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Abstract: The paper presents a concept of single 
event equivalence to be used in the sequential 
circuit fault simulator. The concept dynamically 
identifies the equivalent faults for a simulated 
pattern. It combines advantages of the fanout-free 
region, critical path tracing and the dominator 
concept, which were applicable only to combi- 
national circuit fault simulation. The implemented 
fault simulator, SEESIM, based on the concept, 
demonstrated a performance superior to that of a 
state-of-the-art concurrent fault simulator, and 
comparable to that of parallel-pattern single-fault 
propagation simulators. It requires a minimal 
amount of memory and, because of its simplicity, 
can be easily extended to multilogic or higher level 
simulation. 

1 Introduction 

A fault simulator is used to simulate faults and to evalu- 
ate the fault coverage for test patterns. Many schemes 
had been employed to improve the speed of fault simula- 
tors. The classical schemes include parallel fault simula- 
tion [l], deductive fault simulation [2] and concurrent 
fault simulation 131. With the scan design methods [4-7] 
currently in use, the parallel-pattern single-fault propaga- 
tion (PPSFP) fault simulator for combinational circuits 
[SI has gained much attention. Many techniques 

tracing [14] and the dominator concept [lo], which were 
applicable only to combinational simulation, in sequen- 
tial simulation. A simulator was implemented to demon- 
strate the effectiveness of this approach. Experimental 
results show that the simulator has a performance 
superior to that of a state-of-the-art commercial concur- 
rent fault simulator and comparable to that of PPSFP 
simulation. It requires a minimal amount of memory: on 
average, only 172 bytes to process a gate. This means 
that it is possible to simulate a circuit of 100OOO gates 
with only 18 Mbytes of main memory with this simula- 
tor. 

2 Concept of single-event equivalence 

2.1 Equivalent fault collapsing 
The synchronous sequential circuit model considered is 
shown in Fig. 1, where x,, _..,  x, and z,, ..., z, are the 
primary inputs and the primary outputs of the sequential 

U addressinghow to improve the fault simulation speed of 
PPSFP for combinational circuits, such as critical uath Fig, , Model ofa synchronous sequential cirruil 

tracing, the fanout-free region, the stem region [9]-and 
the dominator concept [lo], have been proposed. Unfor- 
tunately, none of these can be applied to sequential cir- 
cuits [ll]. A parallel fault simulator PROOFS [ll], 
which was evolved from DSIM [12]. can handle sequen- 
tial circuits. However, the parallel fault scheme used in 
PROOFS makes it sensitive to the order of the faults 
simulated [I 11. Also, the parallel fault is inefficient when 
extended to multivalues (more than 0, 1, X ,  Z )  and higher 
level simulation because a coding scheme needs to be 
used. 

In this paper, a concept of single-event equivalence 
(SEE) is proposed and demonstrated. It combines the 
advantages of the fanout-free region [13], critical path 
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circuit, respectively. Y,, ..., Y, and y , ,  ..., y ,  are the next 
and the present state variables of the sequential circuit, 
respectively. Y,,  ..., Y,, z, ,  ..., z,  and x,, ..., x,, y , ,  ..., 
y, are the outputs and inputs, respectively, of the com- 
binational part of the circuit. 

For the synchronous sequential circuit of Fig. 1 with 
two faults, f l  and f2, we have the following definitions. 

DeJnition I :  f l  and f2 are combinationally equivalent if 
the presence of f l  or f2 results in the same response on 
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the outputs of the combinational circuit when the same 
patterns are applied on the inputs of the combinational 
circuit. 

Definition 2: f l  and f2 are partially equivalent for the test 
sequence T if the presence of f l  or f2 results in the same 
response in the outputs of the combinational part of the 
circuit, on applying T to the primary inputs, when two 
faulty machines are initially in the same state. 

Definition 3 :  f l  and f2 are sequentially equivalent if the 
presence of f l  or f2 results in the same response in the 
primary outputs when two faulty machines are initially in 
the same state and the primary inputs are subjected to 
the same test sequence. 

With the above definitions, we have the following lemma. 

Lemma I :  Faults that are combinationally equivalent are 
sequentially equivalent. 

Proof: This lemma can be proved by contradiction. Let 
two faults, f l  and f2, be combinationally equivalent but 
not sequentially equivalent. There exists at least one test 
sequence T, which can distinguish the fault effects of 
these two faults at primary outputs of the circuit. This 
implies that, on applying the input sequence T, to the 
primary inputs of the circuit, there exists a pattern of 
inputs to the combinational part of the circuit that pro- 
duces different values in outputs of the combinational 
part of the circuit. This conflicts with the definition of 
combinational equivalence. Hence, f l  and f2 must be 
sequentially equivalent. 

Definition 4 :  For a fault-free circuit, line A is the control- 
ler of line B if setting line A to the logic value U, results in 
line B being at the logic value U, for any pattern of inputs 
to the combinational circuit; U, is called the controlling 
value and U, the controlled value. 

Definition 5 :  Line B is the dominator of line A if all the 
paths from line A to the primary outputs pass through 
line B. 

The above definition is the same as that given in Refer- 
ence 10. 

Lemma 2: For combinational circuits, if a pattern T 
detects a fault at line A, it also detects a fault at line B if 
line B is the dominator of line A. 

Proof: The proof is trivial because the sensitised path 
under the pattern T must pass through line B. 

Theorem I :  For two lines A and B in a sequential circuit, 
if (1) B is the dominator of A and (2) line A at the value 
u1 is the controller of line B at the value u 2 ,  then faults 
A-sa+, and B-sa-u, are sequentially equivalent. 

Proof: From Lemma I ,  we have only to prove that A-sa- 
u,  and B-sa-u, are combinationally equivalent. The 
theorem is also to be proved by contradiction. Assume 
that both faults have different responses at outputs of the 
combinational circuit under the pattern T = {x,, . . . , x,, 
yl. . . . , y,}, which is applied to the inputs of the com- 
binational circuit. For each output of the combinational 
circuit, there exist two cases that can distinguish the fault 
effects of B-sa-u, and A-sa-u, : first, B-sa-u, is detected at 
the output but A-sa-u, is not and, second, A-sa-u, is 
detected at the output but B-sa-u, is not. For the first 
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case, the detection of B-sa-u, implies that the fault-free 
value of line B is 'U, (the complement of U,) and that of 
line A is 'U, from Definition 4. From Condition 2, the 
fault effect of A-sa-u, also appears at line B and is 
detected at  the output as the fault effect of B-sa-u, . This 
conflicts with the assumption. For the second case, B-sa- 
U, must be detected from Condition 1 and Lemma 2. This 
also conflicts with the assumption. Therefore, the A-sa-u, 
and B-sa-u, must be sequentially equivalent and the 
theorem is proved. 

Based on Theorem 1, we derive a procedure as follows to 
find the sequentially equivalent faults that satisfy Condi- 
tions 1 and 2 in the theorem. This procedure examines 
every fault one by one to check whether the fault is 
equivalent to another fault. In examining a fault, there 
are two kinds of event that need to be considered: the 
path event for finding the line that satisfies Condition 1, 
and the logic event for verifying the lines that satisfy 
Condition 2. 

Fig. 2 demonstrates how to check whether the fault is 
equivalent to another fault. In the figure, the circuit has :-e 
C 

Fig. 2 

E 

An example tu demonstrate how tofind equivalent faults 

been levelled from inputs to outputs, and initially all lines 
of the circuit are at  the unknown value X .  To examine 
the fault equivalence for the fault B-sa-0, a path event is 
activated on line B. This will propagate to lines D and E 
to become two events. An event queue can be used to 
store these events. Next, to further propagate the events 
along the circuit, event D is taken from the queue to be 
processed. This event will propagate to line F, and F will 
be stored in the event queue. Next, event line E will be 
taken out and processed. It will also propagate to line F. 
Because event line F has already been in the event queue, 
there is only a single event in the event queue, and it is 
then known that line F is the dominator of line B. At this 
time, all line events originating from line B converge to 
line F to be a single line event. The above is the path 
event evaluation. Also, during evaluation of the path 
events, logic events are processed to evaluate the logic 
value on each line caused by fault B-sa-0. In this 
example, the lines A, B, C, D, E and F are evaluated in 
sequence to have values X ,  0, X, 1, 1 and 1, respectively. 
If a line is found to be a dominator of the faulty line 
during the path event evaluation, the logic value of this 
line is checked. If it is not X, the fault at this line with 
this logic value is equivalent to the fault of the faulty line. 
In this example, the fault B-sa-0 is equivalent to F-sa-1. 

In the above example, the path event evaluation 
checks whether paths converge to a single line, i.e. it 
checks for Condition 1 of Theorem 1, and the logic event 
evaluation checks the controlling and controlled relation- 
ship of the dominating and dominated lines, i.e. it checks 
for Condition 2 of Theorem 1. If Condition 1 is met, it is 
said that SEE exists for the fault being checked. This SEE 
checking can be expanded to the pattern-dependent case 
and sequential circuits; it serves as the foundation for this 
simulator. 
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A formal description of the above procedure to find 
the equivalent fault is listed below. For this procedure, 
the combinational part of the circuit has been levelled 
from combinational inputs to combinational outputs. In 
the description, each fault is taken from the fault-list and 
IS examined in the for loop. The event-number is used to 
record the number of events in the event queue to be 
processed and the last-value is the faulty value of the last 
examined line. 

Procedure 1 : (sequential equivalent fault collapsing) 

set logical values of all lines to X ;  
for (each activatedfault in the faul t l i s t ) {  

inject faul t ;  
while (event-number is not 0){ 
gate = GET-EVENT( ); /* get event: the lower level first */ 
last-UalUe = EVALUATE(gate); 
if (the value of last-value is not X ) {  

/* an equivalent fault is found */ 
dropfault fromfault-list ; 
break; /* stop the while loop */ 

if (event-number is 0){ 

I I 
for (eachfan-out of gate){ 

if van-out is a combinational output){ 
event-number = 0; /* used to stop the while loop */ 

break; /* stop this for loop */ 
I else 
EVENT-SCHEDULING(fan-OUt) ; 

I i  I 
I 
Recover every changes made by evaluating of thisfault; 

In the above procedure, the events originating from a 
fanout stem do not necessarily converge to one domina- 
tor line. Events may propagate to combinational outputs 
of the circuit. For this case, no equivalence relationship 
exists and the procedure stops. 

2.2 Pattern -dependent single-event equivalence 
In the previous Section, SEE was applied by considering 
only the static structure of the circuit. No pattern was 
applied during checking of the SEE. When a pattern is 
applied, SEE between faults can still be checked. 
However, at this time, logic values at all circuit lines are 
fixed. The equivalences between faults are pattern depen- 
dent. Procedure 1 can be modified as follows to check the 
equivalence between faults. 

Procedure 2: (pattern dependence SEE checking) 

For a simulated pattern on inputs: 
do true simulation for the circuit. 
for (each undetectedfault in thefault-list){ 
injectfault and recover the faulty state of this fault; 
while (event-number is not 0){ 
gate = GET-EVENT( ); /* get event: the lower level first */ 

if (the last-value differs from the fault free value of gate){ 
last-UalUe = EVALUATE(gate); 

if (event-number is 0){ 

/* SEE condition is identified */ 
break; /* stop the while loop */ 

I 
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for (each fan-out of gate){ 
if (fan-out is a combinational output){ 
event-number = 0; /* used to stop the while loop *I 

}else{ 
break; /* stop this for loop */ 

EVENT-SCHEDULING( fan-out); 
i I 

1 
i 
Recover every changes made by evaluating of thisfault; 

For the example circuit of Fig. 2, if the applied pattern is 
(A, B, C) = 1, 0, l), the application of Procedure 2 shows 
first that (A, B, C, D, E, F) = (1, 0, 1, 1, 1, 1). For the 
injected fault B-sa-1, the initiated fault event B-sa-1 will 
propagate to line D and E. Similarly to Procedure 1, 
these two events will propagate to line F to become a 
single event and it can be found that fault F-sa-0 is equiv- 
alent to B-sa-1. 

In the above example, the SEE property can be used 
not only to identify the equivalence relationship due to 
the existence of dynamic domination between faults, but 
also to identify the equivalence relationship between 
faults of a far more general case. For example, in the 
circuit example of Fig. 2, if the applied pattern is (A, B, 
C) = (1, 1, 0), fault A-sa-0 is quickly found to be equiva- 
lent to fault D-sa-1, because the fault event initiated at 
line A propagates to line D with the single-event criteria 
satisfied. In a similar way, for the same pattern, it is 
found that B-sa-0 is equivalent to D-sa-1, and D-sa-1 to 
F-sa-1. That is, for this pattern, faults A-sa-0, B-sa-0, 
D-sa-1 and F-sa-1 are detected. 

In the above example, faults B-sa-1 and F-sa-0 are 
partially equivalent under the pattern (A, B, C) = (1, 0, l), 
and faults A-sa-0, B-sa-0, D-sa-1 and F-sa-1 are partially 
equivalent under the pattern (A, B, C) = (1, 1, 0). It is to 
be expected that the number of faults to have the par- 
tially equivalent relationship will be larger than the 
number of faults to have sequential equivalence because 
the conditions for sequential equivalence are more strin- 
gent. 

Pattern-dependent SEE can be applied to sequential 
circuits. For example, Fig. 3 shows an iterative expansion 

1 

N t h  time frame (N+I )th time f rame 

Fig. 3 
in n sequential circuit 

An example to demonstrate how single-event equlvalence works 

of a part of a circuit for time frames N and N + 1 to find 
the fault equivalence for the fault B-sa-1. The patterns 
simulated for these two time frames are (A, B, C) = (1, 0, 
1 ; 1, 0, 0), and for the ( N  ~ 1)th time frame the output of 
the D flip-flop is 0. From Procedure 2, line B-sa-1 is 
equivalent to D-sa-1 because there is an SEE condition 
on line D for the time frame N .  For the ( N  + 1)th time 
frame, the SEE condition exists on line E after the events 
from B and D propagate to line E, which is a primary 
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output. Line B-sa-1 is equivalent to E-sa-1. As the fault 
E-sa-1 is detectable under this pattern set, so is B-sa-1. 

It is possible to compare the above pattern-dependent 
SEE technique with the fanout-free region technique 
[13], which has often been used in fault simulation for 
combinational circuits. In the SEE technique, the logical 
cone is automatically identified during the process of 
fault simulation. (The logical cone for the primary output 
E is indicated in Fig. 3.) Moreover, it is larger than the 
static structural fanout-free region and can cross the 
boundaries of time frames. Hence, the number of equiva- 
lent faults identified will be larger. 

It is also possible to compare the SEE technique with 
the critical path tracing technique, which is often used 19, 
107 to identify the faults detected for a simulated pattern. 
The technique is efficient and fast, although it is only an 
approximate method and gives a pessimistic result for 
fault coverage [14]. The SEE technique essentially traces 
all the sensitised paths in a levelled order from primary 
inputs to primary outputs. It is much simpler and needs a 
smaller overhead in memory usage. More importantly, it 
is an exact method. 

Finally, pattern-dependent SEE expands the structural 
domination relationship in the previous section into a 
dynamic domination relationship. For example, in the 
circuit in Fig. 4, structurally, line N is not a dominator of 

M*: 

L 2  --1-: 
Fig. 4 
matically identifies the logical domination relationship 

An example to  demonstrate that single-event equivalence auto- 

line M, because the paths from M to the primary outputs 
can pass through either P or Q instead of N. However, if 
L1 and L2 have the value 0, line N will become the 
dominator for line M, because all the sensitised paths 
from M to the primary outputs pass through N with this 
pattern. 

3 Experimental results 

The simulator SEESIM was implemented in C language 
under the UNIX system. It had been applied to ISCAS 
benchmark circuits [l5, 161 to verify its performance. 
The simulation times are the CPU time in seconds of a 
SUN 4/260 workstation. 

To investigate the effect of SEE in saving simulation 
time, another fault simulator which was very similar to 
SEESIM in implementation but did not employ the SEE 
scheme was also implemented. SEESIM and this simula- 
tor were applied to ISCAS'85 combinational benchmark 
circuits [l5] to simulate faults for 200 random patterns. 
During simulation, the numbers of event evaluations and 
the simulation times were recorded and compared. Table 
1 shows the results. The level of fault coverage for each 
circuit is also included. It can be seen that the mean 
savings on event evaluation are approximately 43% and 
the saving on computation times are 30%. It can also be 
seen that the savings are circuit dependent. In general, 
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Table 1 : Savings on event evaluations and computation 
times with the single-event equivalence scheme to simulate 
ISCAS'85 benchmark circuits for 200 random patterns 

Circuit Level Fault Savings ("A) 
coverage 
( O % )  Event Time 

evaluation 

c432 18 9 2 7  14.1 6.3 
c499 12 95.4 50.6 31.2 
c880 25 94.5 2 2 8  12.8 
c1355 25 89.9 67.4 41.6 
c1908 41 81.5 51.0 43.0 
c2670 33 80.7 34.0 25.1 
c3540 48 87.4 34.2 25.2 
c5315 50 96.8 49.9 30.8 
c6288 12 99.6 63.9 50.5 
c1552 44 89.3 45.8 32.2 
Mean 30.8 90.8 43.4 30.4 

the larger the circuit size and level, the larger the savings 
that can be obtained. This is obvious because, for a 
circuit of larger size and level, more SEE relationships 
will be found between faults. 

The simulation times of SEESIM can be compared 
with those of PPSFP simulators [9, lo] as shown in 
Table 2. The number of simulated patterns is 224. The 

Table 2: Normalised simulation times of PPFSP simulators 
comoared with SEESIM 

Circuit SEESIM Dominator T u l i ~  

c432 
c499 
c880 
c l  355 
c l  908 
c2670 
c3540 
c5315 
c6288 
c1552 
Mean 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 97 
1 6 4  
1 1 8  
1 6 5  
0 13 
0 63 
0 88 
0 89 
3 88 
0 69 
1 31 

2.59 
1.52 
1.53 
1.68 
1.47 
1.09 
2.93 
1.71 
n.a. 
2.23 
1.87 

simulation times in Table 2 have been normalised to 
SEESIM by taking into account the speeds of the 
machines. The SEESIM simulation times are comparable 
to those of PPSFP simulators even though no parallel- 
ism was employed in SEESIM for its true value simula- 
tion. 

SEESIM was also compared with a state-of-the-art 
commercial concurrent fault simulator (CFS) on running 
27 ISCAS'89 sequential benchmark circuits [16]. Table 3 
lists the numbers of simulated patterns, the fault cover- 
ages, the simulation times (in seconds) and the memory 
spent on each circuit for the CFS and SEESIM. The 
ratios of the time spent and the memory usage for the 
CFS to SEESIM for each circuit are also included. The 
test patterns were randomly generated. Circuit s420 had 
been modified because parts of the original circuit could 
not be observed or controlled. Circuits larger than 
~35932 were too large to be simulated by the CFS on a 
32 Mbyte machine. For all circuits, SEESIM exhibited a 
superior performance over that of CFS. It was approx- 
imately five times faster than CFS. The reduction ratio in 
the memory usage is approximately 12. The mean size of 
memory required for SEESIM to simulate a gate was 
only 172 bytes. 

It is interesting to compare performance of SEESIM 
with that of PROOFS, which used the parallel fault 
simulation scheme. Table 4 lists the results of applying 
SEESIM to benchmark circuits by simulating the same 
number of patterns as that of PROOFS [ll]. The simu- 
lation times for PROOFS were on a SUN3/280 machine. 
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Table 3: Run results of SEESIM and the commercial concur- 
rent fault simulator (CFS) on 24 benchmark circuits 

Circuit Fault 
coverage 
( ‘‘4, ) 

S208 
s298 
s344 
s349 
s382 
s386 
s400 
s420 
s444 
s526 
s526n 
s641 
s713 
s820 
s832 
s838 
s953 
sl196 
sl238 
sl423 
s1488 
s1494 
s5378 
~35932 
Mea” 

44 1 
48 9 
91 9 
91 5 
20 6 
39 7 
20 3 
40 1 
16 0 
97 
97 
76 5 
74 0 
38 2 
37 4 
28 3 
21 2 
60.3 
55 7 
22 9 
50 2 
49 2 
54 1 
63 1 

CFS SEESIM 

Time Memory 
(SI (Mbytel 

4 035 
6 036 
7 040 
7 040 
6 040 
4 040 
7 040 
7 043 
7 040 
8 043 
8 043 
10 055 
1 1  056 
9 052 

Time Memow 
(s) (Kbytel 

032 171 
067 198 
035 255 
035 258 
203 258 
060 258 
218 268 
073 335 
257 296 
300 329 
303 329 
058 556 
073 598 
158 521 

14 065 
15 064 
26 080 
19 083 
20 083 
71 244 

9 052 162 525 
17 063 175 658 
46 073 21 53 659 

255 81 2 
290 825 
937 1020 
260 968 
287 968 
21 58 3630 

n.a. n a 1891 23940 

Ratio 
CFS SEESlM 

Time Memow 

126 21 1 
9 0  185 
200 161 
200 159 
295 158 
667 157 
321 153 
955 131 
273 140 
267 133 
264 133 
171 101 
150 9 5  
568 102 
557 101 
971 9 8  
214 114 
549 8 2  
517 80 
278 80 
731 8 8  
698 87 
329 6 9  

7 7 5  1 7 7  
n a  n a  

Table 4:  Run results of SEESIM and PROOFS 

Circuit PROOFS SEESIM Ratio 
PROOFS/SEESIM 

Time Memory Time Memory ~ 

(s) (Kbyte) (s) (Kbyte) Time Memory 

s208 1 0  80 1 1  1 6 6  091  4 8  
s298 1 8  96 2 0  203  0 9 0  4 7  
s344 1 3  104 1 2  249  1 0 8  4 2  
~ 3 8 2  320  112 530  331 0 6 0  3 4  
s400 248  112 3 1 2  307 079  3 7  
s420 4 1  120 3 6  338  1 1 4  3 5  
s444 372  120 585  353  0 6 4  3 4  
s641 2 5  208 1 2  533  208  3 9  
s713 2 6  216 1 4  566  1 8 6  3 8  
s820 9 6  192 7 6  568  1 2 6  3 4  
s832 9 1  176 7 1  566  1 2 8  3 1  
s953 3 5  176 2 5  6 5 0  1 4 0  2 7  
s1196 6 7  216 3 5  8 4 9  191  2 5  
s1238 8 2  216 3 9  856  210  2 5  
s1423 7 0  344 5 7  1030 1 2 3  3 4  
s1488 231 272 248 1000 0 9 3  2 7  
S1494 2 0 2  272 245 996  0 8 2  2 7  
~ 5 3 7 8  9 9 5  752 636  3800 1 5 6  2 0  
s35932 3409 5872 181 3 24720 1 88 2 4  
Mean 1 2 8  3 3  

The simulated patterns were ATPG-generated. The ratio 
of simulation times and memory usage for PROOFS to 
SEESIM are listed in the last two columns of the Table. 
SEESIM was about 1.3 times faster than PROOFS, and 
needed about one-third of the memory required by 
PROOFS. Furthermore, SEESIM can be easily extended 
to multivalued or higher level simulation because no 
coding scheme is used, whereas a coding scheme must be 
used in PROOFS because of its parallel fault treatment. 

4 Conclusion 

This paper has proposed an SEE concept for sequential 
circuit fault simulation. The concept is basically a 
method of dynamic identification of equivalent faults 
detected by the simulated pattern. It combines the advan- 
tages of critical path tracing, the fanout-free region and 
the dominator concept. These techniques were used only 
for combinational circuits, but are now applicable to 
sequential fault simulation with the SEE technique. It is 
very simple in concept and can therefore easily incorpo- 
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rate other techniques, such as the early stop, fault drop- 
ping and the simulation index, to further enhance the 
simulation speed, and it can be easily extended to the 
higher level or the multivalued fault simulation. The 
implemented program, SEESIM, based on the SEE 
concept, has achieved a simulation speed comparable to 
the parallel-pattern type of fault simulator. Compared 
with a state-of-the-art commercial concurrent fault simu- 
lator, simulation speed was twice that of the 27 ISCAS 
benchmark circuits, but it used far less memory. Com- 
pared with PROOFS, it also exhibited a better per- 
formance. SEESIM has also demonstrated that it uses 
nearly minimal memory: it uses only one-tenth of the 
memory of a state-of-the-art commercial concurrent fault 
simulator. 
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