless T is K2 or is one of the trees in Table I.
Some of the vertices are labeled; this helps in the proof of Theorem 2.1.

Theorem 2.1. Let F be a forest of Kn that has at least one edge. There exists a
4-cycle system of Kn − E(F ) if and only if 4 divides |E(Kn)| − |E(F )|, F is odd
and spanning, and n is even.

Proof. Since each such forest has a vertex v of degree 1, and since the other
edges incident with v are partitioned into pairs by 4-cycles, n is even. Therefore,
F is odd and spanning, and so the necessity is clear.

We begin proving the sufficiency by noting that, if n ∈ {2, 4, 6, 8}, then the
necessary conditions require that F be a 1-factor; in each such case, it is trivial
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TABLE I. All odd trees with at most 3 leaf pairs, excluding K2.

to find a 4-cycle system of Kn − E(F ). The remainder of the proof follows by
induction, so suppose that for some even n ≥ 10 and for all even n′ < n there
exists a 4-cycle system of Kn′ − E(F ′) for any odd spanning forest F ′ of Kn′ for
which 4 divides |E(Kn′)| − |E(F ′)|. Let F be any odd spanning forest of Kn for
which 4 divides |E(Kn)|− |E(F )|. We consider several cases in turn. Let Kn have
vertex set Zn.

Case 1. Suppose that F contains a leaf pairing of size 4, say {{v2i, v2i+1}|i ∈ Z4}.
Let V = {vi|i ∈ Z8} and V ′ = Zn\V . For each i ∈ Z4, let wi be adjacent to v2i

and v2i+1 in F ; then, since dF (wi) ≥ 2, we know wi ∈ V ′. For each i ∈ Z4, let
zi ∈ V ′\{wi} be a vertex ‘‘paired’’ with wi; zi exists because both n and |V | are
even, so |V ′| is even. Note that w1, w2, w3, w4, z1, z2, z3, and z4 need not all be
distinct.

Let F ′ = F −V . Then |E(F ′)| = |E(F ′)|−8, so, since 4 divides (n
2 )−|E(F )|,

it can easily be seen that 4 divides (n−8
2 ) − |E(F ′)|. Also, |V ′| = n − 8 is even
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and F ′ is an odd spanning forest of Kn−8, so by induction there exists a 4-cycle
system (V ′, C1) of Kn−8 − E(F ′). For each i ∈ Z4, let ci be the 4-cycle formed
by adding the edges {v2i, zi} and {v2i+1, zi} to the 2-path pi defined in Lemma
2.1, let C2 = {ci|i ∈ Z4}, and let C∗ be as defined in Lemma 2.1. Finally, let
C3 = ∪i∈Z4K({v2i, v2i+1}, V ′\{zi, wi}). Then the edges e2i = {v2i, wi} and
e2i+1 = {v2i+1, wi} for i ∈ Z4 occur in no 4-cycle defined so far, which is good,
because E(F ) = E(F ′) ∪ {ei|i ∈ Z8}. So (Zn, C1 ∪ C2 ∪ C3 ∪ C∗) is a 4-cycle
system of Kn − E(F ), as required.

Case 2. Suppose one component of F is K2 with vertex set {n− 2, n− 1}. Since
4 divides (n

2 )−|E(F )|, it is easy to check that 4 also divides (n−2
2 )− (|E(F )|−1).

Therefore, by induction there exists a 4-cycle system (Zn−2, C1) of Kn−2−E(F ′),
where F ′ = F − {n − 2, n − 1}. Then (Zn, C1 ∪ K(Zn−2, {n − 2, n − 1})) is a
4-cycle system of Kn − E(F ).

In view of Cases 1 and 2, it remains to consider the cases where F contains
at most 3 leaf pairs and no component of F is K2. Trees with this property are
listed in Table I. Notice that under this restriction that we just placed on F , if one
component of F were to be K1,5, then either F = K1,5 or the other component of
F would have to be K1,3; since F is spanning, both these cases are excluded, since
4 divides neither (62) − 5 nor (10

2) − 8, respectively.

Case 3. Suppose that either F ∈ T1 (see Table I), or n /= 12 and F consists of two
components, one of which is in T1 and the other is K1,3 (the necessary conditions
preclude the possibility of n = 10 in this case). Then since F is spanning, the
vertices in V = {vi|i ∈ Z8} marked on the tree in T1 in Table I are all distinct.
Let {w1, v2}, {w1, v3}, {w2, v4} and {w2, v5} be edges in F , as is shown in Table
I. Let V ′ = Zn\V , and for each i ∈ {1, 2} let zi ∈ V ′\{wi}.

Let F ′ = F − V . Then |E(F ′)| = |E(F )| − 8, |V ′| = n − 8, and F ′ is
an odd spanning forest of Kn−8, so as in Case 1 by induction there exists a 4-
cycle system (V ′, C1) of Kn−8 − E(F ′). Using Lemma 2.1, let c1 and c2 be
formed from the 2-paths p1 and p2 by adding the edges in {{v2, z1}, {v3, z1}}
and {{v4, z2}, {v5, z2}}, respectively, and let C2 = {c1, c2}. Finally, let C3 =
(∪i∈{0,3}K({v2i, v2i+1}, V ′)) ∪ (∪i∈{1,2}K({v2i, v2i+1}, V ′\{wi, zi})). Then the
edges {v2i, wi} and {v2i+1, wi}) for i ∈ {1, 2} and the edges in the 2-paths p0 and
p3 occur in no 4-cycle defined so far; these are precisely the edges in E(F )\E(F ′).
So, with C∗ as defined in Lemma 2.1, (Zn, C1 ∪C2 ∪C3 ∪C∗) is a 4-cycle system
of Kn − E(F ).

Each of the Cases 4 to 6 is similar to either Case 1 or Case 3, so the details of
the proof there are omitted. Throughout Cases 4–6, we let V = {vi|i ∈ Z8}, V ′ =
Zn\V, zi ∈ V ′\{wi} whenever wi is defined, and F ′ = F − V . In each case,
|E(F ′)| = |E(F )| − 8 and F ′ is an odd spanning forest, so by induction there
exists a 4-cycle system (V ′, C1) of Kn−8 −E(F ′). With C∗ defined in Lemma 2.1,
form a 4-cycle system (Zn, C1 ∪ C2 ∪ C3 ∪ C∗) by defining C2 and C3 as follows.
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FIGURE 1. The forest F in Case 6.

Case 4. Suppose that F ∈ T2, T3, or T4, and if F ∈ T2 or T4, then n /= 10. Name
the vertices as in Table I; if F ∈ T2 or T4, then, since n > 10, we can assume
that vertex y /= w1. For each i ∈ {1, 2, 3}, let ci be the 4-cycle formed by adding
the edges {v2i, zi} and {v2i+1, zi} to the 2-path pi, and let C2 = {c1, c2, c3}. Let
C3 = (∪i∈{1,2,3}K({v2i, v2i+1}, V ′\{wi, zi})) ∪ K({v0, v1}, V ′).

Case 5. If F ∈ T4 with n = 10, then proceed as in Case 4 with α = v3 and
w1 = w2.

Case 6. If n = 12 and F consists of two components, one of which is in T1 and
the other is K1,3, then again proceed as in Case 4 with vertices labeled as in Fig. 1.

Finally, there remains one case to consider.

Case 7. If F ∈ T2 with n = 10, then let

V = {vi|i ∈ Z6} ∪ {wi|i ∈ Z3} ∪ {∞}, and let

C = {(v2i, v2j , v2i+1, v2j+1)|0 ≤ i < j ≤ 2}
∪ {(v2i, v2i+1, wi+1, wi+2), (v2i+1,∞, v2i+2, wi+2)|i ∈ Z3},

reducing the subscript of w modulo 3.

It may be of more use to state Theorem 2.1 in the following way.

Corollary 2.1. Let F be an odd spanning forest of Kn. There exists a 4-cycle
system of Kn − E(F ) if and only if |E(F )| ∈ {(n/2) + 4i|0 ≤ i ≤ (n − 2)/8}.

Proof. Since F is spanning, clearly |E(F )| ≥ n/2 (the size of a 1-factor of Kn),
and, since F is a spanning forest, |E(F )| ≤ n − 1 (the size of a spanning tree of
Kn). If F0 is a 1-factor, then (n

2 ) − |E(F0)| = n(n − 1)/2 − n/2 = n(n − 2)/2,
which is divisible by 4 for all even n; so F0 satisfies the necessary conditions of
Theorem 2.1. Since 4 must divide |E(F1)| − |E(F2)| for any two forests F1 and
F2 satisfying the conditions of Theorem 2.1, the corollary now follows.
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