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Simulation is a powerful tool for studying the dynamics of a system. However,
simulation is time-consuming. Thus, it is natural to attempt to use multiple proces-
sors to speed up the simulation process. Many protocols have been proposed to
perform discrete event simulation in multi-processor environments. Most of these
distributed discrete event simulation protocols are eitiogiservativeor optimistic
The most common optimistic distributed simulation protocol is calliede Warp
Several issues must be considered when designing a Time Warp simulation; examples
are reducing the state saving overhead and designing the global control mechanism (i.
e., global virtual time computation, memory management, distributed termination,
and fault tolerance). This paper addresses these issues. We propose a heuristic to
select the checkpoint interval to reduce the state saving overhead, generalize a
previously proposed global virtual time computation algorithm, and present new
algorithms for memory management, distributed termination, and fault tolerance.
The main contribution of this paper is to provide guidelines for designing an efficient
Time Warp simulation.

Keywords:discrete event simulation, distributed systems, fault tolerance, memory
management, time warp

1. INTRODUCTION

A discrete event simulation consists of a series of events, along with times when they
occur. Execution of any event can give rise to any number of events with later timestamps.
All of this is straightforward in implementation if there is a centralized system with one event
queue: we just execute the earliest not-yet-executed event next.

Since simulation is time-consuming, it is natural to attempt to use multiple processors
to speed up the simulation processdiBiributed discrete event simulati¢or distributed
simulatior), the simulated system is partitioned into a set of sub-systems that are simulated
by a set of processes that communicate by sending/receiving timestamped messages. The
scheduling of an event for a sub-system at tinsesimulated by sending a message with
timestampt to the corresponding process. The global event list and global clock of a
sequential simulation do not exist in the distributed counterpart. Each process has its own
input message queue and local clock. To correctly simulate a sub-system, the corresponding
process must execute arriving messages in their timestamp order, as opposed to their real-
time arrival order. To satisfy this causality constraint, a synchronization mechanism is

Received July 27, 1998; accepted November 29, 1999.
Communicated by Chyi-Nan Chen.

243



244 YI-BING LIN

required. One of the most common synchronization protocols for distributed simulation is
calledTime Warg12] (Different approaches to distributed simulation are discussed else-
where [8, 15, 19, 22, 28, 31, 32].)

The Time Warp protocol takes an optimistic approach in which a process executes
every messagas soon as it arrives. If a message with an earlier timestamp subsequently
arrives (called atraggle)), the process must roll back its state to the time of the straggler and
re-execute from that point. To support rollback, several data structures are maintained in a
process:

e Input queuethe set of all messages which have recently arrived. These messages
are sorted in their timestamp order. Some of them may have been processed.

¢ Local clock the timestamp of the message being processed. If all the messages in
the input queue have been processed, then the local clock isset to

e Output queuethe set of negative copies (i.e., antimessages) of the positive mes-
sages the process has recently sentamtimessagef a messagm is exactly like
min format and content except in one field: its sign. Two messages that are identical
except for opposite signs are said to be antimessages of one another.

e State queuecopies of the process’s recent states.

When a message arrives at a progessth a timestamp no less than the local clock,
it is inserted in the input queue. Procgssxecutes messages in the input queue in their
timestamp order. La$(m) be the timestamp of a messageSuppose that the scheduling of
a message is due to the execution of another message Then thesend timeof m
(denoted ats'(m)) is defined as the timestampmyf In other wordgs'(m) =ts(my). Since the
execution of an event always schedules events with later timestamps, ws(hgueets(imy)
<tg(m). Whenmis executed, the following steps are performed: (i) The local clock advances
tots(m). (i) Messagenis processed. If any messagds scheduled to another process
during the execution, the antimessagenbk also created. The positive message is sent to
p;, and the negative copy is inserted in the output queue in send time order. (iii) The new
process state after the execution is added in the state queue. (Step (iii) is not necessarily
performed for every event execution. However, the state of the process must be saved
regularly.)

If a straggler subsequently arrives, the process must roll back its state to the time of
the straggler and re-execute from that point. Consider the example shown in Fig. 1. A
horizontal line represents the progress of a process in simulation time, and a dashed arrow
represents sending a message. Wierocal clock isz, it receives a messagewith
timestamp' <7. Thusp is rolled back to the timestarmp During the roll back computation,
pi may have sent messages to other processes (cf. médnagig. 1). These output
messages are potentiallglse messagdsecause their timestamps are greater than the local
clock. (A false message does not exist in the sequential simulation. That is, the message
does not have any effect on the simulation and must be cancelled if it is created in Time Warp
simulation.) The cancellation of a potential false mes$ageat fromp; to p; is done by
sending the corresponding negative messag@enhich is stored in the output queueppf

1A message consists of six fieldend timetimestamp(or receive timg sender, receiver, sigrandtext We
will elaborate on these fields later.
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whenf is sent). Oncp, receivesf , it discard$ and any effect caused byOne may assume

that all output messagégenerated during the roll back computation are false, and negative
messages are immediately sent to cancel these output messages at the time the rollback
occurs. This is calledggressive cancellationOn the other hand, one may assume that all
messages sent during the roll back computatiotnaé.e., not false), and are not cancelled

at the time the rollback occurs. After the rollback, new messages, ... will be generated.
Negative messagek need only be sent for potential false messages that are not regener-
ated (i.e.f#m). Depending on the application, lazy cancellation may outperform aggressive
cancellation or vice versa. Guidelines for designing the rollback mechanism can be found
elsewhere [21, 30].
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Fig.1. Effect of Rollback. A horizontal line represents the progress of a process in simulation time, and
a dashed arrow represents sending a message.

Besides the rollback (local control) mechanism, a global control mechanism for Time
Warp is required. The central concept of the global control mechanigoba virtual time
(GVT). Let anunprocessethessage be a message in the input queue of a process that has
not yet been executed. GVT is defined as follows.

Definition 1: GVT at timet (denoted as GVT)) is the minimum of (i) the values of all local
clocks at time, (ii) the timestamps of all unprocessed messages, and (iii) the serfddimes
all transient messages.

At any real time, there exists a global virtual time GVT such that all executed messages
with timestamps earlier than GVT will not be rolled back. Based on GVT, the global control
mechanism addresses several critical issues, such as garbage collection, distributed
termination, and fault tolerance.

This paper concentrates on reducing the state saving overhead and the design issues
for the Time Warp global control mechanism. The paper is organized as follows. Section 2
derives a heuristic used to select the checkpoint interval to reduce the state saving overhead.
Section 3 generalizes a previously proposed GVT computation algorithm. Sections 4-6 present
new algorithms for memory management, distributed termination, and fault tolerance.

2In some studies [8, 18], the timestamps of unprocessed messages are considered in computing GVT,
instead of their send times. This paper follows the original definition of GVT given by Jefferson [12].
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2. REDUCING THE STATE SAVING OVERHEAD

In a Time Warp simulation, the state of each process must be saved regularly (regardless
of whether or not rollbacks actually occur). Lin and Lazowska [20] have indicated that the
performance of Time Warp is dominated by the efficiency of state saving. Thus, it is impor-
tant to reduce the state saving overhead.

There are two approaches to reducing the state saving overhead. One approach is to
accelerate the state saving process. Fujimoto et al. [9] developed special-purpose hardware
to support fast state saving. A complementary approach is to reduce the frequency of state
saving. This section pursues the second approach. We give a heuristic to select the
checkpoint interval to reduce the state saving overhead and report on the confirmation of
our results in an experimental study conducted by Preiss et al. [29].

From a model similar to that in [11, 35, 37], we derive bounds for the optimal checkpoint
intervalx,,. Note that our derivations are based on several simplifying assumptions. Thus,
the term “optimal” means the best possible choice of the paramgtesubject to our
assumptions.

Consider a procegsin a Time Warp simulation. We assume that there is no message
preemption, and that a state saving operation occurs atomically with the completion of the
checkpointed event. We refer to the interval between two consecutive rollbarchs af
computation cycle Suppose every message executions are followed by a state saving
event (i.e., the execution of thh event ischeckpointel x is called thecheckpoint
interval. Consider théh computation cycle of lengfR,; as shown in Fig.2.

In this figure, a solid circle represents a state saving event. RAflevents have been
executed, a straggler arrives, which ungggsvents. However, it is necessary to roll back
to the first checkpoint (but not include the checkpoint itself) prior to the timestamp of the
straggler, and an extyg; event must be re-executed to restore the current process state. For
convenience of analysis, the executions of these events are assumed to be- ihsthe
computation cycle. A computation cyéleonsists of three parts:

o rollback and restoring the current process state by re-exegutingvents (cf. Fig.
2),

o forward executions (the executionsegf events in Fig. 2),

¢ and periodic checkpointing (cf. the solid circles in Fig. 2).
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Fig. 2. Theith computation cycle.

Thus,R,; can be expressed as

R, =0, +7.1, fori>1andy,,=0. @
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Note thate,; may be negative (i.e., a straggler message arrives befgre,athes-
sages have been executed),dyt+ 7,1 is always positive. In our model, the state saving
overhead\,; for theith computation cycle is defined as the overhead needed to re-execute
they,i1 events in the previous computation cycle plus the overhead of the state saving
operations done among;; + o,; events. Leb, be the overhead of saving a process state,
assumed to be a constant. Bgte the execution time of thih event< R,) in theith
computation cycle. Assume that the process state is checkpointed before the first event is
executed, then the state saving overhagdpf theith computation cycle is

&)

Equation (2) consists of two components. The first component represents the over-
head for restoring the current process state (Wwhelhy,;; = 0 and the component does not
exist). The second component represents the overhead for periodic checkpointing. This
equation holds whethex,; > 3,; or o,; < B,; (on.1> B,.1, according to the definition of a Time
Warp simulation). Lek, be the number of rollbacks that occur in a process when the

checkpoint interval is. LetA, =E XAX,i o ThenA, can be expressed As = A, + A,
1

WhereAf( is the time devoted to periodic checkpointing métis the time devoted to re-
executing the extra undone events needed to restore the current process state. Our goal is to
choose an optimad value which minimizes the net effet We first derive a lower bound

A, and an upper bounﬁ; for A, with a fixed checkpoint interval. L&, be the number of
checkpoints required in a process. From (2),

Ea)(l EUX.+VX.-1|:|
CEXEE x B

Assume that the behavior of the system is not affected by the checkpoint interval;
that is, for allx, the process states are the same at the end of a computation cycle. This
assumption is reasonable when the system being simulated is homogeneous. However, it
does not reflect the real world in general. Thus, our solution should be considered as a
heuristic for checkpoint interval selection. From this assumption, we have

k.=k =k, andforall o,=o;=0c and B,=p,=p. ©)

Let N, be the number of events (including the roll back events) executed in a process
when the checkpoint intervalis Sinceyy; = 0, (1) and (3) imply that,; > 0, and

K
NX = N1+j§1yx,j . 4

It is not possible to deriv&, without knowing the distributions @f andf3. Lacking
knowledge of these distributions, we will instead derive bounds,for
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To derive a lower bound fa,, consider thé&h computation cycle in Fig. 2. Execution
of everyx events requires a checkpoint, except for the ¥astevents. (The process is
checkpointed at the beginning; then, evegyent executions are followed by a checkpointing
operation.) In other words, the execution of theWastevents does not incur checkpointing
overhead. Thus, the best case occurs WherF X —1. Then,C, is bounded below as

N, -(x-Dk N +k
C, > =X -k

If we assume that,; is uniformly distributed in [Ox — 1], then a tighter bound can be

obtained. Letr = % and letd be the expected event execution time. Then from (2), (4) and
(5), alower bound\, for A, is derived as follows:
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The checkpoint interval that minimizes (6) is
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It is interesting to note that (7) is almost identical to Young’s result [37] under the

proper interpretation of the parameters. To derive an upper boutud lerry’, ;= 0 andy,,
=x — 1. Then the number of checkpoints required in a process is bounded above by

Ny _ Ny +(x =Dk

C <ZXc<
X X X (8)
From (2) and (8), an upper bout\Qfor A, is derived as:
< |<()(—1)5+—’\'1+())((_1)k5s
=kfx- o+ A=Y 1)555_ ©

The checkpoint interval that minimizes (9) is

- = Df(a_l)as O
X - ‘\‘ 6 El
8
Fig. 3 plots the curves fak, andA*X. The functions for botWX andA’, are of the
formf(x) = f,(x)f,(x), wheref,(X) = % andf,(x) =ax? + bx +c.
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time

A=

min
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Fig. 3. Bounds foA,.

Sincef,y(x) is a parabola, the effect afx) maked(x) decrease quickly asincreases
before the minimum is reached (in Fig. 3, the minimazgfe= A’ _ andA ;= A" ,), and
increase slowly agincreases after the minimum is reached. From Fig. 3, the optimal check-
point intervalx, is bounded b~ < x,,, < M*, whereM- andM* are the roots of the equation
A=A, Note thaM <x <x*< M"andM*- x*> x*— M-, and

min

M™ - x",M™ - x7, asAl+ - A (20)
Since the derivations foi- andM* are more complicated than the derivationscfor
andx*, it is more practical to determing,.in terms ofc~ andx*. As indicated by (9), this is
a good approximation wheA’, — A .
We make the following observations.

o If the execution times of events are random variables Ahisraffected by the mean
of the execution times but is insensitive to the distribution of the execution times.
This is derived from the strong law of large numbers.

e For a fixedx, the state saving overheAddecreases as increases. This implies
that reducing the state saving overhead is important for simulation with@mall

¢ Erring on the side of avalue that is too large will degrade performance less than
erring on the side of mvalue that is too small.

e A largex should be chosen if (%i is large, and/or (iif is large. Intuitively, if, is

small (compared witi), thenACX only has an insignificant contributionAQ. Thus,
a smallx should be chosen to minimit@. For a larger , ACX has a more significant
effect onA, thanALj( does. Thus, a largeshould be chosen to reduA@. When
a =< (i.e., no rollback occurs at procg®sno state saving is required, and -
should be selected.

Preiss et al. [29] have conducted experiments to study our simple heuristic. In their
experiments, the execution times of simulation were measured instead of the state saving
overhead\,. Interestingly, the curves for the execution times have the same shapes as do
the curves in Fig. 3. The experiments show that forahed-robinprocessor scheduling
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policy ® and for both aggressive cancellation and lazy cancellation, the optimal checkpoint
intervals fall in the intervab{-, x*] or are slightly higher. For themallest timestamp first

policy, 4 the optimal checkpoint intervals are larger thanAlthoughM* was not known in

the experiments, we believe that the optimal checkpoint intervals all faft,iMf]. The
experiments also indicated thag ~ A, for x4, x, € [x*, xo]. Thus, this experimental study
concluded that* is a good predictor for the optimal checkpoint interval. We note that in
these experiments, the parameters, andé were obtained after the simulation run finished.

A large issue is the fact that these parameters are seldom known ahead of time and are a
function of the application characteristics. One way to obtain the values for the parameters
is to compute these parameters during the simulation and update the values dynamically.
Several issues about the use of our simple heuristic for reducing the state saving overhead
are being investigated at the Jet Propulsion Laboratory [2, 33]. Bellenot’s experiments indi-
cated that our heuristic is less accurate as the number of processors available increases. The
reason is simple. The derivation of our heuristic assumes that processors are not idle during
the simulation. (This assumption is generally true when the simulated system is large.) As
the number of processors increases, the number of idle processors also increases, which
may invalidate our assumption. Thus, we conclude that the heuristic is useful when the size
of the simulated system is large.

3. GLOBAL VIRTUAL TIME COMPUTATION

Time Warp requires a global control mechanism to address several critical problems
such as memory management, distributed termination and fault tolerance. The central con-
cept behind the global control mechanism is based on GVT. Since GVT is smaller than the
timestamp of every unprocessed message in the system, we have the following theorem.

Theorem 1[12]: At timet, no event with a timestamp earlier than GVT(t) can be rolled back,
and such events may be irrevocably committed with safety.

Jefferson [12] showed that GVT is a non-decreasing function of time, which guaran-
tees global progress of the Time Warp simulation.

In a shared memory multiprocessor environment, GVT can be easily computed [7]. On
the other hand, GVT cannot be easily obtained in a fully distributed environment where
messages might not be delivered in the order they are sent. (In such an environment, the
transient messages in the system cannot be directly accessed.) In most approaches [3, 18,
27, 34], the task of finding GVT involves all the processes in the system. One of the
processes, called tloordinator, is assigned to initiate the task. The coordinator broad-
casts s8TARTGVT message to all processes. Then every process computes its local mini-
mum (to be defined), and reports this value to the coordinator. When all the local minima are
received, the coordinator computes the minimum among these local minima, and GVT is
found.

3In the round-robin policy, the processes that are ready to execute (i.e., the processes that have messages
to process) are allowed to process messages in round-robin fashion one at a time.

4In the smallest timestamp first policy [23] or thenimum message timestamp pol[@@], a process
with smaller timestamp event (i.e., the next event to be executed in the process has a smaller timestamp)
has higher priority for execution.
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In a GVT algorithmgontrol messagesuch asTARTGVT) are sent to perform GVT
computation. These messages are distinguisheddatermessagethe normal messages
sent in Time Warp simulation. Most GVT algorithms are based on Samadi's approach [34]. In
this approach, when proceggeceives a data message frpmt needs to send an
acknowledgement back o We have proposed a GVT algorithm [18] that does not require
acknowledgements for data messages. Thus, this algorithm can eliminate about 50% of the
message sending during the simulation. However, the algorithm assumes that the set of
processes that send messages to a process is pre-defined. This section removes this
restriction.

Consider a pair of procesggandg. A message has a sequence nurhbéris the
ith message (denotedmag sent from a procegsto a procesg. Consider an example of a
send time histogram of messages sent fsoat in the time interval [0t] as shown in Fig.
4. Note that a message with a larger sequence number may have a smaller send time due to
arollback inp. Let avalleybe a messagsg such thati = 1 orts'(m) <ts((m.,),i > 2. (Thus,
my is always a valley.) In Fig. 4, the set of valleysis, {1,;, Mg, Myt The message with the
smallest send time is among these valleys. Thus, to find the minimal send time of messages
in transit, we only need to consider those valleys in transit.

To obtain the minimal timestamp of transient messages,\4(sgtis maintained in
proces® to record the send time information of valleys that have been senp iogq If
we represent a valley as a ¢n ts) pair, wheresnandts' are the sequence number and send
time ofm, respectively, then the Sé§(q) for the example in Fig. 4 is

4 Send time

1
1
1
1
[
[
----------------------- 4
1
]
1
1
L

1 21 50 72 80

Sequence number

Fig. 4. Send time as a function of sequence number.

V() ={(1,10), (21,30), (50,50), (72,20), (80,70)}.

When procesp sends a messageto process, it checks ifmis a valley. IfitisV,
(9) is updated to reflect the sendingnaf
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In process), a setSN,(p) is used to record the (sequence number) ranges of messages
which are sent from and have been receiveddpyAn element (i.e., a range) 8N,(p) is of
the form én, sn), wheresn is the sequence number of the first message in the rang®) and
is the sequence number of the last message in the range. We note that the sequence number
holes inSN,(p) are due to the non-FIFO communication property in the distributed
environment. If the messages received bye those with sequence numbers 1, 2, ..., 20, 32,
33,...,67, 69,70, ..,108,and 120, 121, ..., 131, then

SN(p) ={(1.,20), (32,67), (69,108), (120,131)}.

When procesg receives a messagefrom procesp, SN,(p) is updated to reflect
receipt ofm.

Now, we will describe GVT computation. Consider a propedset theinput setof p
(denoted a§(p)) be the set of processes that send messagesia let theoutput sebf
p (denoted a&;(p)) be the set of processes that receive messagegpfrdmwo types of
control messagesSTARTGVT andTypPEL) are sent in the GVT computation. The coordina-
tor py initiates GVT computation by broadcasting a messagrtGVT to every process.
When procesp receives the messageaRTGVT, it enters the following phase.

Phase 1.In this phasep (i) computesm,, the minimum op’s local clock and the minimum
send times of all unprocessed messagesimput queue, and (ii) sends a messagg=
(TYPEL, sny,,) to every procesge S(p), where
Sy, = min  sn+1
' (snf,sn)0Ng (p)
is the smallest sequence number of the transient message segtdrpm

Whenp receives the firstyPEL message from another process, it enters the following
phase.

Phase 2.In this phasegy waits to receive a messagsg= (TYPEL, Sn,) from everyg e S(p).
Usingsn,q, p locates the smallest send timg of the transient messages froo q by
searching the s&f,(q). That is,

= min ts'.

pa (sn,ts')Vp (q).snzsnp g

After p has received all the TYPEL messages, it compytes %(n) Tog
q p.

After p has completed both Phase 1 and Phase 2, it reports to the coordin&toalhe
minimum

LM, =min(my, 7,).

After the coordinator has received aM,, it computes

GVT = rgpn LM, (12)
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The time when a procep&nters Phase 1 may affect the correctness of the GVT computation.
Suppose that procepsnters Phase 1 at tihe Due to the effect of rollback, tif# t,, it is

possible thatnDax LM, > GVT(tv), wheret,, = rréaxtp (i.e., (11) does not compute a lower

bound for GVT). In Appendix A, we show that this problem is avoided if every process
enters Phase 1 before Phase 2.

Theorem 2: Suppose that procepsnters Phase 1 at timg andt,, = mDaxtp. If every
P

process enters Phase 1 before Phase Zn’gheld\/lp < GVT(tw).
P

Thus, the GVT algorithm for a procgsss described as follows:

o If preceives theTARTGVT message before amyPEL message, it enters Phase 1.
After p has sent all theyPEL messages, it enters Phase 2.

o If p receives anyYPEL messageisgbefore thesTARTGVT message, thgmenters
Phase 1. Aftep completes Phase 1, it enters Phase 2 and proces3€b Phase
2, pignores the arrival of the late messagerTGVT.)

In the above algorithm, the s&¢p) andS,(p) are pre-defined. In a practical Time
Warp simulation, both sets may change from time to time. To accommodate this situation, we
assume tha®(p) andSy(p) are updated dynamically, i.&(p) < S(p)U{ o} (So(p) « S(p)u
{q}) whenp receives (sends) the first data message frong(t&yith the dynamic input/
output sets, the algorithm just described may fail in the following scenario: Suppose that
process) completes Phase 1 before it receives the first data message. fiimenp may
expect to receive arPEl message frorg and never exit from Phase 2. This problem is
solved by introducing a new control messages of type2: Whenp enters Phase 1, it also
sends aYyPE2 message to every process S(p)- If (i) g has already completed Phase 1
when it receives ayPE2 message from, and if (ii) g did not send avyPel message tp
during Phase 1, thensendsmsg= (TYPEL, 0) top. (The messagesgtells p thatq did not
receive any message frgmwhenq entered Phase 1.) Thus, the complete algorithm is
described as follows.

A proces enters the GVT computation mode when it receives the first massage
of typeSTARTGVT, TYPEL or TYPE2. Upon receipt omsg the following procedure is
executed:

LMy = 1My, Sovr(p) = S(P), Sevr dP) = S(p);
for allge Syt (p) do senda messagerypPel, Im,, sn, ;) toq;
for all g'e Svrdp) do senda messageryPE2) toq';

Thenp enters (modified) Phase 2 and handles the messagt msg= (TYPEL, Sn,¢),
then compute, , and

LM, = minLM,, 7p.q).
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If msg= (TYPE2) is fromQ' ¢ Ssyr(p), thenp sends a messagerfel, 0) toq'. After
p has received all therPEL messages from processe&ifr o the valud-M, is sent tqo,.
(Note thatp may continue to receiverPE2 messages before it receives the computed GVT
from po). The input (output) set of a procgssonsidered in the GVT computationSsr,
(P) (Ssvr.dp)), the input (output) set whegnenters Phase 1. This is required because the
local minimum of procesgis computed at the time when it enters Phase 1.

4. MEMORY MANAGEMENT

A parallel simulation may consume much more storage than space a sequential simu-
lation no matter which parallel simulation protocol is used [13, 24]. Since extra memory is
required to store the histories of processes, memory management for Time Warp is more
critical than that for conservative simulation protocols, such as the Chandy-Misra approach.

Basically, there are two approaches to reducing the memory consumption of Time
Warp: reducing the state saving frequency as described in sectiorfdssihdollection
Fossil collection is described as follows. Jefferson showed that:

Theorem 3:Letr <GVT(t). After timet, the following objects in a procggsare obsolete and
can be deleted:

o the messages with timestamps no later thiarthe input queue;

o the copies of the process state with timestamps earliet thaept for the one with
the largest timestamp no later thafwhere the timestamp of a process state
denoted a$s(x), is the local clock of; when its process statexs

¢ the messages in the output queue with send times no latar. than

Based on Theorem 3, fossil collection reclaims obsolete objects after GVT is computed.

The frequency of GVT computation is basically determined by fossil collection: If a
low frequency is chosen, a process may exhaust memory before the next fossil collection is
performed. On the other hand, a high frequency may result in heavy overhead of GVT
computation and fossil collection, and thus reduce the progress of the simulation. Some
Time Warp implementations [14] periodically perform fossil collection on at fixed time intervals.

Unfortunately, even if we reduce the state saving frequency and perform fossil collec-
tion frequently, Time Warp may still consume much more storage space than a sequential
simulation. Thus, it is important to design a memory management algorithm for Time Warp
such that the space complexity of Time War@(®l,), whereMs is the amount of storage
consumed in sequential simulation. (A memory management algorithm for parallel simulation
is calledoptimalif the amount of memory consumed by the algorithm is of the same order as
the corresponding sequential simulation.) Jefferson proposed the first optimal memory man-
agement algorithm, callancelbacK13]. In this protocol, when the Time Warp simulation
runs out of memory, objects (i.e., input messages, states, or output messages) with send
times later than GVT are cancelled to make more room. The cancelled objects will be repro-
duced later. This section proposes another optimal protocol, calladiffeal rollback
protocol The basic idea behind this protocol is to roll back “possibly-correct computa-
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tions” if necessary, to obtain more free memory space. Since the mechanism for the artificial
rollback protocol is the same as that for the rollback mechanism, this protocol can be easily
implemented.

We first introduce a special type of rollback that does not exist in normal Time Warp
execution.

Definition 2: Without receiving a straggler, a procgsmay (on purpose) roll back its
computation to a timestamp(z > GVT) earlier than its local clock. Procgsss said to
artificially roll back to timestamp.

We impose the restrictiar> GVTfor two reasons. First, artificial rollback should have
the same properties as normal rollback, and no process can normally roll bacRY€ .
Second, if fossil collection is performed at GVT, a process cannot be artificially rolled back to
a simulation time earlier than GVT because the earlier parts of process histories may already
have been discarded. We will show that artificial rollback does not affect the correctness of
Time Warp:

Theorem 4:Let She a Time Warp simulation consistinggirocessep,, pa, --..p.. Letck

be the local clock of. Repeat the same simulation except that prqgestficially rolls
back to a timestamp< ck at timet and re-executes. Then the new Time Warp simulation is
equivalent taS,

Proof: LetS be the sequential counterpartofConsider another sequential simulat&n
which is identical td5; except that a new procegg; is added. Procegs.; does not
communicate with other processes except that it schedules ar eitmtimestamgr top;.

When the event occurp, does nothing. Thu& andS§ are equivalent in terms of the
behaviors ofy, ...,p,. ConsidelS', the Time Warp implementation 8f. From the above
discussionS'is the same aS if we ignorep,.;. Suppose that,., sends a message
(corresponding to the occurrence of ev@rtb p; at time 0, and that the message sending
delay for that messagetigNote that assuming arbitrary message sending delay does not
affect the correctness of Time Warp.) In effect, this is the same as an artificial rollpack to
Thus, artificial rollbacks do not change the results of a Time Warp simulation. O

From Theorem 4, a process may roll back to an earlier simulation X18&'T, and the
memory used in the rolled back computation can be reclaimed. Later on, the rolled back
computation (if it is correct) will be re-executed, which will produce the same results as the
original Time Warp simulation.

Consider a shared memory environment. It is easy to prove that if we compute GVT,
perform fossil collection, and roll back all processes to GVT, then the amount of memory
used in Time Warp is of the same order as the amount of memory used in the sequential
counterpart at simulation time GVT (cf. Theorem 6 in section 6).

With the artificial rollback protocol, Time Warp is able to reduce the amount of memory
space used in parallel simulation (while other simulation approaches, such as the Chandy-
Misra protocol cannot). However, progress of the simulation may be degraded. The trade-
off between time and space is still an open question.
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5. DISTRIBUTED TERMINATION

In most Time Warp implementations, termination detection is handled in terms of GVT:
When a process has processed all messages in its input queue, its local clock issset to
When GVT reaches, all the local clocks must e, and no messages can be in transit.
Thus, GVT is computed periodically to see if the simulation terminates (i.e., if GVT Fo
efficiently detect distributed termination, we should compute GVT infrequently at the begin-
ning of the simulation. As time passes, the frequency should increase. However, such a
selection of frequency may conflict with the needs of fossil collection. To simplify the
selection of the GVT computation frequency, an algorithm that automatically detects distrib-
uted termination without GVT computation might be attractive.

The distributed termination (DT) problem is non-trivial because no process has com-
plete knowledge of the global state. Many algorithms [5, 6, 16, 17, 26] have been designed to
detect distributed termination. Most of these algorithms deliver the control messages (i.e.,
the messages sent for DT detection) in pre-defined paths. Thus, in the view of these DT
detection algorithms, the processes are connected in some fashion. Some algorithms con-
nect the processes as a ring [16]. Others organize the processes as a tree (either dynamically
[17] or statically [36]). In general, the “logical topologies” used in these DT detection
algorithms may not match physical processor connections. For example, it is not efficient to
implement a ring algorithm on a tree architecture, or vice versa. Even if the algorithm and the
architecture match initially, inefficiency may be caused by process migration.

In this section, we propose a simple DT detection algorithm. In this algorithm, every
process reports its termination to a coordinator which announces the termination of
distribution. In other words, we have a “star” logical topology, and the shortest path is
always chosen to deliver control messages between a process and the coordinator. One may
argue that the coordinator may become a bottleneck. In Time Warp simulation, we expect
that the number of control messages sent in DT detection is small compared with the number
of data messages sent. Thus, if we have a dedicated coordinator process for DT detection,
it will not be a bottleneck.

The setd/,(q) andSN,(q) described in section 3 are used in our DT detection algorithm.
This algorithm is based on tipeinciple of message countinlf all processes are idle and
the number of messages sent in the system is equal to the number of messages received,
then the distributed computation has terminated.

Definition 3: Let S(p) be the input set of a process Processg, satisfies théocal termina-
tion conditionif and only if its local cloclck = <, and for all processgse S(p), ISNu(R)| =
1 (i.e., there is only one rangeSiN (p))).

Note that if BNy (p))| # 1, then at least one data message sentgytmp; is in transit,
andp; will be re-activated after the message is received SNg(ip) = {(sn, sn)}, and letr;;
=sn for allj e S(p;) ands = Vi(pJ.snfor allke S(p). If the local termination condition is
satisfied, them;; (s) is the number of messaggseceived from (sent tq}. When this
condition is detectegy sends a messadk = (IDLE, S, R) to the coordinatop,, where

S={sjli € S(p)}andR ={rijli € S(p)}-
The coordinator maintains two s&s= {sj;| Vij}andR'={r'j|¥ij}. Initially, sj

=r';; = 0 for alli,j. Whenp, receives a messadh = (DLE, S, R), the following code is
executed to updat®’ (R'is updated in the similar way):
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for alls; e Sdoifg; >sj;thens;; =s;.

Now we will describe a distributed termination condition. Whgngatisfies this
condition, the distributed computation must have terminated.

Definition 4: Proces$, satisfies thelistributed terminatioDT) conditionif and only if (i)
it receives at least one idle message from every process ap=if);; for alli,j.

In Appendix B we prove the following theorem.

Theorem 5: The distributed computation terminates if the coordinator satisfies the DT
condition.

Thus, every time the coordinaigyreceives amLE message, it tests the DT condition.
If the condition is satisfied, thgw announces distributed termination. It is apparent that
this algorithm is optimal in time complexity (if we ignore message contention): Suppose that
a process, is idle forever after timé.. Letxt, be the message sending delay ofithe

messag@ sends at time,. Thenp, reports distributed termination at tim?x(tpi +At,;).

The above algorithm is based on “process-to-process” message counting; i.e., we need to
check ifs; =r/; for all possible pairs,(j). In fact, we only need to count the number of
messages; sent fromp; to every procesg € S(p;) on a process-to-process basis, and
count the total numbet of messages received by procpséor vice versa). The DT

condition tested by, is nOWgS;,i =1'. Note that if we only count the total numbers of

messages sent and receivedJ by a process, then the algorithm may detect false termination.
Directions for optimizing our algorithm are given in [25].

To conclude, using a simple DT detection algorithm that does not rely upon GVT
computation means that optimization of fossil collection is not affected by DT detection.

6. FAULT TOLERANCE

In a distributed system, there are two kinds of failysescess failuresndcommuni-
cation failures Both types of failures are usually detectedibeout Recovery of a
communication failure only involves two parties and can be done locally. On the other hand,
recovery of a process failure may involve more than two processes and require global infor-
mation of the system. In a distributed Time Warp simulation, if a process fails antiohés
recovered at timg, then the computations of all the other processes duritiggfe usually
incorrect. In other words, a process must re-execute from the statetavenghough it is
not a failed process; i.e., recovery for one-process failure is the same as that for an all-
process failure in a Time Warp simulation. Thus, to recover process failures, a distributed
snapshot is required. This paper concentrates on process failures and ignores communica-
tion failures. (We assume that either the communication system is reliable or that a lost
message is recovered locally, and the only effect is that the message experiences longer
message sending delay. A lost message can be easily detected by using dataSftfucture
(9) in a timeout scheme which avoids acknowledging every message.) Henceforth, “failure”
means “process failure.”
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The distributed snapshot algorithm proposed by Chandy and Lamport [4] cannot be
used in Time Warp because the algorithm requires the FIFO communication property. (In [1],
a fault tolerance protocol with FIFO communication property was proposed for Time Warp
simulation.) The difficulty in taking a distributed snapshot in a Time Warp system with the
non-FIFO communication property is similar to that for GVT computation; that is, it is usually
not possible to record the current state of the system. Fortunately, since the history of a
process is saved, we can, based on GVT, record an earlier “legal” state of the system. We
first describe the information saved in a snapshot of a sequential simulation. Then we show
how to obtain this information in the corresponding Time Warp simulation. The basic idea
was proposed by Jefferson [12]. This section gives concrete descriptions and proofs.

Without loss of generality, assume that all messages executed in the simulation have
different timestamps. Here, the timestamp is used to distinguish the execution order of the
messages. For messages with the same timestamps, some execution order still exists. Thus,
this assumption does not restrict the results presented in this section.

Consider a simulatiofs of n processes. Le&tbe an event occurring in procgss
ConsidelS, the sequential implementation®fLetx; () be the process stategin S after
e (wherets(e) =) is executed. Let

Yo ={e, ....8, ....6¢

be the set of events executed at proggswsherets(e;) < ts(e;) < ... <ts(e). Let
W, =Uwicn W, - Then the sequence of statep 6 X, (71), Xs,(72), -...%(7i), wherer; =ts(g),
and the set gf;’s states is

Xs,i= {X6,(70), % (T2), - X%s,(T}-

At simulation timer (after all events with timestamps no less thare executed), the event
queue ofS;is

Y(r) ={ee Y|ts(e)=r,tde)>1} 12
and the set of process states is
X,(7) =U{sup(x,; 1)}, (13)

where K;, 7) =X, a process state Xa; such thats(x) = r and for allx' € X, if tS(x) <z then
ts(x’) <tgx). Note that (12) and (13) are the information to be saved in the snapShat of
simulation timer. That is, (7)), X{(7)] is a legal state of the sequential simulation, and
starting from this state, a correct simulation result can be produced.

Considels,, the Time Warp implementation 8f For alli, 1<i <n, lett;>t, andr <
GVT(t). Letlw,; (Ow,s) be the set of events (i.e., messages) in the input (output) qugue of
at timet;, and letXy,; be the copies of states in the process state qu@uatdimet,. Then
from Theorem 1, the events in the set

Ow,s(7) ={ee€ Ow,slts(e) <7}

are never sent for cancellation in rollbacks, and the messages in the set



DESIGN ISSUESFOR OPTIMISTIC DISTRIBUTED SIMULATION 259

lw;i(7) = {ee lw;;lts(e) <7}

and the states in the set
Xwig(7) ={X € Kuwiglts(x) <7}

are never cancelled. This implies thgt,() < s, and thaiX,,;;(z) < Xs;. More precisely,
lw;i(T) = {€€ Wplts(€) <7} and Xy (1) = {xe X [ts(x) <7} (14)

Definition 5: Letz <GVT(t,). A Time Warp simulation is artificially rolled back#oat timet

> 1, if and only if all processes are atrtificially rolled back t@.e., the executions of events
with timestamps later thanare rolled back) at timi t, < t; < t, and if during {, t], p; only
executes the negative messages (if any).

If a Time Warp simulation is artificially rolled back taat timet, then all negative
messages with send times later thagre sent to annihilate the corresponding positive
messages; in other words, after the artificial rollback, all objects have send times no later than
7. Thus, for every procegs we have

lwit = lw,is(2), Kowit = Kowis (7). andy; = Oy,4(7). (15)

Suppose that fossil collection with timestamfs performed after the artificial roll-
back and is completed at tirtte-t. Then from Theorem 3, Definition 5, and Equations (14)
and (15), for a procegs we have

Lt = lwii—{€€ lw,ts(€) =7} = {ee Pplts(e) <7, t€) > 1},
Kwiir = Xewjit = Kewit— {SUPKiwio T)}) = {SUP(Ks T},
Ouwir* =Owir—{€€ Ow,ts(e) <7} = 0. (16)

Thus, we have the following theorem:

Theorem 6:Lett < GVT(ty). Suppose that a Time Warp is artificially rolled backabtime
t >t,, and that a fossil collection with timestamis performed and is completed at tithe
t; then

U Itw,i,t+ = L'J(T)‘ Uxtw,i,t+ = XS(T)l and Uotw,i,t+ =[.

Theorem 6 states that at any time, we can obtain a legal state of the sequential simula-
tion from Time Warp. Thus, a distributed snapshot of Time Warp can be taken using the
following steps:

Step 1:Compute GVT at timé Letr be the largest timestamp smaller tAAT(t).
Step 2:Attimet; > t, proces$, stores the following information into stable storage:

e a subset of the input quelig,(z) = {e€ lw,lts(€) <, ts(€) > 7};

e a process stags (7) = SupKw,ig, 7)
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We note that:
e For allt;, t, >t andr < GVT(t),

lw,i,tl(T) = Itw,i,tz(T)1 andxtw,i,t;L(T) = th,i,tz(T)

(from (14)). This implies that the processes do not need to take local snapshots at
the same time. The local snapshots are consistent if they are taken with respect to
the same simulation time and if the local snapshots are taken at timé.

e From Theorem 6, there is no need to save the output queues in a distributed snapshot.
In other words, the amount of storage required to save the distributed snapshot is
the same as the snapshot for a sequential simulation, and the distributed snapshot
taken in the above procedure is the same as the sequential snapshot taken at simu-
lation timer.

This section has shown that a distributed snapshot of a Time Warp simulation can be
easily taken. To our knowledge, there is no simple way to address the fault tolerance issue
for conservative protocols, such as Chandy-Misra.

7. SUMMARY

This paper has addressed several important issues in designing a distributed Time
Warp simulation. We have proposed a heuristic to select the checkpoint interval in order to
reduce the state saving overhead. We have generalized a previously proposed GVT algo-
rithm by allowing dynamic communication topologies. We have proposed a new algorithm
for memory management called artificial rollback, which ensures that Time Warp only con-
sumes the same amount of memory as does the corresponding sequential simulation. The
idea is to roll back uncommitted computation to make more memory space in order to com-
plete computation in the critical path. Based on the message conservation law, we have
presented a distributed termination detection algorithm which does not require periodic
computation of GVT. Finally, using GVT, we have addressed the fault tolerance issue by
presenting a simple and efficient distributed snapshot algorithm.
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APPENDIX
A: PROOFS FOR THE GVT ALGORITHM

This appendix proves Theorem 2.
Let P be the set of processes. Consider the tjmewhich the procegsenters Phase
1. Then the valukn, is computed at timg (and is denoted d&&,(t,)). Letty= mgpxtp. Let
pl

TR, ((t) be the set of transient messages sent fpho g at timet, and let

TR, = U TR, (t). LetM,(t;, t;) be the set of messages sent fpptaq® in the time
@

interval ft;, t;]. By conventionM,«(t,, tp) = D if t;>t,.) In Phase 2, ff receives a messagesg
= (TYPEL, sn,) at timet,,, thent,,>t, and

Tog = min ts(m). 17)

MR g (tq)IMp,q (g tp,q)

Let GVT, be the GVT computed in our algorithm; then

GVT, = minftm ,min@ﬂ min ts(m
! ptP ﬁ p(p) a0 (p) DTRp,q(tq)DMp,q(tq,tp,q) S( )% (18)

Now we ignore the messageMg(t,, t,o) in (18) and consider a new variall®T,, where

GVT, = mm@m (t,), min 0 min ts(m)%

A0S (p) LMCTRp g (tg)

—mln%m (tp), m|n min s(m)%

pOP 0 DTR:l (tp) (19)

= i), i, s
Let LM (t,) = m|n§mp(tp),mDrTT;Lr(1p)ts(m)§; then (19) is re-written as

GVT, = r;ggl LM (t,)-

We first derive a condition wheBVT,> GVT(ty). From the condition, we show that

GVT(t,, )>m|n§3VTl, min min ts(m)%

,q0P, p£q LM g (tq.tp)
(20)
= min @M;(tp), min ts(m)@

p,aCP,p#q MM p g (tg tp)

5These messages may not be received bgfore timet,.
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Based on (20), we derive a condition which ensG¥¢¥t,) > GVT,.

Definition 6: A proces® is called alype Aprocess if it has rolled back to a simulation time
ts< GVT(ty) in the time intervaltg, ty].

Definition 7: A procesg is called &ype Bprocess if (i) it rolls back a Type A procegsii)
t,>t;, and (iii) the stragglem that rolls backj is sent frorp in the time intervaltg, t,].

Corollary 1: Letmbe a straggler sent from a Type B process. T{en< GVT(ty).
Proof: Directly from Definitions 6 and 7. |
Lemma 1:If GVT(ty) < GVT,, then there exists a Type A process.

Proof: Cf. Lemma 2, [34]. |

Lemma 2: Suppose a Type A procgsss rolled back by a messagesent from a procesg
Thengq is either a Type A process or a Type B process.

Proof: We prove by contradiction. Assume tlgds neither a Type A process nor a Type B
process. From Definition §,is rolled back by a messageafter timet,. From Corollary 1,
ts(m) = GVT(ty). Suppose thahis sent at timé. There are two possibilities:

A. t;<t;: There are two sub-cases.

A.l.t>ty (cf. Fig. 5(a))g must have been rolled back in time interiglt]; otherwise,
ts(m) > LM, (t) > GVT(ty), which contradicts the fact thegm) < GVT(ty). This
implies thatq is a Type A process, a contradiction.

A.2.t<t, (cf. Fig. 5(b)): Since does not receivm beforet, > t, mis a transient message
at timet,. In other wordsm« TR(t,). Thus,

, R . O
LM (t,) = mlnamp(tp),m%r&p)ts(m)as ts(m) < GVT(t,,) < GVT,.
This contradicts the fact th@&VT, < LM (t,).

B. t, > t,: There are two sub-cases.
B.1.t>t, (cf. Fig. 5(c)): Similar to A.1g is a Type A process, a contradiction.
B.2.t < ty(cf. Fig. 5(d)):q is a Type B process (Definition 7), a contradiction. O

Definition 8: A rollback propagatioris defined as a set of rollbacks occurring in a set of
processeB, c P (P,, the set of processes that involve in a rollback), where for every rollback
Rb, occurring at the proceps= P,, there exists a rollbadRh, occurring ag € P, such that
eitherRh, is caused bRk, (andRh, is called the successorRh,) or vice versa.

Definition 9: Consider a rollback propagation and its procesB,seA rollbackRb, occur-
ring atp € P, is called theoot of the rollback propagation if there exists no rollb&bl g €
P: such thaRh, is caused byRh,.
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tg t
Process ¢ } 1
Process p \ -
t'n
(a) Case A.1.
t tg
Process ¢ : : >
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Fig. 5. Four cases in Lemma 2.

Lemma 3: Consider a rollback propagation and its procesB,se{pi, p, .....,p.}, where
Rby,,, is the successor 8y, 1<i<n- 1. (Without loss of generality, we assume that each
rollback causes at most one other rollback.) nhdte the straggler sent fropto pi..; (i.€.,
Rb.,, is caused by the arrival of). Thents(m) <ts(m,,), 1<i<n-1.

Proof: Directly from the definition of a rollback and Definition 8. m|

Definition 10: Consider a rollback propagation and its procesB,sethe propagation is
called aType A rollback propagatioif all processes i, are Type A processes.

Lemma 4: If GVT(ty) < GVT,, then there exists a Type B process.
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Proof: From Lemma 2 and an inductive argument (omitted), it is apparent that (i) there exists
a Type A rollback propagation, and (ii) the root of a Type A rollback propagation is caused
by a message sent from a Type B process. Then from Lemma 4, a Type B process exists.

Theorem 7:GVT(tM)2pmin @Mé(tq), min ts(m)@

,qP, p£q mDMpvq(tqvtp)

Proof: If no Type A process exists, then

GVT(t,) = rpmlp LM (t,) = p‘qrgyng_Mp(tp),mDMT;(rth‘tp)ts(m)Q
(Lemma 1) If there exists a Type A process, then there exists a Type B jprfosssnas 1
and 4), such thai sends a stragglen' to a Type A procesgin the time intervalt(, t]
(Definition 7) such thats(m?’) < GVT(ty,) (Corollary 1). In other wordsn'e M, (1, t,) and
min 0 min ts(mi<ts(m) < GVT(L,). This implies that

p.q0P, p£qLmMp g (tq.tp

OV, i, V)., T S
Now Theorem 2 can be proven as follows. If all procepsager Phase 1 before
Phase 2, thepreceives aYPEL message at timig,>t,. From (18) and Theorem 7, we have

GVT, = minftm ,min@n min ts(m
! pmpﬁ p(p) a0S(p) DTprq(tq)DMpyq(tq,tpyq)s( )

< minrim ,min@w min ts(m
ptP ﬁ p(p) a(p) DTRp,q(tq)DMp,q(tqvtp) S( )%

= min @M;(tp), min ts(m)@

p.qCP,pzq mOMp, q(tg.tp)

<GVT(t,,).

B: CORRECTNESS OF THE DT DETECTION ALGORITHM

This appendix proves Theorem 5; that is, we show the correctness of our DT detection
algorithm. In this appendix, the term “messages” means data messages or the messages sent
in the Time Warp simulation, and the term “reports” means idle messages sent for DT
detection. Let(m) be the (real) time when a message/repastsent. Let(m) be the (real)
time when a message/reparts received. We assume thdm) > t(m) (i.e., non-zero
message sending delay). My, be thekth report sent fronp..

Definition 11: M;(t) = M;, is called thdast effective repordf process; at timet if and only
if t.(M;,) <t and for allk’, t,(M; ;) € [t.(M;)), t], we havek' < k.
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Fig. 6. An example of the last effective report.

Definition 12: The first message which re-activates propeafterp; sendsvi(t) is denoted
asm(t).

In Fig. 6,M;(t) =M, is the last effective report pfat timet, andm(t) re-activatep,
afterM;(t) is sent.

Lemma 5: Suppose thai, satisfies the DT condition at tinhg and for allp; € P, letM(t;) be
the last effective report @ at timet;. Thenp; is idle in the time intervat{M;(t)), t:].

Proof: We prove by contradiction. Suppose thas active in ((M(ty)), ti]. Thenp, receives
(and is re-activated by) a messagg;) after timet(M;(t)). Suppose thati(t;) is sent by,
Letm(ty) be thdth message sent fragtop. Sinca';;(ty) = ri;(t(Mi(ty))) <l andsj;(ty) =r';(ty),
we havd > sj(ty). This implies that(m(ty)) > t(M(ty)), thatp; must be re-activated by a
messagei(ty) in the interval {(M;(t7)), t(m(ty)), and that

t(M(tr)) <t(m(tr)) <t(m(t)

o
~

n / / i)
t5(M;(tr)) /
P & (m;(¥r))
to(M;(tr)) ty(mi(tr))
P /

ts(m;(tr))

Fig. 7. The timing diagram for Lemma 5.
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(cf. Fig. 7) Thus, for every active procggsthere always exists another active proggss
such that,(m,,, (tr) <t(m(t)). In other words, we can find an infinitive sequencs, ...,
ij, ... such that

t(M,(tr) > t(My(t) > ... >t(my(t) > ...

Since P| is finite, we have, = p,, for somen <. Without loss of generality, let= 1.
Then we have

t(m,(t) > t(My(ty) > ... >t(M (7)) > t(my () = t(m, (),
a contradiction. O
Lemma 6: If p, satisfies the DT condition &t then there is no data message in transit.

Proof: We prove by contradiction. Suppose that a message senpftom is in transit at
timety. pi(p) is idle in the interval2{M;(ty), trl([t(M;(t7)), ti]), whereM;(tr)(M(t7)) is the last
effective report at; (From Lemma 5). Thus,;(ty) = sj;(ty) andr;(ty) = r'i(ty). Since the
transient message must be sent befgh (ty)) (Lemma 5, angy; has not received the
message at tintg), we have;(ty) < s;(ty) (cf. Fig. 8). This implies that(t;) < si;(tr), which
contradicts the DT condition.

3

Po e (M;(tr)) e (Miltr))

p;

ts(Mi(tr))
p; a transient message

Fig. 8. The timing diagram for Lemma 6.

Thus, Theorem 5, (i.e., the system terminates vheatisfies the DT condition) is a
direct consequence of Lemmas 5 and 6. It is apparent that this algorithm is optimal in time
complexity:

Theorem 8: Suppose that a procgsss idle forever after timé,. LetAt, be the message
sending delay of the repgutsends at timé&,. Thenp, reports distributed termination at
time rnDz;\x(tpi +At,).

From Theorem 5, our algorithm satisfies siadetyproperty (that is, no false termina-
tion is detected). From Theorem 8, our algorithm satisfielb/tirgesproperty (that is, after
the system terminates, the termination is detected in finite time).
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