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SUMMARY

The dynamic analysis of sliding structures is complicated due to the presence of friction. Synchronization of
the kinematics of all the isolation bearings is often granted to simplify the task. This, however, may lead to
inaccurate prediction of the structural responses under certain circumstances. Stepped structures or
continuous bridges with seismic isolation are notable examples where unsynchronized bearing motions are
expected. In this paper, a logically simple and numerically e$cient procedure is proposed to solve the
dynamic problem of sliding systems with unsynchronized support motions. The motion equations for the
sliding and non-sliding modes of the isolated structure are uni"ed into a single equation that is represented
as a di!erence equation in a discrete-time state-space form and the base shear forces between the sliding
interfaces can be determined through simple matrix algebraic analysis. The responses of the sliding structure
can be obtained recursively from the discrete-time version of the motion equation with constant integration
time step even during the transitions between the non-sliding and sliding phases. Therefore, both accuracy
and e$ciency in the dynamic analysis of the highly non-linear system can be enhanced to a large extent.
Rigorous assessment of seismic structures with unsynchronized support motions has been carried out for
both a stepped structure and a continuous bridge. E!ectiveness of friction pendulum bearings for earth-
quake protection of such structures has been veri"ed. Moreover, evident unsynchronized sliding motions of
the friction bearings have been observed, con"rming the necessity to deal with each of the bearings
independently in the analytical model. Copyright ( 2000 John Wiley & Sons, Ltd.
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INTRODUCTION

Seismic isolation is one of the possible solutions for civil engineering structures to sustain severe
earthquakes without damage. Because of the high lateral #exibility of the isolation bearings, the
vibration period of the isolated structure is lengthened so that dynamic resonance of the isolated



structure with the earthquakes is avoided. The isolated structure is prevented from over-
displacing by further introducing high damping material to the bearings. Seismic isolation has
become a reality in engineering practice since the advent of lead rubber bearings (LRB) in the
early 1980s. Actually, multifarious isolation devices have been developed ever since, among which
the sliding-type bearing is one of the most competitive to the rubber-type bearing. With the
implementation of the sliding bearings, the base shear force transmitted to the superstructure is
limited to the maximum frictional force of the sliding bearings, regardless of the severity of
earthquakes. If the sliding bearings are frictionless, the transmission path of seismic forces will be
completely released but excessive displacement will be restive. Fortunately, the problem of
excessive displacement is relieved by the friction mechanism of the sliding bearings where
vibration energy is dissipated. Moreover, with the introduction of concave sliding surfaces,
restoring capability of the isolated structure can be provided through the pendulum dynamics
which, in turn, changes the fundamental period of the structure and makes the friction pendulum
bearings (FPB) functionally comparable to rubber bearings. Although rubber bearings have been
extensively applied for base isolation, the friction pendulum bearings have found more and more
applications in recent years for economic reasons [1}6].

Because non-sliding and sliding phases exist alternatively in the motion of sliding structures
depending on the magnitude of the shear forces at the frictional sliding interfaces, the dynamics of
sliding structures is a highly non-linear problem. The non-linear problem is so complicated that
analytical solution is limited to the harmonic motions of sliding structures with no more than two
degrees of freedom under idealized conditions [7}8], and more realistic transient responses of
sliding structures with multiple degrees of freedom (MDOF) can only be obtained numerically.
Mostaghel and Tanbakuchi [9] proposed a semi-analytical solution procedure by alternatively
using two sets equations of motions, corresponding to the non-sliding and sliding phases. Yang
et al. [10], Lu and Yang [11] proposed a numerical solution procedure by introducing a "ctitious
spring to the foundation #oor to represent the frictional e!ect of the sliding bearings. In all the
aforementioned studies, the sliding bearings were applied to structures erected on contour
foundations where behaviors of all the isolation bearings were presumably identical. This
assumption, however, may not be adequate under certain circumstances. A notable exception is
the application of isolation bearings to structures with a stepped foundation where, due to
structural asymmetry in elevation, unsynchronized bearing motions would occur. This makes the
dynamic analysis of the isolated stepped structures even more complicated, and the existing
numerical schemes cannot be adopted directly [9}11]. Recently, Wang et al. [12] proposed for
the dynamic analysis of isolated bridge structures with unsychronized bearing motions a numer-
ical procedure based on equilibrium and kinematics of the sliding bearings, following a prescribed
friction mechanism. A uni"ed governing equation was considered for both the sliding and
non-sliding phases without changing any system parameters. Although conceptually simple, the
numerical procedure was yet unwieldy because the determination of the bearing shears required
an iterative process based on a corrective-pseudo-force concept.

In this paper, the dynamic problem of highly non-linear systems with unsynchronized support
motions is tackled by introducing a logically simple and numerically e$cient procedure. The
motion equations for the sliding and non-sliding modes of the isolated structure are uni"ed into
a single equation that is represented as a di!erence equation in a discrete-time state-space form
and the base shear forces between the sliding interfaces can be determined through matrix
algebraic analysis. In the non-sliding phase, the shear force between the sliding interfaces fails to
overcome the maximum frictional force of the sliding bearing. The sliding bearing remains still
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and the relative velocity between the sliding interfaces is known to be zero, though the quantity of
the frictional force is not known yet. In the sliding phase, the shear force between the sliding
interfaces is large enough to overcome the maximum frictional force. The isolated bearing slides
and the frictional force are known to be the maximum frictional force but the relative velocity
between sliding interfaces is not known yet. Since one of the quantity, either the frictional force or
the relative velocity, is known, the motion equation in the form of di!erence equation can be
solved recursively in such a way that the integration interval remains constant throughout the
whole process of dynamic analysis. Rigorous assessment of seismic structures with unsyn-
chronized support motions has been carried out for both a stepped structure and a continuous
bridge. E!ectiveness of friction pendulum bearings for earthquake protection of such structures
has been veri"ed.

SOLUTION ALGORITHM FOR GENERIC SLIDING SYSTEMS

The equation of motion of a generic sliding structure under external disturbances w (t) can be
represented as

MuK (t)#Cu5 (t)#Ku(t)"Ew(t)#BF(t) (1)

where u (t) is the n]1 displacement vector, M, C, K are respectively, the n]n mass, damping and
sti!ness matrices, E is the n]q location matrix of the external loads, w (t) is the q]1 loading
vector, B is the n]r location matrix of the friction forces and F (t) is the r]1 friction force vector.

State-space representation

Equation (1) can be represented in a state-space form, leading to a "rst-order di!erential equation
as

z5 (t)"A* z(t)#E* w (t)#B*F (t) (2)

where

z(t)"C
u (t)

u5 (t)D is the 2n]state vector,

A*"C
0

!M~1K

I

!M~1CD is the 2n]2n system matrix,

B*"C
0

M~1BD is the 2n]r friction loading matrix, and

E*"C
0

M~1ED is the 2n]q external loading matrix.

Discrete-time solution

A closed-form solution of the time-invariant dynamic system (2) can be obtained as

z(t)"eA* (t!t
0
) z(t

0
)#P

t

t
0

eA* (t!q) [B*F (q)#E*w (q)] dq (3)
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In order to carry out the integration involved in Equation (3), the continuous-time evolutions of
w (q) and F (q) within the sampling interval are required. Since the recorded load functions are
commonly discretized and the friction forces are piece-wise linear in nature, it is logical to assume
linear variations of these loading functions between two consecutive sampling instants. That is

F (q)"
k*t!q

*t
F[(k!1) *t]#

q!(k!1)*t

*t
F[k *t], (k!1)*t)q)k*t (4a)

w (q)"
k*t!q

*t
w[(k!1) *t]#

q!(k!1)*t

*t
w[k *t], (k!1)*t)q)k*t (4b)

When t
0
"(k!1)*t, t"k*t, and z[k]"z (k*t), F[k]"F (k*t), etc. are assigned, from

Equation (3), the analytical solution to the state Equation (2) is a di!erence equation as

z[k]"Az[k!1]#B
0
F[k!1]#B

1
F[k]#E

0
w[k!1]#E

1
w[k] (5)

where A"eA**t is the 2n]2n discrete-time system matrix, B
0
"[(A*)~1A#(1/*t)(A*)~2

(I!A)]B* is the 2n]r discrete-time friction loading matrix of the previous time step,
B
1
"[!(A*)~1#(1/*t) (A*)~2 (A!I)]B* is the 2n]r discrete-time friction loading matrix of

the current time step, E
0
"[(A*)~1 A#(1/*t) (A*)~2 (I!A)]E* is the 2n]q discrete-time

external loading matrix of the previous time step, and E
1
"[!(A*)~1#(1/*t)(A*)~2

(A!I)]E* is the 2n]q discrete-time external loading matrix of the current time step.
The non-sliding conditions for each individual bearing are

D F
i
[k] D(k

i
=

i
(6a)

and

uR
i
[k]"0 (6b)

whereas the sliding conditions for the bearing are

F
i
[k]"k

i
=

i
sgn (uR

i
[k]) (7a)

and

uR
i
[k]O0 (7b)

where F
i
is the ith component of the friction force vector F[k], k

i
is the frictional coe$cient of the

ith sliding bearing, =
i
is the load carried by the ith sliding bearing, uR

i
is the relative velocity

between the sliding interface of the ith sliding bearing, and sgn is the signum function.

Modixed shear-balance procedure

Note that in Equation (5) the friction force F[k] of the current time instant is dependent on
the motion conditions which, however, is not known as a priori. Therefore, the solution cannot
be obtained directly through simple recursive calculations. Instead of using an iterative corrective
pseudo-force procedure as commonly considered for non-linear dynamic analysis, a procedure
based on the concept of shear balance at the sliding interface is proposed [9].

The friction mechanisms stated in Equations (6) and (7) suggests that the shear force and the
sliding velocity of the bearing are indicators of the motion conditions. During the sliding phase,
the friction force is known as de"ned by Equation (7a), but the sliding velocity remains unknown
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as stated by Equation (7b). During the non-sliding phase, the friction force or equivalently the
bearing shear, remains undetermined as indicated by Equation (6a), however, with the condition
of zero sliding velocity instead (Equation (6b)). Therefore, either the friction force or the sliding
velocity is known, depending on the motion condition. With this additional condition, the base
shear F[k] at time instant k can be determined, and the responses of the system can in turn be
solved. This forms the rationale of the proposed shear-balance procedure.

The key step of the proposed Shear-Balance Procedure numerical scheme is that, at each time
step, the analysis starts by assuming a non-sliding condition. This implies

y[k]"Dz[k]"0 (8)

where y[k] is the r]1 bearing velocity vector, and D"[0, BT] is the r]2n location matrix of the
bearing velocity.

Substitution of Equation (5) for z[k] into Equation (8), the bearing shear F[k] that would
block the system from sliding is predicted as

F1 [k]"!(DB
1
)~1D (Az [k!1]#E

0
w[k!1]#E

1
w [k]#B

0
F[k!1]) (9)

According to the friction law, however, the resulted shear forces are always less than the
maximum friction force of the corresponding bearing interface during a non-sliding phase.
De"ning FM

i
[k] as the ith component of F1 [k], which corresponds to the friction force of the ith

bearing, the possible motion conditions are:
(A) All the bearing shear forces are less than the corresponding maximum friction forces, i.e.

DFM
i
[k](k

i
=

i
∀i"1,2, r (10)

This agrees with the non-sliding assumption made "rst in the analysis. With the friction force
vector F[k]"F1 [k] so determined, the response z[k] of the dynamic system are then obtained
explicitly from Equation (5).

(B) All the bearing shear forces are greater than or equal to the corresponding maximum
friction forces, i..e

D FM
i
[k] D*k

i
=

i
∀i"1,2 , r (11)

This obviously violates the presumed non-sliding condition according to the friction mechanism,
and, the whole system should be in a sliding phase rather. Accordingly, the shear forces of all the
bearing should be adjusted by

F
i
[k]"k

i
=

i
sgn(FM

i
[k]) ∀i"1,2 , r (12)

With the friction force vector F[k] so determined, the response z[k] of the sliding structure are
then obtained explicitly from Equation (5).

(C) There are p bearing shears (p(r) of the estimated shear force vector F1 [k] exceeding their
corresponding maximum friction forces. This also violates the assumed condition that all the
bearings are in a non-sliding condition. Rearranging the estimated shear force vector to be

F1 *[k]"C
F1 *
1
[k]

F1 *
2
[k]D"TF1 [k] (13)

where F1 *
1
[k] is the (r!p)]1 shear force vector of the non-sliding bearings whose components

FM *
1j

satisfy the assumption, that is, DFM *
1j

D(k
j
=

j
, ∀j"1,2, r!p. F1 *

2
[k] is the p]1 shear force
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vector of the sliding bearings whose components FM *
2j

violate the assumption, that is, DFM *
2j

D*k
j
=

j
,

∀j"1,2, p, and T is the r]r transformation matrix that de"nes the linear relationship between
F1 [k] and F1 *[k].
Using the same transformation matrix T, the bearing velocity vector y[k] can be easily reshu%ed
as

y*[k]"PF* [k]#Q* [k] (14)

where

y* [k]"Ty[k]"A
y*
1

[k]

y*
2

[k]B (15)

F* [k]"TF[k]"A
F*
1
[k]

F*
2
[k]B (16)

Q* [k]"T (DAz [k!1]#DB
0
F[k!1]#DE

0
w [k!1]#DE

1
w[k])

"A
Q*

1
[k]

Q*
2

[k]B (17)

P"TDB
1

T~1"C
P
11

P
12

P
21

P
22
D (18)

In the above equations, the transformed vectors with subscript 1 correspond to the non-sliding
bearings while those with subscript 2 correspond to the sliding bearings. For the bearing in
a non-sliding mode, their sliding velocities are null, implying

y*
1
[k]"0 (19)

whereas for bearings in the sliding mode, each component of the transformed friction force vector
F*
2
[k] should be adjusted as

F*
2j

[k]"k
j
=

j
sgn (F*

2j
[k]), j"1,2 , p (20)

From Equation (14), (19) and (20), the shear forces of the non-sliding bearings are calculated as

F*
1

[k]"!P~1
11

(P
12

F*
2

[k]#Q*
1

[k]) (21)

In accordance with the non-sliding condition, magnitudes of the components F*
1j
's of F*

1
should

be no more than their corresponding maximum friction forces, k
j
=

j
. That is

D FM *
1j

D)k
j
=

j
, ∀j (22)

However, if DFM *
1j

D*k
j
=

j
, for any j, further iteration is required. Let F1 [k]"T~1F* [k] and go

through the previous procedures to check the motion condition until Equation (22) is satis"ed.
The friction force vector in the original co-ordinate is then determined by

F[k]"T~1F* [k] (23)

With the friction force vector so determined, the structural response of the system with hybrid
supporting conditions can then be solved explicitly from Equation (5). Flow chart for the solution
algorithm is illustrated in Figure 1.
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Figure 1. Flow chart for the proposed numerical algorithm.
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Figure 2. (a) Building on a stepped foundation without isolation, (b) building on
a stepped foundation with isolation.

The advantages of this proposed algorithm over the existing methods [9}12] are

(a) It allows for a more systematic analysis with a uni"ed governing equation considered for
both sliding and non-sliding modes.

(b) It requires less computational e!orts with a constant and comparatively larger integration
interval considered throughout the analysis.

(c) The friction force vector is obtained through simple matrix algebraic analysis satisfying
equilibrium of shear forces and compatibility of motion conditions at the sliding interfaces.

(d) It is adaptive in dealing with systems with unsynchronized multiple isolation bearings.

NUMERICAL EXAMPLES

Example 1: Seismic isolation of a two-storey building erected on a stepped foundation

Many hillside structures are built in accommodation with the slope, which results in elevation
di!erences between the column footings, as in the two-storey house illustrated in Figure 2(a).
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Table I. Natural frequencies of the building in Example 1.

Structural type Fixed Isolated
Mode

1 2.23 0.48
2 14.29 2.88

Natural frequeny (Hz) 3 58.66 11.74
4 88.03 23.85
5 102.50 26.03

Owing to geometric asymmetry in elevation, this type of structure is vulnerable as it takes
unevenly distributed column shears during earthquakes. If such a building is to be isolated with
friction pendulum bearings against earthquakes, as shown in Figure 2(b), part of the isolation
level is elevated. As a consequence, each of the sliding bearings implemented underneath the
columns behaves independently due to structural asymmetry. Therefore, the design and the
dynamic analysis of the isolated stepped-structures di!er somewhat from the common practice. It
is noted that, when isolated, the lower storey of the house is braced so as to avoid an unfavourable
soft "rst storey con"guration. Dimensions of the structural members are indicated in Figures 2(a)
and (b). The fundamental natural frequency of the building before isolation is 2.23 Hz. The radius
of curvature of the friction pendulum bearing is chosen to be 1.0 m so that the fundmental period
of the isolated structure is shifted to approximately 2 s during sliding. Natural frequencies of the
"rst "ve modes of the structure, with and without isolation, are summarized in Table I.
Coulomb's model is considered for the friction mechanism of the sliding bearings with the
frictional coe$cient k"10 per cent assumed. Material properties of the structural members
considered are: Young's modulus"210]109 N/m2, density"7.8 t/m3 and unit mass of
slab"3.18 t/m. The 1940 El Centro earthquake is used as input. The proposed numerical scheme
is adopted for the dynamic analysis of this typical multiple-support sliding structure. Besides,
a constant integration time interval *t"0.01 s is used throughout the analysis.

E!ectiveness of seismic isolation for the stepped structure is examined by comparing the
structural responses with those obtained without isolation. Simulation results are summarized in
Table II. After isolation, the maximum storey drift of the "rst #oor is reduced by 44 per cent, and
the second #oor by 74 per cent; the maximum storey shear of the "rst #oor is reduced by 27 per
cent, and the second #oor by 80 per cent; the maximum acceleration of the "rst #oor is reduced by
37 per cent, and the second #oor by 74 per cent. The reason for a more pronounced reduction of
the dynamic responses in the second #oor is that, most of the earthquake forces are resisted by the
upper level of the stepped structure if not isolated, whereas the earthquake forces are evenly
distributed over the #oors when isolated. Con"guration of the peak #oor displacement relative to
the "xed base is illustrated in Figure 3. It is evident that signi"cant reduction of the #oor
displacement of the isolated structure has been achieved with the allowance of base displacement
as a tradeo!. The maximum sliding displacements of the friction pendulum bearings are 3.13, 3.14
and 3.26 cm, respectively, for FPB1, FPB2 and FPB3. The displacement responses of the bearings
shown in Figure 4 are similar but not identical. It is interesting to note that small oscillations are
observed for FPB3 at the upper level when the other bearings at the lower level are stuck,
con"rming the necessity of modeling the bearings independently in the analysis. Moreover,
hysteresis of the bearing frictions shown in Figure 5 re#ect precisely the Coulomb's frictional
mechanism considered.
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Table II. Assessment of isolation e!ectiveness (Example 1).

Structural
type

Fixed Isolated Reduction
(%)

Max.
response
quantity*

D
1
/H

1
(%) 0.085 0.048 44

D
2
/H

2
(%) 1.570 0.405 74

S
1
/= (%) 22.8 16.7 27

S
2
/= (%) 65.4 13.1 80

ACC
1

(g) 0.67 0.42 37
ACC

2
(g) 1.29 0.34 74

DB
1

(cm) * 3.13 *

DB
2

(cm) * 3.14 *

DB
3

(cm) * 3.26 *

*D
1
/H

1
"storeydrift ratio of "rst #oor (normalized with respect to storey

height H
1
);

D
2
/H

2
"storeydrift ratio of second #oor (normalized with respect to storey

height H
2
);

S
1
/H

1
"storey shear of "rst #oor (normalized with respect to structure's

weight=);
S
2
/="storey shear of second #oor (normalized with respect to structure's

weight=);
ACC

1
"acceleration of "rst #oor;

ACC
2
"acceleration of second #oor;

DB
1
"sliding displacement of FPB 1;

DB
2
"sliding displacement of FPB 2;

DB
3
"sliding displacement of FPB 3.

Figure 3. Peak #oor displacements relative to "xed base (Example 1).
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Figure 4. Sliding displacement of friction pendulum bearings (Example 1).

Example 2: Seismic isolation of a continuous bridge

A common three-span continuous bridge with hinge-type supports on the interior piers and
roller-type supports on the exterior piers (abutments) is illustrated in Figure 6(a). Damage of the
bridge structures due to earthquakes occurs occasionally in the piers, which may in turn result in
collapse of the bridge spans. With the piers isolated from the bridge superstructure, the bridge and
the piers vibrate independently during earthquakes so that the interactions between them are
minimized. Replacing the supporting bearings by friction pendulum bearings for seismic isolation
constitutes another sliding structure with unsynchronized support motion (Figure 6(b)). Indepen-
dence of the bearing behaviours during earthquakes due to structural asymmetry is taken into
account in the analytical model. The radius of curvature of the friction pendulum bearing is
chosen to be 1.0 m so that the fundamental period of the isolated bridge is approximately 2 s
during sliding. The frictional coe$cient of the sliding bearings is assumed to be 10 per cent.
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Figure 5. Hysteresis of Bearing Friction (Example 1).

Member properties of the bridge considered in the analysis are summarized in Table III. The 1940
El Centro earthquake is used as input and a constant integration time interval *t"0.01 s is used
throughout the analysis.

E!ectiveness of seismic isolation on bridge structures can best be assessed by examining the
shears and moments at the piers' footings. As indicated from Table IV, beyond 80 per cent of peak
reductions of the base shears at the interior piers (VP1, VP2) have been achieved when the bridge
is isolated. Meanwhile, equivalent degrees of peak reduction of the moments at the interior piers
(MP1, MP2) have been obtained, and so have the peak displacements at the top of the piers (DP1,
DP2). Besides, peak displacement of the bridge superstructure (DS) is reduced by 43 per cent.
Both reductions in the forces of the substructure and the displacements of the superstructure are
achieved simultaneously. This might contradict to one's intuition that displacements of an
isolated structure will be excessive. On the other hand, the base shears (VA1, VA2) and the base
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Figure 6. (a) Conventional continuous bridge (Example 2), (b) continuous bridge
with seismic isolation (Example 2).

Table III. Bridge member properties (Example 2).

Superstructure Pier Abutment

Area (m2) 1.538 4.5 15
Moment of inertia (m4) 3.7 0.84 2.81
Young's modulus (N/m2) 2.04]1011 2.05]1010 2.05]1010
Density (t/m3) 7.8 2.4 2.4

moments (MA1, MA2) of the abutments are more or less increased when the bridge is isolated.
The fact is that, with the conventional design, nearly 90 per cent of the earthquake forces are
resisted by the piers on which the hinge-type bearings are implemented. This may not be judicious
arrangement since, intrinsically sti!er, the abutments normally possess higher loading capacity
than the piers. Therefore, it is not harmful to the bridge at all if the abutments share more loading
during earthquakes. Actually, when the bridge is isolated, the overall earthquake forces to be
carried by the substructure are not only remarkably reduced (70 per cent for the base shear and 67
per cent for the moment) but also fairly distributed between the piers and the abutments. Seismic
isolation permits a more rational and e!ective earthquake-resistant mechanism. The sliding
displacements of the bearings shown in Figure 7 are similar but not identical, con"rming the
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Table IV. E!ectiveness assessment of seismic isolation (Example 2).

Structural
type

Conventional Isolated Reduction (%)

Max.
response
quantity*

VP1 (kN) 11402 2335 80
VP2 (kN) 19161 2438 87
VA1 (kN) 1912 2578 !35
VA2 (kN) 2758 2809 !2
Sum. of shear 35233 10160 70

MP1 (kN m) 34206 7784 77
MP2 (kN m) 57482 8126 86
MA1 (kN m) 5097 8595 !69
MA2 (kN m) 7356 9363 !27
Sum. of moment 104141 33868 67

DP1 (cm) 9.06 1.54 83
DP2 (cm) 9.03 1.59 82
DA1 (cm) 0.20 0.54 !170
DA2 (cm) 0.29 0.58 !100
DS (cm) 9.06 5.16 43

VP1"shear of pier 1;
VP2"shear of pier 2;
VA1"shear of abutment 1;
VA2"shear of abutment 2;
MP1"moment of pier 1;
MP2"moment of pier 2;
MA1"moment of abutment 1;
MA2"moment of abutment 2;
DP1"displacement of pier 1;
DP2"displacement of pier 2;
DA1"displacement of abutment 1;
DA1"displacement of abutment 1;
DA2"displacement of abutment 2;
DS"displacement of superstructure;

necessity to model the bearings independently. The maximum sliding displacement of all occurs
on FPB1 to be 4.99 cm, which is well within the tolerance of the expansion joints for bridges.
Again in this example, the hysteresis of the bearing frictions shown in Figure 8 re#ect precisely the
Coulomb's frictional mechanism considered.

CONCLUSIONS

Researches or engineering practice on base isolation up-to-date are mostly in regard of structures
built on contour foundations. In order to simplify the analysis, synchronization of the kinematics
of all the isolation bearings is often granted. However, synchronization of the motions of the
isolation bearings at discretion may lead to inaccurate prediction of structural responses. Stepped
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Figure 7. Sliding displacement of friction pendulum bearings (Example 2).

structures or continuous bridges with seismic isolation are notable examples where unsyn-
chronized bearing motions are expected. Such problems, however, cannot be solved directly by
the existing numerical procedures developed for sliding systems. In this paper, an innovative and
systematic numerical procedure based on equilibrium of shears and compatability of the motion
conditions at the sliding interfaces has been developed for dynamic analysis of sliding structures
with unsynchronized support motions. According to the proposed scheme, a uni"ed motion
equation can be adapted for both the non-sliding and sliding phases of the system. The responses
of the sliding structure are obtained recursively from the discrete-time version of the motion
equation with constant integration time step even during the transitions between the non-sliding
and sliding phases. Therefore, both accuracy and e$ciency in the dynamic analysis of the highly
non-linear system can be achieved. Feasibility of using friction pendulum bearings for seismic
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Figure 8. Hysteresis of bearing friction (Example 2).

isolation of both a stepped structure and a continuous bridge has been investigated under 1940 El
Centro earthquakes. In the case of the stepped structure, simulation results indicate that
signi"cant reduction of the #oor displacements, accelerations as well as the storey shears of the
isolated structure can be obtained, with acceptable bearing displacements. In the case of the
isolated continuous bridge, the overall earthquake forces to be carried by the substructure have
shown to be remarkably reduced and fairly distributed between the piers and the abutments.
E!ectiveness of friction pendulum bearings on earthquake protection of stepped structures as
well as continuous bridges has been assured. Moreover, evident unsynchronized sliding motions
of the friction bearings have been observed in both examples, which con"rms the necessity to deal
with the bearings independently in the analysis.
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