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Simulation is a powerful tool for studying the dynamics of a system.  However,
simulation is time-consuming.  Thus, it is natural to attempt to use multiple proces-
sors to speed up the simulation process.  Many protocols have been proposed to
perform discrete event simulation in multi-processor environments.  Most of these
distributed discrete event simulation protocols are either conservative or optimistic.
The most common optimistic distributed simulation protocol is called Time Warp.
Several issues must be considered when designing a Time Warp simulation; examples
are reducing the state saving overhead and designing the global control mechanism (i.
e., global virtual time computation, memory management, distributed termination,
and fault tolerance).  This paper addresses these issues.  We propose a heuristic to
select the checkpoint interval to reduce the state saving overhead, generalize a
previously proposed global virtual time computation algorithm, and present new
algorithms for memory management, distributed termination, and fault tolerance.
The main contribution of this paper is to provide guidelines for designing an efficient
Time Warp simulation.
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1. INTRODUCTION

A discrete event simulation consists of a series of events, along with times when they
occur.  Execution of any event can give rise to any number of events with later timestamps.
All of this is straightforward in implementation if there is a centralized system with one event
queue: we just execute the earliest not-yet-executed event next.

Since simulation is time-consuming, it is natural to attempt to use multiple processors
to speed up the simulation process.  In distributed discrete event simulation (or  distributed
simulation), the simulated system is partitioned into a set of sub-systems that are  simulated
by a set of  processes that communicate by sending/receiving timestamped messages.  The
scheduling of an event for a sub-system at time t is simulated by sending a message with
timestamp t to the corresponding process.  The global event list and global clock of a
sequential simulation do not exist in the distributed counterpart. Each process has its own
input message queue and local clock.  To correctly simulate a sub-system, the corresponding
process must execute arriving messages in their timestamp order, as opposed to their real-
time arrival order.  To satisfy this causality constraint, a synchronization mechanism is
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required.  One of the most common synchronization protocols for distributed simulation is
called Time Warp [12] (Different approaches to distributed simulation are discussed else-
where [8, 15, 19, 22, 28, 31, 32].)

The Time Warp protocol takes an optimistic approach in which a process executes
every message1 as soon as it arrives.  If a message with an earlier timestamp subsequently
arrives (called a straggler), the process must roll back its state to the time of the straggler and
re-execute from that point.  To support rollback, several data structures are maintained in a
process:

∑ Input queue: the set of all messages which have recently arrived.  These messages
are sorted in their timestamp order. Some of them may have been processed.

∑ Local clock: the timestamp of the message being processed.  If all the messages in
the input queue have been processed, then the local clock is set to •.

∑ Output queue: the set of negative copies (i.e., antimessages) of the positive mes-
sages the process has recently sent.  An antimessage of a message m is exactly like
m in format and content except in one field: its sign.  Two messages that are identical
except for opposite signs are said to be antimessages of one another.

∑ State queue: copies of the process’s recent states.

When a message arrives at a process pi with a timestamp no less than the local clock,
it is inserted in the  input queue.  Process pi executes messages in the input queue in their
timestamp order.  Let ts(m) be the timestamp of a message m.  Suppose that the scheduling of
a message m is due to the execution of another message m0.  Then the send time of m
(denoted as ts'(m)) is defined as the timestamp of m0.  In other words, ts'(m) = ts(m0).  Since the
execution of an event always schedules events with later timestamps, we have ts'(m) = ts(m0)
< ts(m).  When m is executed, the following steps are performed: (i) The local clock advances
to ts(m).  (ii)  Message m is processed.  If any message m' is scheduled to another process pj

during the execution, the antimessage of m' is also created.  The positive message is sent to
pj, and the negative copy is inserted in the output queue in send time order.  (iii) The new
process state after the execution is added in the state queue. (Step (iii) is not necessarily
performed for every event execution.  However, the state of the process must be saved
regularly.)

If a straggler subsequently arrives, the process must roll back its state to the time of
the straggler and re-execute from that point.  Consider the example shown in Fig. 1.  A
horizontal line represents the progress of a process in simulation time, and a dashed arrow
represents sending a message.  When pi’s local clock is b, it receives a message m with
timestamp b' < b.  Thus, pi is rolled back to the timestamp b'.  During the roll back computation,
pi may have sent messages to other processes (cf. message f in Fig. 1).  These output
messages are potentially  false messages because their timestamps are greater than the local
clock. (A false message does not exist in the sequential simulation.  That is, the message
does not have any effect on the simulation and must be cancelled if it is created in Time Warp
simulation.)  The cancellation of a potential false message f sent from pi to pj is done by
sending the corresponding negative message f  (which is stored in the output queue of pi

1A message consists of six fields: send time, timestamp (or receive time), sender, receiver, sign, and text.  We
will elaborate on these fields later.
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when f is sent).  Once pj receives f , it discards f and any effect caused by f.  One may assume
that all output messages f generated during the roll back computation are false, and negative
messages f  are immediately sent to cancel these output messages at the time the rollback
occurs. This is called aggressive cancellation.  On the other hand, one may assume that all
messages sent during the roll back computation are true (i.e., not false), and are not cancelled
at the time the rollback occurs.  After the rollback, new messages m1, m2, ... will be generated.
Negative messages f  need only be sent for potential false messages that are not regener-
ated (i.e., f π mi).  Depending on the application, lazy cancellation may outperform aggressive
cancellation or vice versa.  Guidelines for designing the rollback mechanism can be found
elsewhere [21, 30].

2 In some studies [8, 18], the timestamps of unprocessed messages are considered in computing GVT,
instead of their send times. This paper follows the original definition of GVT given by Jefferson [12].

Besides the rollback (local control) mechanism, a global control mechanism for Time
Warp is required.  The central concept of the global control mechanism is global virtual time
(GVT).  Let an unprocessed message be a message in the input queue of a process that has
not yet been executed.  GVT is defined as follows.

Definition 1: GVT at time t (denoted as GVT(t)) is the minimum of (i) the values of all local
clocks at time t, (ii) the timestamps of all unprocessed messages, and (iii) the send times2  of
all transient messages.

At any real time, there exists a global virtual time GVT such that all executed messages
with timestamps earlier than GVT will not be rolled back.  Based on GVT, the global control
mechanism addresses several critical issues, such as garbage collection, distributed
termination, and fault tolerance.

This paper concentrates on reducing the state saving overhead and the design issues
for the Time Warp global control mechanism. The paper is organized as follows.  Section 2
derives a heuristic used to select the checkpoint interval to reduce the state saving overhead.
Section 3 generalizes a previously proposed GVT computation algorithm.  Sections 4-6 present
new algorithms for memory management, distributed termination, and fault tolerance.

Fig.1.  Effect of Rollback. A horizontal line represents the progress of a process in simulation time, and
a dashed arrow represents sending a message.
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2. REDUCING THE STATE SAVING OVERHEAD

In a Time Warp simulation, the state of each process must  be saved regularly (regardless
of whether or not rollbacks actually occur).  Lin and Lazowska [20] have indicated that the
performance of Time Warp is dominated by the efficiency of state saving.  Thus, it is impor-
tant to reduce the state saving overhead.

There are two approaches to reducing the state saving overhead.  One approach is to
accelerate the state saving process.  Fujimoto et al. [9] developed special-purpose hardware
to support fast state saving.  A complementary approach is to reduce the frequency of state
saving.  This section pursues the second approach.  We give a heuristic to select the
checkpoint interval to reduce the state saving overhead and report on the confirmation of
our results in  an experimental study conducted by Preiss et al. [29].

From a model similar to that in [11, 35, 37], we derive bounds for the optimal checkpoint
interval nopt.  Note that our derivations are based on several simplifying assumptions.  Thus,
the term “optimal” means the best possible choice of the parameter nopt, subject to our
assumptions.

Consider a process p in a Time Warp simulation.  We assume that there is no message
preemption, and that a state saving operation occurs atomically with the completion of the
checkpointed event.  We refer to the interval between two consecutive rollbacks of p as a
computation cycle.  Suppose every n message executions are followed by a state saving
event (i.e., the execution of the nth event is checkpointed).  n is called the checkpoint
interval.  Consider the ith computation cycle of length Rn,i as shown in Fig.2.

In this figure, a solid circle represents a state saving event.  After Rn,i events have been
executed, a straggler arrives, which undoes bn,i events.  However, it is necessary to roll back
to the first checkpoint (but not include the checkpoint itself) prior to the timestamp of the
straggler, and an extra gn,i event must be re-executed to restore the current process state.  For
convenience of analysis, the executions of these events are  assumed to be in the i + 1st
computation cycle.  A computation cycle i consists of three parts:

∑ rollback and restoring the current process state by re-executing Ln,i-1 events (cf. Fig.
2),

∑ forward executions (the executions of an,i events in Fig. 2),
∑ and periodic checkpointing (cf. the solid circles in Fig. 2).

Fig. 2. The ith computation cycle.

Thus, Rx,i can be expressed as

Rn,i = an,i + Ln,i-1,   for i ³ 1 and Ln,0 = 0. (1)
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Note that an,i may be negative (i.e., a straggler message arrives before all Ln,i-1 mes-
sages have been executed), but an,i + Ln,i-1 is always positive.  In our model, the state saving
overhead Dn,i for the ith computation cycle is defined as the overhead needed to re-execute
the Ln,i-1 events in the previous computation cycle plus the overhead of the state saving
operations done among Ln,i-1 + an,i events.  Let Ns be the overhead of saving a process state,
assumed to be a constant.  Let Ni,j be the execution time of the jth event (j £ Rn,i) in the ith
computation cycle.  Assume that the process state is checkpointed before the first event is
executed, then  the state saving overhead, Dn,i, of the ith computation cycle is
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Equation (2) consists of two components.  The first component represents the over-
head for restoring the current process state (when i = 1, Ln,i-1 = 0 and the component does not
exist).  The second component represents the overhead for periodic checkpointing. This
equation holds whether an,i ³ bn,i or an,i < bn,i  (an,1 ³ bn,1, according to the definition of a Time
Warp simulation).  Let kn be the number of rollbacks that occur in a process when the
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executing the extra undone events needed to restore the current process state.  Our goal is to
choose an optimal n value which minimizes the net effect Dn.  We first derive a lower bound
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Assume that the behavior of the system is not affected by the checkpoint interval;
that is, for all n, the process states are the same at the end of a computation cycle.  This
assumption is reasonable when the system being simulated is homogeneous.  However, it
does not reflect the real world in general.  Thus, our solution should be considered as a
heuristic for checkpoint interval selection.  From this assumption,  we have

 kn = k1 = k,      and for all i        an,i = a1,i = ai       and    bn,i = b1,i = bi. (3)

Let Nn be the number of events (including the roll back events) executed in a process
when the checkpoint interval is n.  Since L1,i = 0, (1) and (3) imply that an,i > 0, and

N N x j
j

k

χ γ= + ∑
=

1
1

, . (4)

It is not possible to derive Dn without knowing the distributions of ai and bi.  Lacking
knowledge of these distributions, we will instead  derive bounds for Dn.
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To derive a lower bound for Dn, consider the ith computation cycle in Fig. 2.  Execution
of every n events requires a checkpoint, except for the last ′γ χ ,i  events. (The process is
checkpointed at the beginning; then, every n event executions are followed by a checkpointing
operation.)  In other words, the execution of the last ′γ χ ,i  events does not incur  checkpointing
overhead.  Thus, the best case occurs when ′ = −γ χχ ,i 1.  Then, Cn is bounded below as
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If we assume that Ln,i is uniformly distributed in [0, n - 1], then a tighter bound can be
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The checkpoint interval that minimizes (6) is
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It is interesting to note that (7) is almost identical to Young’s result [37] under the
proper interpretation of the parameters.  To derive an upper bound for Dn, let ′γ χ ,i = 0 and Ln,

i = n - 1.  Then the number of checkpoints required in a process is bounded above by
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From (2) and (8), an upper bound ∆ χ
+ for Dn is derived as:
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The checkpoint interval that minimizes (9) is

χ α δ
δ

− = −











( )
.

1 s

Fig. 3 plots the curves for ∆ χ
−  and ∆ χ

+ .  The functions for both ∆ χ
+  and ∆ χ

−  are of the

form f(n) = f1(n)f2(n), where f1
1( )χ χ=  and f2(n) = an2 + bn + c.
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Since f2(n) is a parabola, the effect of f1(n) makes f(n) decrease quickly as n increases
before the minimum is reached (in Fig. 3, the minima are ∆min

+ = ∆ χ −
+  and ∆min

− = ∆ χ +
− ), and

increase slowly as n increases after the minimum is reached.  From Fig. 3, the optimal check-
point interval nopt is bounded by M- £ nopt £ M+, where M- and M+ are the roots of the equation
∆ χ

− = ∆min
+ .  Note that M - £ n - £ n + £ M + and M + - n + ³ n + - M -, and

M M+ + − − + −→ → + →χ χ χ χ, , . as ∆ ∆ (10)

Since the derivations for M- and M+ are more complicated than the derivations for n-

and n +, it is more practical to determine nopt in terms of n - and n +.  As indicated by (9), this is
a good approximation when  ∆ ∆χ χ

+ −→ .
We make the following observations.

∑ If the execution times of events are random variables, then Dn is affected by the mean
of the execution times but is insensitive to the distribution of the execution times.
This is derived from the strong law of large numbers.

∑  For a fixed n, the state saving overhead Dn decreases as α  increases.  This implies
that reducing the state saving overhead is important for simulation with small α .

∑  Erring on the side of a n value that is too large will degrade performance less than
erring on the side of a n value that is too small.

∑ A large n should be chosen if (i) 
δ
δ

s  is large, and/or (ii) α  is large.  Intuitively, if ds is

small (compared with d), then ∆ χ
C  only has an insignificant contribution to Dn.  Thus,

a small n should be chosen to minimize ∆ χ
U . For a large α , ∆ χ

C  has a more significant
effect on Dn than ∆ χ

U  does. Thus, a large n should be chosen to reduce ∆ χ
C . When

α = • (i.e., no rollback occurs at process p), no state saving is required, and n = •
should be selected.

Preiss et al. [29] have conducted experiments to study our simple heuristic.  In their
experiments, the execution times of simulation were measured instead of the state saving
overhead Dn.  Interestingly, the curves for the execution times have the same shapes as do
the curves in Fig. 3.  The experiments show that for  the round-robin processor scheduling

Fig. 3. Bounds for Dn.
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policy 3 and for both aggressive cancellation and lazy cancellation, the optimal checkpoint
intervals fall in the interval [n -, n +] or are slightly higher.  For the smallest timestamp first
policy, 4 the optimal checkpoint intervals are larger than n +.  Although M + was not known in
the experiments, we believe that the optimal checkpoint intervals all fall in [n +, M +].  The
experiments also indicated that Dn1 Q Dn2 for n1, n2 Œ [n +, nopt].  Thus, this experimental study
concluded that n + is a good predictor for the optimal checkpoint interval.  We note that in
these experiments, the parameters α , ds and d  were obtained after the simulation run finished.
A large issue is the fact that these parameters are seldom known ahead of time and are a
function of the application characteristics.  One way to obtain the values for the parameters
is to compute these parameters during the simulation and update the values dynamically.
Several issues about the use of our simple heuristic for reducing the state saving overhead
are being investigated at the Jet Propulsion Laboratory [2, 33].  Bellenot’s experiments indi-
cated that our heuristic is less accurate as the number of processors available increases.  The
reason is simple.  The derivation of our heuristic assumes that processors are not idle during
the simulation. (This assumption is generally true when the simulated system is large.)  As
the number of processors increases, the number of idle processors also increases, which
may invalidate our assumption.  Thus, we conclude that the heuristic is useful when the size
of the simulated system is large.

3. GLOBAL VIRTUAL TIME COMPUTATION

Time Warp requires a global control mechanism to address several critical problems
such as memory management, distributed termination and fault tolerance.  The central con-
cept behind the global control mechanism is based on GVT.  Since GVT is smaller than the
timestamp of every unprocessed message in the system, we have the following theorem.

Theorem 1 [12]: At time t, no event with a timestamp earlier than GVT(t) can be rolled back,
and such events  may be irrevocably committed with safety.

Jefferson [12] showed that GVT is a non-decreasing function of time, which guaran-
tees global progress of the Time Warp simulation.

In a shared memory multiprocessor environment, GVT can be easily computed [7].  On
the other hand, GVT cannot be easily obtained in a fully distributed environment where
messages might not be delivered in the order they are sent. (In such an environment, the
transient messages in the system cannot be directly accessed.)  In most approaches [3, 18,
27, 34], the task of finding GVT  involves all the processes in the system.  One of the
processes, called the coordinator, is assigned to initiate the task.  The coordinator broad-
casts a STARTGVT message to all processes. Then every process computes its local mini-
mum (to be defined), and reports this value to the coordinator.  When all the local minima are
received, the coordinator computes the minimum among these local minima, and GVT is
found.

3 In the round-robin policy, the processes that are ready to execute (i.e., the processes that have messages
to process) are allowed to process messages in round-robin fashion one at a time.

4 In the smallest timestamp first policy [23] or the minimum message timestamp policy [29], a process
with smaller timestamp event (i.e., the next event to be executed in the process has a smaller timestamp)
has higher priority for execution.
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In a GVT algorithm, control messages (such as STARTGVT) are sent  to perform GVT
computation.  These messages are distinguished from data messages, the normal messages
sent in Time Warp simulation.  Most GVT algorithms are based on Samadi’s approach [34].  In
this approach, when process q receives a data message from p, it needs to send an
acknowledgement back to p.  We have proposed  a GVT algorithm [18] that does not require
acknowledgements for data messages.  Thus, this algorithm can eliminate about 50% of the
message sending during the simulation.  However, the algorithm assumes that the set of
processes that send messages to a process is pre-defined.  This section removes this
restriction.

Consider a pair of processes p and q.  A message has a sequence number i if it is the
ith message (denoted as mi) sent from a process p to a process q.  Consider an example of a
send time  histogram of messages sent from p to q in the time interval [0, t] as shown in Fig.
4.  Note that a message with a larger sequence number may have a smaller send time due to
a rollback in p.  Let a valley be a message mi such that  i = 1 or ts'(mi) < ts'(mi-1), i > 2. (Thus,
m1 is always a valley.)  In Fig. 4, the set of valleys is {m1, m21, m50, m72}.  The message with the
smallest send time is among these valleys.  Thus, to find the minimal send time of messages
in transit, we only need to consider those valleys in transit.

To obtain the minimal timestamp of transient messages, a set Vp(q) is maintained in
process p to record the send time information of valleys that have been sent from p to q.  If
we represent a valley m as a (sn, ts') pair, where sn and ts' are the sequence number and send
time of m, respectively, then the set Vp(q) for the example in Fig. 4 is

Vp(q) = {(1,10), (21,30), (50,50), (72,20), (80,70)}.

When process p sends a message m to process p, it checks if m is a valley.  If it is, Vp

(q) is updated to reflect the sending of m.

Fig. 4. Send time as a function of sequence number.
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In process q, a set SNq(p) is used to record the (sequence number) ranges of messages
which are sent from p and have been received by q.  An element (i.e., a range) in SNq(p) is of
the form (snf, snl), where snf is the sequence number of the first message in the range, and snl

is the sequence number of the last message in the range.  We note that the sequence number
holes in SNq(p) are due to the non-FIFO communication property in the distributed
environment.  If the messages received by q are those with sequence numbers 1, 2, ..., 20, 32,
33, ..., 67,  69, 70, ..., 108, and 120, 121, ..., 131, then

SNq(p) = {(1,20), (32,67), (69,108), (120,131)}.

When process q receives a message m from process p, SNq(p) is updated to reflect
receipt of m.

Now, we will describe GVT computation.  Consider a process p.  Let the input set of p
(denoted as SI(p)) be the set of processes that send messages to p, and let the output set of
p (denoted as SO(p)) be the set of processes that receive messages from p.  Two types of
control messages (STARTGVT and TYPE1) are sent in the GVT computation.  The coordina-
tor p0 initiates GVT computation by broadcasting a message STARTGVT to every process.
When process p receives the message STARTGVT, it enters the following phase.

Phase 1.  In this phase, p (i) computes lmp, the minimum of p’s local clock and the minimum
send times of all unprocessed messages in p’s input queue, and (ii) sends a message msg =
(TYPE1, snq,p) to every process q Œ SI(p), where

sn snq p
sn sn SN p

l
f l q

,
( , ) ( )

min= +
∈

1

is the smallest sequence number of the transient message sent from q to p.
When p receives the first TYPE1 message from another process, it enters the following
phase.

Phase 2.  In this phase, p waits to receive a message msg = (TYPE1, snp,q) from every q Œ SO(p).
Using snp,q, p locates the smallest send time bp,q of the transient messages from p to q by
searching the set Vp(q). That is,

τ p q
sn ts V q sn snp p q

ts,
( , ) ( ),

min .
,

= ′
′ ∈ ≥

After p has received all the TYPE1 messages, it computes τ τp
q S p

p q=
∈
min

( )
,

0
.

After p has completed both Phase 1 and Phase 2, it reports to the coordinator the local
minimum

LMp = min(lmp, bp).

After the coordinator has received all LMp, it computes

GVT LM
p

p=
∀

min (11)
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The time when a process p enters Phase 1 may affect the correctness of the GVT computation.
Suppose that process p enters Phase 1 at time tp.  Due to the effect of rollback, if tp π tq, it is

possible that max
∀p

 LMp > GVT(tM), where t tM
p

p=
∀

max   (i.e., (11) does not compute a lower

bound for GVT).  In Appendix A, we show that this problem is avoided if every process
enters Phase 1 before Phase 2.

Theorem 2: Suppose that process p enters Phase 1 at time tp, and t tM
p

p=
∀

max .  If every

process enters Phase 1 before Phase 2, then min
∀p

LMp £ GVT(tM).

Thus, the GVT algorithm for a process p is described as follows:

∑ If p receives the STARTGVT message before any TYPE1 message, it enters Phase 1.
After p has sent all the TYPE1 messages, it enters Phase 2.

∑ If p receives any TYPE1 message msg before the STARTGVT message, then p enters
Phase 1.  After p completes Phase 1, it enters Phase 2 and  processes msg. (In Phase
2, p ignores the arrival of the late message STARTGVT.)

In the above algorithm, the sets SI(p) and SO(p) are pre-defined.  In a practical Time
Warp simulation, both sets may change from time to time.  To accommodate this situation, we
assume that SI(p) and SO(p) are updated dynamically, i.e., SI(p) µ SI(p)»{q} (SO(p) µ SO(p)»
{ q}) when p receives (sends) the first data message from (to) q.  With the dynamic input/
output sets, the algorithm just described may fail in the following scenario: Suppose that
process q completes Phase 1 before it receives the first data message from p.  Then p may
expect to receive a TYPE1 message from q and never exit from Phase 2.  This problem is
solved by introducing a new control messages of type TYPE2: When p enters Phase 1, it also
sends a TYPE2 message to every process q Œ SO(p).  If (i) q has already completed Phase 1
when it receives a TYPE2 message from p, and if (ii) q did not send a TYPE1 message to p
during Phase 1, then q sends msg = (TYPE1, 0) to p. (The message msg tells p that q did not
receive any message from p when q entered Phase 1.)  Thus, the complete algorithm is
described as follows.

A process p enters the GVT computation mode when it receives the first message msg
of type STARTGVT, TYPE1 or TYPE2.  Upon receipt of msg, the following procedure is
executed:

LMp = lmp, SGVT,I(p) = SI(p), SGVT,O(p) = SO(p);
for  all q Œ SGVT,I(p) do send a message (TYPE1, lmp, snq,p) to q;
for  all q'Œ SGVT,O(p) do send a message (TYPE2) to q';

Then p enters (modified) Phase 2 and handles the message msg: If msg = (TYPE1, snp,q'),
then compute bp,q' and

LMp = min(LMp, bp,q').
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If msg = (TYPE2) is from q' œ SGVT,I(p), then p sends a message (TYPE1, 0) to q'.  After
p has received all the TYPE1 messages from processes in SGVT,O, the value LMp is sent to p0.
(Note that p may continue to receive TYPE2 messages before it receives the computed GVT
from p0).  The input (output) set of a process p considered in the GVT computation is SGVT,I

(p) (SGVT,O(p)), the input (output) set when p enters Phase 1.  This is required because the
local minimum of process p is computed at the time when it enters Phase 1.

4. MEMORY MANAGEMENT

A parallel simulation may consume much more storage than space a sequential simu-
lation no matter which parallel simulation protocol is used [13, 24].  Since extra memory is
required to store the histories of processes, memory management for Time Warp is more
critical than that for conservative simulation protocols, such as the Chandy-Misra approach.

Basically, there are two approaches to reducing the memory consumption of Time
Warp: reducing the state saving frequency as described in section 2 and fossil collection.
Fossil collection is described as follows.  Jefferson showed that:

Theorem 3: Let b < GVT(t).  After time t, the following objects in a process pi are obsolete and
can be deleted:

∑ the messages with timestamps no later than b in the input queue;
∑ the copies of the process state with timestamps earlier than b except for the one with

the largest timestamp no later than b (where the timestamp of a process state x,
denoted as ts(x), is the local clock of pi when its process state is x);

∑ the messages in the output queue with send times no later than b.

Based on Theorem 3, fossil collection reclaims obsolete objects after GVT is computed.

The frequency of GVT computation is basically determined by fossil collection: If a
low frequency is chosen, a process may exhaust memory before the next fossil collection is
performed.  On the other hand, a high frequency may result in heavy overhead of GVT
computation and fossil collection, and thus reduce the progress of the simulation.  Some
Time Warp implementations [14] periodically perform fossil collection on at fixed time intervals.

Unfortunately, even if we reduce the state saving frequency and perform fossil collec-
tion frequently, Time Warp may still consume much more storage space than a sequential
simulation.  Thus, it is important to design a memory management algorithm for Time Warp
such that the space complexity of Time Warp is O(Ms), where Ms is the amount of storage
consumed in sequential simulation. (A memory management algorithm for parallel simulation
is called optimal if the amount of memory consumed by the algorithm is of the same order as
the corresponding sequential simulation.) Jefferson proposed the first optimal memory man-
agement algorithm, called cancelback [13].  In this protocol, when the Time Warp simulation
runs out of memory, objects (i.e., input messages, states, or output messages) with send
times later than GVT are cancelled to make more room.  The cancelled objects will be repro-
duced later.  This section proposes another optimal protocol, called the artificial rollback
protocol.  The basic idea behind this protocol is to roll back “possibly-correct computa-
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tions” if necessary, to obtain more free memory space.  Since the mechanism for the artificial
rollback protocol is the same as that for the rollback mechanism, this protocol can be easily
implemented.

We first introduce a special type of rollback that does not exist in normal Time Warp
execution.

Definition 2: Without receiving a straggler, a process p may (on purpose) roll back its
computation to a timestamp b (b ≥ GVT) earlier than its local clock. Process p is said to
artificially  roll back to timestamp b.

We impose the restriction b ≥ GVT for two reasons.  First, artificial rollback should have
the same properties as normal rollback, and no process can normally roll back to b < GVT .
Second, if fossil collection is performed at GVT, a process cannot be artificially rolled back to
a simulation time earlier than GVT because the earlier parts of process histories may already
have been discarded.  We will show that artificial rollback does not affect the correctness of
Time Warp:

Theorem 4: Let S be a Time Warp simulation consisting of n processes p1, p2, ..., pn.  Let cki

be the local clock of pi.  Repeat the same simulation except that process pi artificially rolls
back to a timestamp b < cki at time t and re-executes.  Then the new Time Warp simulation is
equivalent to S.

Proof: Let Ss be the sequential counterpart of S.  Consider another sequential simulation S's,
which is identical to Ss except that a new process pn+1 is added. Process pn+1 does not
communicate with other processes except that it schedules an event e with timestamp b  to pi.
When the event occurs, pi does nothing.  Thus, Ss and S's are equivalent in terms of the
behaviors of p1, ..., pn.  Consider S', the Time Warp implementation of S's.  From the above
discussion, S' is the same as S if we ignore pn+1.  Suppose that pn+1 sends a message
(corresponding to the occurrence of event e) to pi at time 0, and that the message sending
delay for that message is t. (Note that assuming arbitrary message sending delay does not
affect the correctness of Time Warp.)  In effect, this is the same as an artificial rollback to pi.
Thus, artificial rollbacks do not change the results of a Time Warp simulation. o

From Theorem 4, a process may roll back to an earlier simulation time b ≥ GVT, and the
memory used in the rolled back computation can be reclaimed.  Later on, the rolled back
computation (if it is correct) will be re-executed, which will produce the same results as the
original Time Warp simulation.

Consider a shared memory environment.  It is easy to prove that if we compute GVT,
perform fossil collection, and roll back all processes to GVT, then the amount of memory
used in Time Warp is of the same order as the amount of memory used in the sequential
counterpart at simulation time GVT (cf. Theorem 6 in section 6).

With the artificial rollback protocol, Time Warp is able to reduce the amount of memory
space used in parallel simulation (while other simulation approaches, such as the Chandy-
Misra protocol cannot).  However,  progress of the simulation may be degraded.  The trade-
off between time and space is still an open question.
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5. DISTRIBUTED TERMINATION

In most Time Warp implementations, termination detection is handled in terms of GVT:
When a process p has processed all messages in its input queue, its local clock is set to •.
When GVT reaches •, all the local clocks must be •, and no messages can be in transit.
Thus, GVT is computed periodically to see if the simulation terminates (i.e., if GVT = •).  To
efficiently detect  distributed termination, we should compute GVT infrequently at the begin-
ning of the simulation.  As time passes, the frequency should increase.  However, such a
selection of frequency may conflict with the needs of fossil collection.  To simplify the
selection of the GVT computation frequency, an algorithm that automatically detects distrib-
uted termination without GVT computation might be attractive.

The distributed termination (DT) problem is non-trivial because no process has com-
plete knowledge of the global state. Many algorithms [5, 6, 16, 17, 26] have been designed to
detect distributed termination.  Most of these algorithms deliver the control messages (i.e.,
the messages sent for DT detection) in pre-defined paths.  Thus, in the view of these DT
detection algorithms, the processes are connected in some fashion. Some algorithms con-
nect the processes as a ring [16].  Others organize the processes as a tree (either dynamically
[17] or statically [36]).  In general, the “logical topologies” used in these DT detection
algorithms may not match physical processor connections.  For example, it is not efficient to
implement a ring algorithm on a tree architecture, or vice versa.  Even if the algorithm and the
architecture match initially, inefficiency may be caused by process migration.

In this section, we propose a simple DT detection algorithm.  In this algorithm, every
process reports its termination to a coordinator which announces the termination of
distribution.  In other words, we have a “star” logical topology, and the shortest path is
always chosen to deliver control messages between a process and the coordinator.  One may
argue that the coordinator may become a bottleneck.  In Time Warp simulation, we expect
that the number of control messages sent in DT detection is small compared with the number
of data messages sent.  Thus, if we have a dedicated coordinator process for DT detection,
it will not be a bottleneck.

The sets Vp(q) and SNp(q) described in section 3 are used in our DT detection algorithm.
This algorithm is based on the principle of message counting: If all processes are idle and
the number of messages sent in the system is equal to the number of messages received,
then the distributed computation has terminated.

Definition 3: Let SI(pi) be the input set of a process pi.  Process pi satisfies the local termina-
tion condition if and only if its local clock cki = •, and for all processes pj Œ SI(pi), |SNpi(pj)| =
1 (i.e., there is only one range in SNpi(pj)).

Note that if |SNpi(pj)| π 1, then at least one data message sent from pj to pi is in transit,
and pi will be re-activated after the message is received.  Let SNpi(pj) = {(snf, snl)}, and let ri,j

= snl for all j Œ SI(pi) and si,k = Vpi(pk).sn for all k Œ SO(pi).  If the local termination condition is
satisfied, then ri,j (si,j) is the number of messages pi received from (sent to) pj.  When this
condition is detected, pi sends a message Mi = (IDLE, Si, Ri) to the coordinator p0, where

Si = {si,j|j Œ SO(pi)} and Ri = {ri,j|j Œ SI(pi)}.

The coordinator maintains two sets S' = {s'i,j| � "i,j} and R' = {r' i,j|"i,j}.  Initially, s'ij
= r' i,j = 0 for all i,j .  When p0 receives a message Mi = (IDLE, Si, Ri), the following code is
executed to update S' (R' is updated in the similar way):
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for  all si,j Œ Si do if si,j > s'i,j then s'i,j = si,j.

Now we will describe a distributed termination condition.  When p0 satisfies this
condition, the distributed computation must have terminated.

Definition 4: Process p0 satisfies the distributed termination (DT) condition if and only if (i)
it receives at least one idle message from every process and (ii) s'i,j = r'j,i for all i,j .

In Appendix B we prove the following theorem.

Theorem 5: The distributed computation terminates if the coordinator satisfies the DT
condition.

Thus, every time the coordinator p0 receives an IDLE message, it tests the DT condition.
If the condition is satisfied, then p0 announces distributed termination.  It is apparent that
this algorithm is optimal in time complexity (if we ignore message contention): Suppose that
a process pi is idle forever after time tpi.  Let Dtpi be the message sending delay of the IDLE

message pi sends at time tpi.  Then p0 reports distributed termination at time max( )
∀

+
i

pi pit t∆ .

The above algorithm  is based on “process-to-process” message counting; i.e., we need to
check if ′ = ′s ri j j i, ,   for all possible pairs (i, j).  In fact, we only need to count the number of
messages si,j sent from pi to every process pj Œ SO(pi) on a process-to-process basis, and
count the total number r i of messages received by process pi (or vice versa).  The DT

condition tested by p0 is now ′∑ = ′
∀

s rj i
j

i, .  Note that if we only count the total numbers of

messages sent and received by a process, then the algorithm may detect false termination.
Directions for optimizing our algorithm are given in [25].

To conclude, using a simple DT detection algorithm that does not rely upon GVT
computation means that optimization of fossil collection is not affected by DT detection.

6. FAULT TOLERANCE

In a distributed system, there are two kinds of failures: process failures and communi-
cation failures.  Both types of failures are usually detected by timeout.  Recovery of a
communication failure only involves two parties and can be done locally.  On the other hand,
recovery of a process failure may involve more than two processes and require global infor-
mation of the system.  In a distributed Time Warp simulation, if a process fails at time t and is
recovered at time t', then the computations of all the other processes during [t, t'] are usually
incorrect.  In other words, a process must re-execute from the state at time t even though it is
not a failed process; i.e., recovery for one-process failure is the same as that for an all-
process failure in a Time Warp simulation.  Thus, to recover process failures, a distributed
snapshot is required.  This paper concentrates on process failures and ignores communica-
tion failures. (We assume that either the communication system is reliable or that a lost
message is recovered locally, and the only effect is that the message experiences longer
message sending delay.  A lost message can be easily detected by using data structure SNp

(q) in a timeout scheme which avoids acknowledging every message.)  Henceforth, “failure”
means “process failure.”
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The distributed snapshot algorithm proposed by Chandy and Lamport [4] cannot be
used in Time Warp because the algorithm requires the FIFO communication property. (In [1],
a fault tolerance protocol with FIFO communication property was proposed for Time Warp
simulation.)  The difficulty in taking a distributed snapshot in a Time Warp system with the
non-FIFO communication property is similar to that for GVT computation; that is, it is usually
not possible to record the current state of the system.  Fortunately, since the history of a
process is saved, we can, based on GVT, record an earlier “legal” state of the system.  We
first describe the information saved in a snapshot of a sequential simulation. Then we show
how to obtain this information in the corresponding Time Warp simulation. The basic idea
was proposed by Jefferson [12].  This section gives concrete descriptions and proofs.

Without loss of generality, assume that all messages executed in the simulation have
different timestamps. Here, the timestamp is used to distinguish the execution order of the
messages.  For messages with the same timestamps, some execution order still exists.  Thus,
this assumption does not restrict the results presented in this section.

Consider a simulation S of n processes.  Let e be an event occurring in process pi.
Consider Ss, the sequential implementation of S.  Let xs,i(b) be the process state of pi in Ss after
e (where ts(e) = b) is executed.  Let

Hpi = {e1, ..., ej, ..., ek}

be the set of events executed at process pi, where ts(e1) < ts(e2) < ... < ts(ek).  Let
Ψ Ψpi i n pi

= ≤ ≤U1 .  Then the sequence of states of pi is xs,i(b1), xs,i(b2), ..., xs,i(bk), where bj = ts(ej),
and  the set of pi’s states is

Xs,i = {xs,i(b1), xs,i(b2), ..., xs,i(bk)}.

At simulation time b (after all events with timestamps no less than b are executed), the event
queue of Ss is

H(b) = {e Œ H|ts'(e) £ b, ts(e) > b} (12)

and the set of process states is

X Xs
i

s i( ) sup( ), ,τ τ= { }U ,  (13)

where (Xs,i, b) = x, a process state in Xs,i such that ts(x) £ b and for all x' Œ Xs,i, if ts(x') < b  then
ts(x') < ts(x).  Note that (12) and (13) are the information to be saved in the snapshot of Ss at
simulation time b.  That is, [H(b), Xs(b)] is a legal state of the sequential simulation, and
starting from this state, a correct simulation result can be produced.

Consider Stw, the Time Warp implementation of S.  For all i, 1 £ i £ n, let ti ³ t, and b  <
GVT(t).  Let Itw,i,ti (Otw,i,ti) be the set of events (i.e., messages) in the input (output) queue of pi

at time ti, and let Xtw,i,ti be the copies of states in the process state queue of pi at time ti.  Then
from Theorem 1, the events in the set

Otw,i,ti(b) = {e Œ Otw,i,ti|ts'(e) £ b}

are never sent for cancellation in rollbacks, and the messages in the set
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Itw,i,ti(b) = {e Œ Itw,i,ti|ts'(e) £ b}

and the states in the set

Xtw,i,ti(b) = {x Œ Xtw,i,ti|ts(x) £ b}

are never cancelled.  This implies that Itw,i,ti(b) Õ Hpi and that Xtw,i,ti(b) Õ Xs,i.  More precisely,

Itw,i,ti(b) = {e Œ Hpi|ts'(e) £ b} and Xtw,i,ti(b) = {x Œ Xs,i|ts(x) £ b}. (14)

Definition 5: Let b < GVT(t0).  A Time Warp simulation is artificially rolled back to b  at time t
³ t0 if and only if all processes are artificially rolled back to b (i.e., the executions of events
with timestamps later than b are rolled back) at time ti, t0 £ ti £ t, and if during [ti, t], pi only
executes the negative messages (if any).

 If a Time Warp simulation is artificially rolled back to b at time t, then  all negative
messages with send times later than b are sent to annihilate the corresponding positive
messages; in other words, after the artificial rollback, all objects have send times no later than
b.  Thus, for every process pi, we have

Itw,i,t = Itw,i,ti(b),         Xtw,i,t = Xtw,i,ti(b),       and Otw,i,t = Otw,i,ti(b). (15)

Suppose that fossil collection with timestamp b is performed  after the artificial roll-
back and is completed at time t+ > t.  Then from Theorem 3, Definition 5, and Equations (14)
and (15), for a process pi, we have

Itw,i,t+ = Itw,i,t - {e Œ Itw,i,t|ts(e) £ b} =  { e Œ Hpi|ts'(e) £ b, ts(e) > b},
Xtw,i,t+ = Xtw,i,t - (Xtw,i,t - {sup(Xtw,i,t, b)}) = {sup(Xs,i, b)},
Otw,i,t+ = Otw,i,t - {e Œ Otw,i,t|ts'(e) £ b} = 2. (16)

Thus, we have the following theorem:

Theorem 6: Let b < GVT(t0).  Suppose that a Time Warp is artificially rolled back to b at time
t ³ t0, and that a fossil collection with timestamp b is performed and is completed at time t+ >
t; then

U U U
i

tw i t
i

tw i t s
i

tw i tI X X O, , , , , ,( ), ( ), .+ + += = = ∅Ψ τ τ   and 

Theorem 6 states that at any time, we can obtain a legal state of the sequential simula-
tion from Time Warp.  Thus, a distributed snapshot of Time Warp can be taken using the
following steps:
Step 1: Compute GVT at time t.  Let b be the largest timestamp smaller than GVT(t).
Step 2: At time ti ³ t, process pi stores the following information into stable storage:

∑ a subset of the input queue, Ids,i(b) = {e Œ Itw,i,ti|ts'(e) < b, ts(e) ³ b};
∑ a process state xds,i(b) = sup(Xtw,i,ti, b)
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We note that:
∑ For all t1, t2 ³ t and b < GVT(t),

          Itw,i,t1(b) = Itw,i,t2(b), and Xtw,i,t1(b) = Xtw,i,t2(b)

(from (14)). This implies that the processes do not need to take local snapshots at
the same time. The local snapshots are consistent if they are taken with respect to
the same simulation time b, and if the local snapshots are taken at time ti ³ t.

∑ From Theorem 6, there is no need to save the output queues in a distributed snapshot.
In other words, the amount of storage required to save the distributed snapshot is
the same as the snapshot for a sequential simulation, and the distributed snapshot
taken in the above procedure is the same as the sequential snapshot taken at simu-
lation time b.

This section has shown that a distributed snapshot of a Time Warp simulation can be
easily taken.  To our knowledge, there is no simple way to address the fault tolerance issue
for conservative protocols, such as Chandy-Misra.

7. SUMMARY

This paper has addressed several important issues in designing a distributed Time
Warp simulation.  We have proposed a heuristic to select the checkpoint interval in order to
reduce the state saving overhead.  We have generalized a previously proposed GVT algo-
rithm by allowing dynamic communication topologies.  We have proposed a new algorithm
for memory management called artificial rollback, which ensures that Time Warp only con-
sumes the same amount of memory as does the corresponding sequential simulation.  The
idea is to roll back uncommitted computation to make more memory space in order to com-
plete computation in the critical path.  Based on the message conservation law, we have
presented a distributed termination detection algorithm which does not require periodic
computation of GVT.  Finally, using GVT, we have addressed the fault tolerance issue by
presenting a simple and efficient distributed snapshot algorithm.
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APPENDIX

A: PROOFS FOR THE GVT ALGORITHM

This appendix proves Theorem 2.
Let P be the set of processes.  Consider the time tp at which the process p enters Phase

1.  Then the value lmp is computed at time tp (and is denoted as lmp(tp)).  Let tM= max
p P

pt
∈

.  Let

TRp,q(t) be the set of transient messages sent from p to q at time t, and let

TR t TR tq
p S q

p q
I

( ) ( )
( )

,=
∈
U .  Let Mp,q(t1, t2) be the set of messages sent from p to q 5 in the time

interval [t1, t2].  By convention, Mp,q(t1, t2) = ∆ if t1 > t2.)  In Phase 2, if p receives a message msg
= (TYPE1, snp,q) at time tp,q, then tp,q > tq and

τ p q
m TR t M t tp q q p q q p q

ts m,
( ) ( , )

min ( ).
, , ,

=
∈ ∪ (17)

Let GVT1 be the GVT computed in our algorithm; then

5 These messages may not be received by q before time t2.

GVT lm p ts m
p P

p
q S p m TR t M t tp q q p q q p q

1
0

= 













∈ ∈ ∈ ∪

min ( ), min min ( ) .
( ) ( ) ( ), , , ,

(18)

Now we ignore the messages in Mp,q(tq, tp,q) in (18) and consider a new variable GVT2, where

GVT lm t ts m

lm t ts m

lm t

p P
p p

q S p m TR t

p P
p p

q S p m TR t

p P
p p

m TR t

p q q

I q p p

p p

2
0

= 



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









= 



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









=

∈ ∈ ∈

∈ ′∈ ∈

∈ ∈
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min ( ), min min ( )

min ( ), min min ( )
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,

))
( ) .ts m





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Let  LM t lm t ts mp p p p
m TR tp p

′ = 



∈

( ) min ( ), min ( )
( )

; then (19) is re-written as

GVT LM t
p P

p p2 = ′
∈

min ( ).

We first derive a condition when GVT2 > GVT(tM).  From the condition, we show that

GVT t GVT ts m

LM t ts m

M
p q P p q m M t t

p q P p q
p p

m M t t

p q q p

p q q p

( ) min , min min ( )
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






= ′



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∈ ≠ ∈

∈ ≠ ∈

1

(20)
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Based on (20), we derive a condition which ensures GVT(tM) ³ GVT1.

Definition 6: A process p is called a Type A process if it has rolled back to a simulation time
ts £ GVT(tM) in the time interval (tp, tM].

Definition 7: A process p is called a Type B process if (i) it rolls back a Type A process q, (ii)
tp > tq, and (iii) the straggler m that rolls back q is sent from p in the time interval (tq, tp].

Corollary 1:  Let m be a straggler sent from a Type B process.  Then ts(m) £ GVT(tM).

Proof: Directly from Definitions 6 and 7. o

Lemma 1: If GVT(tM) < GVT2, then there exists a Type A process.

Proof: Cf. Lemma 2, [34]. o

Lemma 2: Suppose a Type A process p is rolled back by a message m sent from a process q.
Then q is either a Type A process or a Type B process.

Proof: We prove by contradiction. Assume that q is neither a Type A process nor a Type B
process.  From Definition 6, p is rolled back by a message m after time tp.  From Corollary 1 ,
ts(m) £ GVT(tM).  Suppose that m is sent at time t.  There are two possibilities:

A. tq £ tp: There are two sub-cases.
A.1. t > tq (cf. Fig. 5(a)): q must have been rolled back in time interval [tq, t]; otherwise,

ts(m) > LMq′ (tq) > GVT(tM), which contradicts the fact that ts(m) £ GVT(tM).  This
implies that q is a Type A process, a contradiction.

A.2. t < tq (cf. Fig. 5(b)): Since p does not receive m before tp > t, m is a transient message
at time tp.  In other words, m Î TRp(tp).  Thus,

 LM t lm t ts m ts m GVT t GVTp p p p
m TR t

M
p p

′ = 





≤ ≤ <
∈

( ) min ( ), min ( ) ( ) ( ) .
( )

2

This contradicts the fact that GVT LM tp p2 ≤ ′ ( ).

B. tq > tp: There are two sub-cases.
B.1. t > tq (cf. Fig. 5(c)): Similar to A.1, q is a Type A process, a contradiction.
B.2. t < tq(cf. Fig. 5(d)): q is a Type B process (Definition 7), a contradiction. o

Definition 8: A rollback propagation is defined as  a set of rollbacks occurring in a set of
processes Pr Õ P (Pr, the set of processes that involve in a rollback), where for every rollback
Rbp occurring at the process p Œ Pr, there exists a rollback Rbq occurring at q Œ Pr such that
either Rbp is caused by Rbq (and Rbp is called the successor of Rbq) or vice versa.

Definition 9: Consider a rollback propagation and its process set Pr.  A rollback Rbp occur-
ring at p Œ Pr is called the root of the rollback propagation if there exists no rollback Rbq, q Œ
Pr such that Rbp is caused by Rbq.
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Lemma 3: Consider a rollback propagation and its process set Pr = {p1, p2, ....., pn}, where
Rbpi+1 is the successor of Rbpi, 1 £ i £ n - 1. (Without loss of generality, we assume that each
rollback causes at most one other rollback.)  Let mi be the straggler sent from pi to pi+1 (i.e.,
Rbpi+1 is caused by the arrival of mi).  Then ts(mi) £ ts(mi+1), 1 £ i £ n - 1.

Proof: Directly from the definition of a rollback and Definition 8. o

Definition 10: Consider a rollback propagation and its process set Pr.  The propagation is
called a Type A rollback propagation if all processes in Pr are Type A processes.

Lemma 4: If GVT(tM) < GVT2, then there exists a Type B process.

Fig. 5. Four cases in Lemma 2.
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Proof: From Lemma 2 and an inductive argument (omitted), it is apparent that (i) there exists
a Type A rollback propagation, and (ii) the root of a Type A rollback propagation is caused
by a message sent from a Type B process.  Then from Lemma 4, a Type B process exists.o

Theorem 7: GVT t LM t ts mM
p q P p q

q q
m M t tp q q p

( ) min ( ), min ( ) .
, , ( ), ,

≥ ′



∈ ≠ ∈

Proof: If no Type A process exists, then

GVT t LM t LM t ts mM
p P

p p
p q P p q

p p
m M t tp q q p

( ) min ( ) min ( ), min ( )
, , ( , ),

≥ ′ ≥ ′



∈ ∈ ≠ ∈

(Lemma 1) If there exists a Type A process, then there exists a Type B process p (Lemmas 1
and 4), such that p sends a straggler m' to a Type A process q in the time interval (tq, tp]
(Definition 7) such that ts(m') £ GVT(tM) (Corollary 1).  In other words, m' Œ Mp,q(tq, tp) and

min min ( ) ( ) ( )
, , ( , ),p q P p q m M t t

M
p q q p

ts m ts m GVT t
∈ ≠ ∈





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≤ ′ ≤ .  This implies that

GVT t LM t ts mM
p q P p q

p p
m M t tp q q p

( ) min ( ), min ( )
, , ( , ),

≥ ′



∈ ≠ ∈

Now Theorem 2 can be proven as follows.  If all processes p enter Phase 1 before
Phase 2, then p receives a TYPE1 message at time tp,q > tp.  From (18) and Theorem 7, we have

GVT lm p ts m

lm p ts m

p P
p

q S p m TR t M t t

p P
p
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p q q p q q p q
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p q q p

B:  CORRECTNESS OF THE DT DETECTION ALGORITHM

This appendix proves Theorem 5; that is, we show the correctness of our DT detection
algorithm.  In this appendix, the term “messages” means data messages or the messages sent
in the Time Warp simulation, and the term “reports” means idle messages sent for DT
detection.  Let ts(m) be the (real) time when a message/report m is sent.  Let tr(m) be the (real)
time when a message/report m is received.  We assume that tr(m) > ts(m) (i.e., non-zero
message sending delay).  Let Mi,k be the kth report sent from pi.

Definition 11: Mi(t) = Mi,k is called the last effective report of process pi at time t if and only
if tr(Mi,k) < t and for all k', tr(Mi,k') Œ [tr(Mi,k), t], we have k' < k.
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Fig. 7. The timing diagram for Lemma 5.

Fig. 6. An example of the last effective report.

Definition 12: The first message which re-activates process pi after pi sends Mi(t) is denoted
as mi(t).

In Fig. 6, Mi(t) = Mi,4 is  the last effective report of pi at time t, and mi(t) re-activates pi

after Mi(t) is sent.

Lemma 5: Suppose that p0 satisfies the DT condition at time tT, and for all pi Œ P, let Mi(tT) be
the last effective report of pi at time tT.  Then pi is idle in the time interval [ts(Mi(tT)), tT].

Proof: We prove by contradiction. Suppose that pi is active in (ts(Mi(tT)), tT].  Then pi receives
(and is re-activated by) a message mi(tT) after time ts(Mi(tT)).  Suppose that mi(tT) is sent by pj.
Let mi(tT) be the lth message sent from pj to pi.  Since r' i,j(tT) = ri,j(ts(Mi(tT))) < l and s'j,i(tT) = r' i,j(tT),
we have l > s'j,i(tT).  This implies that ts(mi(tT)) > ts(Mj(tT)), that pj must be re-activated by a
message mj(tT) in the interval (ts(Mj(tT)), ts(mi(tT))), and that

tr(mj(tT)) < ts(mi(tT)) < tr(mi(tT))
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Fig. 8. The timing diagram for Lemma 6.

(cf. Fig. 7) Thus, for every active process pil, there always exists another active process pil+1

such that tr(mil+1 (tT)) < tr(mil(tT)).  In other words, we can find an infinitive sequence i1, i2, ...,
i l, ... such that

tr(mi1(tT)) > tr(mi2(tT)) > ... > tr(mil(tT)) > ...

Since |P| is finite, we have pil = pin for some n < l.  Without loss of generality, let n = 1.
Then we have

 tr(mil(tT)) > tr(mi2(tT)) > ... > tr(mil-1(tT)) > tr(mil(tT)) = tr(mil(tT)),

a contradiction. o

Lemma 6: If p0 satisfies the DT condition at tT, then there is no data message in transit.

Proof: We prove by contradiction. Suppose that a message sent from pi to pj is in transit at
time tT.  pi(pj) is idle in the intervals [ts(Mi(tT)), tT]([ ts(Mj(tT)), tT]), where Mi(tT)(Mj(tT)) is the last
effective report at tT (From Lemma 5).  Thus, si,j(tT) = s'i,j(tT) and rj,i(tT) = r'j,i(tT).  Since the
transient message must be sent before ts(Mi(tT)) (Lemma 5, and pj has not received the
message at time tT), we have rj,i(tT) < si,j(tT) (cf. Fig. 8).  This implies that r' j,i(tT) < s'i,j(tT), which
contradicts the DT condition.

Thus, Theorem 5, (i.e., the system terminates when p0 satisfies the DT condition) is a
direct consequence of Lemmas 5 and 6.  It is apparent that this algorithm is optimal in  time
complexity:

Theorem 8: Suppose that a process pi is idle forever after time tpi.  Let Dtpi be the message
sending delay of the report pi sends at time tpi.  Then p0 reports  distributed termination at
time max( )

∀
+

i
pi pit t∆ .

From Theorem 5, our algorithm satisfies the safety property (that is, no false termina-
tion is detected).  From Theorem 8, our algorithm satisfies the liveness property (that is, after
the system terminates, the termination is detected in finite time).
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