
SEESIM : a fast synchronous sequential circuit fault
simulator with single-event equivalence

. *

X, *

y1 -
YP --1,

C.P. wu
C.L. Lee
W.Z. Shen

* 21

Combinational *zn

7 Y l

YP

c i r cu i t

-

Indexing terms Fault simulation, Single-event equioalence

Abstract: The paper presents a concept of single
event equivalence to be used in the sequential
circuit fault simulator. The concept dynamically
identifies the equivalent faults for a simulated
pattern. It combines advantages of the fanout-free
region, critical path tracing and the dominator
concept, which were applicable only to combi-
national circuit fault simulation. The implemented
fault simulator, SEESIM, based on the concept,
demonstrated a performance superior to that of a
state-of-the-art concurrent fault simulator, and
comparable to that of parallel-pattern single-fault
propagation simulators. It requires a minimal
amount of memory and, because of its simplicity,
can be easily extended to multilogic or higher level
simulation.

1 Introduction

A fault simulator is used to simulate faults and to evalu-
ate the fault coverage for test patterns. Many schemes
had been employed to improve the speed of fault simula-
tors. The classical schemes include parallel fault simula-
tion [l], deductive fault simulation [2] and concurrent
fault simulation 131. With the scan design methods [4-7]
currently in use, the parallel-pattern single-fault propaga-
tion (PPSFP) fault simulator for combinational circuits
[SI has gained much attention. Many techniques

tracing [14] and the dominator concept [lo], which were
applicable only to combinational simulation, in sequen-
tial simulation. A simulator was implemented to demon-
strate the effectiveness of this approach. Experimental
results show that the simulator has a performance
superior to that of a state-of-the-art commercial concur-
rent fault simulator and comparable to that of PPSFP
simulation. It requires a minimal amount of memory: on
average, only 172 bytes to process a gate. This means
that it is possible to simulate a circuit of 100OOO gates
with only 18 Mbytes of main memory with this simula-
tor.

2 Concept of single-event equivalence

2.1 Equivalent fault collapsing
The synchronous sequential circuit model considered is
shown in Fig. 1, where x,, _.., x, and z,, ..., z, are the
primary inputs and the primary outputs of the sequential

U addressinghow to improve the fault simulation speed of
PPSFP for combinational circuits, such as critical uath Fig, , Model ofa synchronous sequential cirruil

tracing, the fanout-free region, the stem region [9]-and
the dominator concept [lo], have been proposed. Unfor-
tunately, none of these can be applied to sequential cir-
cuits [ll]. A parallel fault simulator PROOFS [ll],
which was evolved from DSIM [12]. can handle sequen-
tial circuits. However, the parallel fault scheme used in
PROOFS makes it sensitive to the order of the faults
simulated [I 11. Also, the parallel fault is inefficient when
extended to multivalues (more than 0, 1, X , Z) and higher
level simulation because a coding scheme needs to be
used.

In this paper, a concept of single-event equivalence
(SEE) is proposed and demonstrated. It combines the
advantages of the fanout-free region [13], critical path

(: IEE. 1993
Paper 92466 (E l , EIO), first received 11th November 1991 and in
revised form 20th July 1992
The authors are with the Department of Electronics Engineering &
Institute of Electronics, National Chiao Tung University. Hsin-Chu,
Taiwan, ROC

I E E PROCEEDINGS-G. Vol. 140, N o 2, A P R I L I Y Y 3

circuit, respectively. Y,, ..., Y, and y , , ..., y , are the next
and the present state variables of the sequential circuit,
respectively. Y,, ..., Y,, z, , ..., z, and x,, ..., x,, y , , ...,
y, are the outputs and inputs, respectively, of the com-
binational part of the circuit.

For the synchronous sequential circuit of Fig. 1 with
two faults, f l and f2, we have the following definitions.

DeJnition I : f l and f2 are combinationally equivalent if
the presence of f l or f2 results in the same response on

The authors are grateful to Dr. K.T. Cheng for his
supply of the test patterns for the ISCAS’89
benchmark circuits, and to Miss Jane Wang for
her help in running the state-of-the-art com-
mercial fault simulator. The financial support
from National Science Council of the Republic of
China through the contract NSC-80-0404-E-009-
34 is also acknowledged.

101

the outputs of the combinational circuit when the same
patterns are applied on the inputs of the combinational
circuit.

Definition 2: f l and f2 are partially equivalent for the test
sequence T if the presence of f l or f2 results in the same
response in the outputs of the combinational part of the
circuit, on applying T to the primary inputs, when two
faulty machines are initially in the same state.

Definition 3 : f l and f2 are sequentially equivalent if the
presence of f l or f2 results in the same response in the
primary outputs when two faulty machines are initially in
the same state and the primary inputs are subjected to
the same test sequence.

With the above definitions, we have the following lemma.

Lemma I : Faults that are combinationally equivalent are
sequentially equivalent.

Proof: This lemma can be proved by contradiction. Let
two faults, f l and f2, be combinationally equivalent but
not sequentially equivalent. There exists at least one test
sequence T, which can distinguish the fault effects of
these two faults at primary outputs of the circuit. This
implies that, on applying the input sequence T, to the
primary inputs of the circuit, there exists a pattern of
inputs to the combinational part of the circuit that pro-
duces different values in outputs of the combinational
part of the circuit. This conflicts with the definition of
combinational equivalence. Hence, f l and f2 must be
sequentially equivalent.

Definition 4 : For a fault-free circuit, line A is the control-
ler of line B if setting line A to the logic value U, results in
line B being at the logic value U, for any pattern of inputs
to the combinational circuit; U, is called the controlling
value and U, the controlled value.

Definition 5 : Line B is the dominator of line A if all the
paths from line A to the primary outputs pass through
line B.

The above definition is the same as that given in Refer-
ence 10.

Lemma 2: For combinational circuits, if a pattern T
detects a fault at line A, it also detects a fault at line B if
line B is the dominator of line A.

Proof: The proof is trivial because the sensitised path
under the pattern T must pass through line B.

Theorem I : For two lines A and B in a sequential circuit,
if (1) B is the dominator of A and (2) line A at the value
u1 is the controller of line B at the value u 2 , then faults
A-sa+, and B-sa-u, are sequentially equivalent.

Proof: From Lemma I , we have only to prove that A-sa-
u, and B-sa-u, are combinationally equivalent. The
theorem is also to be proved by contradiction. Assume
that both faults have different responses at outputs of the
combinational circuit under the pattern T = {x,, . . . , x,,
yl. . . . , y,}, which is applied to the inputs of the com-
binational circuit. For each output of the combinational
circuit, there exist two cases that can distinguish the fault
effects of B-sa-u, and A-sa-u, : first, B-sa-u, is detected at
the output but A-sa-u, is not and, second, A-sa-u, is
detected at the output but B-sa-u, is not. For the first

102

case, the detection of B-sa-u, implies that the fault-free
value of line B is 'U, (the complement of U,) and that of
line A is 'U, from Definition 4. From Condition 2, the
fault effect of A-sa-u, also appears at line B and is
detected at the output as the fault effect of B-sa-u, . This
conflicts with the assumption. For the second case, B-sa-
U, must be detected from Condition 1 and Lemma 2. This
also conflicts with the assumption. Therefore, the A-sa-u,
and B-sa-u, must be sequentially equivalent and the
theorem is proved.

Based on Theorem 1, we derive a procedure as follows to
find the sequentially equivalent faults that satisfy Condi-
tions 1 and 2 in the theorem. This procedure examines
every fault one by one to check whether the fault is
equivalent to another fault. In examining a fault, there
are two kinds of event that need to be considered: the
path event for finding the line that satisfies Condition 1,
and the logic event for verifying the lines that satisfy
Condition 2.

Fig. 2 demonstrates how to check whether the fault is
equivalent to another fault. In the figure, the circuit has :-e
C

Fig. 2

E

An example tu demonstrate how tofind equivalent faults

been levelled from inputs to outputs, and initially all lines
of the circuit are at the unknown value X . To examine
the fault equivalence for the fault B-sa-0, a path event is
activated on line B. This will propagate to lines D and E
to become two events. An event queue can be used to
store these events. Next, to further propagate the events
along the circuit, event D is taken from the queue to be
processed. This event will propagate to line F, and F will
be stored in the event queue. Next, event line E will be
taken out and processed. It will also propagate to line F.
Because event line F has already been in the event queue,
there is only a single event in the event queue, and it is
then known that line F is the dominator of line B. At this
time, all line events originating from line B converge to
line F to be a single line event. The above is the path
event evaluation. Also, during evaluation of the path
events, logic events are processed to evaluate the logic
value on each line caused by fault B-sa-0. In this
example, the lines A, B, C, D, E and F are evaluated in
sequence to have values X , 0, X, 1, 1 and 1, respectively.
If a line is found to be a dominator of the faulty line
during the path event evaluation, the logic value of this
line is checked. If it is not X, the fault at this line with
this logic value is equivalent to the fault of the faulty line.
In this example, the fault B-sa-0 is equivalent to F-sa-1.

In the above example, the path event evaluation
checks whether paths converge to a single line, i.e. it
checks for Condition 1 of Theorem 1, and the logic event
evaluation checks the controlling and controlled relation-
ship of the dominating and dominated lines, i.e. it checks
for Condition 2 of Theorem 1. If Condition 1 is met, it is
said that SEE exists for the fault being checked. This SEE
checking can be expanded to the pattern-dependent case
and sequential circuits; it serves as the foundation for this
simulator.

I E E PROCEEDINGS-G, Vol. 140, No. 2, A P R I L 1993

A formal description of the above procedure to find
the equivalent fault is listed below. For this procedure,
the combinational part of the circuit has been levelled
from combinational inputs to combinational outputs. In
the description, each fault is taken from the fault-list and
IS examined in the for loop. The event-number is used to
record the number of events in the event queue to be
processed and the last-value is the faulty value of the last
examined line.

Procedure 1 : (sequential equivalent fault collapsing)

set logical values of all lines to X ;
for (each activatedfault in the faul t l i s t) {

inject faul t ;
while (event-number is not 0){
gate = GET-EVENT(); /* get event: the lower level first */
last-UalUe = EVALUATE(gate);
if (the value of last-value is not X) {

/* an equivalent fault is found */
dropfault fromfault-list ;
break; /* stop the while loop */

if (event-number is 0){

I I
for (eachfan-out of gate){

if van-out is a combinational output){
event-number = 0; /* used to stop the while loop */

break; /* stop this for loop */
I else
EVENT-SCHEDULING(fan-OUt) ;

I i I
I
Recover every changes made by evaluating of thisfault;

In the above procedure, the events originating from a
fanout stem do not necessarily converge to one domina-
tor line. Events may propagate to combinational outputs
of the circuit. For this case, no equivalence relationship
exists and the procedure stops.

2.2 Pattern -dependent single-event equivalence
In the previous Section, SEE was applied by considering
only the static structure of the circuit. No pattern was
applied during checking of the SEE. When a pattern is
applied, SEE between faults can still be checked.
However, at this time, logic values at all circuit lines are
fixed. The equivalences between faults are pattern depen-
dent. Procedure 1 can be modified as follows to check the
equivalence between faults.

Procedure 2: (pattern dependence SEE checking)

For a simulated pattern on inputs:
do true simulation for the circuit.
for (each undetectedfault in thefault-list){
injectfault and recover the faulty state of this fault;
while (event-number is not 0){
gate = GET-EVENT(); /* get event: the lower level first */

if (the last-value differs from the fault free value of gate){
last-UalUe = EVALUATE(gate);

if (event-number is 0){

/* SEE condition is identified */
break; /* stop the while loop */

I
I E E PROCEEDINGS-G, Val 140, No. 2, A P R I L 1993

for (each fan-out of gate){
if (fan-out is a combinational output){
event-number = 0; /* used to stop the while loop *I

}else{
break; /* stop this for loop */

EVENT-SCHEDULING(fan-out);
i I

1
i
Recover every changes made by evaluating of thisfault;

For the example circuit of Fig. 2, if the applied pattern is
(A, B, C) = 1, 0, l), the application of Procedure 2 shows
first that (A, B, C, D, E, F) = (1, 0, 1, 1, 1, 1). For the
injected fault B-sa-1, the initiated fault event B-sa-1 will
propagate to line D and E. Similarly to Procedure 1,
these two events will propagate to line F to become a
single event and it can be found that fault F-sa-0 is equiv-
alent to B-sa-1.

In the above example, the SEE property can be used
not only to identify the equivalence relationship due to
the existence of dynamic domination between faults, but
also to identify the equivalence relationship between
faults of a far more general case. For example, in the
circuit example of Fig. 2, if the applied pattern is (A, B,
C) = (1, 1, 0), fault A-sa-0 is quickly found to be equiva-
lent to fault D-sa-1, because the fault event initiated at
line A propagates to line D with the single-event criteria
satisfied. In a similar way, for the same pattern, it is
found that B-sa-0 is equivalent to D-sa-1, and D-sa-1 to
F-sa-1. That is, for this pattern, faults A-sa-0, B-sa-0,
D-sa-1 and F-sa-1 are detected.

In the above example, faults B-sa-1 and F-sa-0 are
partially equivalent under the pattern (A, B, C) = (1, 0, l),
and faults A-sa-0, B-sa-0, D-sa-1 and F-sa-1 are partially
equivalent under the pattern (A, B, C) = (1, 1, 0). It is to
be expected that the number of faults to have the par-
tially equivalent relationship will be larger than the
number of faults to have sequential equivalence because
the conditions for sequential equivalence are more strin-
gent.

Pattern-dependent SEE can be applied to sequential
circuits. For example, Fig. 3 shows an iterative expansion

1

N t h time frame (N+I)th time f rame

Fig. 3
in n sequential circuit

An example to demonstrate how single-event equlvalence works

of a part of a circuit for time frames N and N + 1 to find
the fault equivalence for the fault B-sa-1. The patterns
simulated for these two time frames are (A, B, C) = (1, 0,
1 ; 1, 0, 0), and for the (N ~ 1)th time frame the output of
the D flip-flop is 0. From Procedure 2, line B-sa-1 is
equivalent to D-sa-1 because there is an SEE condition
on line D for the time frame N . For the (N + 1)th time
frame, the SEE condition exists on line E after the events
from B and D propagate to line E, which is a primary

103

output. Line B-sa-1 is equivalent to E-sa-1. As the fault
E-sa-1 is detectable under this pattern set, so is B-sa-1.

It is possible to compare the above pattern-dependent
SEE technique with the fanout-free region technique
[13], which has often been used in fault simulation for
combinational circuits. In the SEE technique, the logical
cone is automatically identified during the process of
fault simulation. (The logical cone for the primary output
E is indicated in Fig. 3.) Moreover, it is larger than the
static structural fanout-free region and can cross the
boundaries of time frames. Hence, the number of equiva-
lent faults identified will be larger.

It is also possible to compare the SEE technique with
the critical path tracing technique, which is often used 19,
107 to identify the faults detected for a simulated pattern.
The technique is efficient and fast, although it is only an
approximate method and gives a pessimistic result for
fault coverage [14]. The SEE technique essentially traces
all the sensitised paths in a levelled order from primary
inputs to primary outputs. It is much simpler and needs a
smaller overhead in memory usage. More importantly, it
is an exact method.

Finally, pattern-dependent SEE expands the structural
domination relationship in the previous section into a
dynamic domination relationship. For example, in the
circuit in Fig. 4, structurally, line N is not a dominator of

M*:

L 2 --1-:
Fig. 4
matically identifies the logical domination relationship

An example to demonstrate that single-event equivalence auto-

line M, because the paths from M to the primary outputs
can pass through either P or Q instead of N. However, if
L1 and L2 have the value 0, line N will become the
dominator for line M, because all the sensitised paths
from M to the primary outputs pass through N with this
pattern.

3 Experimental results

The simulator SEESIM was implemented in C language
under the UNIX system. It had been applied to ISCAS
benchmark circuits [l5, 161 to verify its performance.
The simulation times are the CPU time in seconds of a
SUN 4/260 workstation.

To investigate the effect of SEE in saving simulation
time, another fault simulator which was very similar to
SEESIM in implementation but did not employ the SEE
scheme was also implemented. SEESIM and this simula-
tor were applied to ISCAS'85 combinational benchmark
circuits [l5] to simulate faults for 200 random patterns.
During simulation, the numbers of event evaluations and
the simulation times were recorded and compared. Table
1 shows the results. The level of fault coverage for each
circuit is also included. It can be seen that the mean
savings on event evaluation are approximately 43% and
the saving on computation times are 30%. It can also be
seen that the savings are circuit dependent. In general,

104

Table 1 : Savings on event evaluations and computation
times with the single-event equivalence scheme to simulate
ISCAS'85 benchmark circuits for 200 random patterns

Circuit Level Fault Savings ("A)
coverage
(O %) Event Time

evaluation

c432 18 9 2 7 14.1 6.3
c499 12 95.4 50.6 31.2
c880 25 94.5 2 2 8 12.8
c1355 25 89.9 67.4 41.6
c1908 41 81.5 51.0 43.0
c2670 33 80.7 34.0 25.1
c3540 48 87.4 34.2 25.2
c5315 50 96.8 49.9 30.8
c6288 12 99.6 63.9 50.5
c1552 44 89.3 45.8 32.2
Mean 30.8 90.8 43.4 30.4

the larger the circuit size and level, the larger the savings
that can be obtained. This is obvious because, for a
circuit of larger size and level, more SEE relationships
will be found between faults.

The simulation times of SEESIM can be compared
with those of PPSFP simulators [9, lo] as shown in
Table 2. The number of simulated patterns is 224. The

Table 2: Normalised simulation times of PPFSP simulators
comoared with SEESIM

Circuit SEESIM Dominator T u l i ~

c432
c499
c880
c l 355
c l 908
c2670
c3540
c5315
c6288
c1552
Mean

1
1
1
1
1
1
1
1
1
1
1

0 97
1 6 4
1 1 8
1 6 5
0 13
0 63
0 88
0 89
3 88
0 69
1 31

2.59
1.52
1.53
1.68
1.47
1.09
2.93
1.71
n.a.
2.23
1.87

simulation times in Table 2 have been normalised to
SEESIM by taking into account the speeds of the
machines. The SEESIM simulation times are comparable
to those of PPSFP simulators even though no parallel-
ism was employed in SEESIM for its true value simula-
tion.

SEESIM was also compared with a state-of-the-art
commercial concurrent fault simulator (CFS) on running
27 ISCAS'89 sequential benchmark circuits [16]. Table 3
lists the numbers of simulated patterns, the fault cover-
ages, the simulation times (in seconds) and the memory
spent on each circuit for the CFS and SEESIM. The
ratios of the time spent and the memory usage for the
CFS to SEESIM for each circuit are also included. The
test patterns were randomly generated. Circuit s420 had
been modified because parts of the original circuit could
not be observed or controlled. Circuits larger than
~35932 were too large to be simulated by the CFS on a
32 Mbyte machine. For all circuits, SEESIM exhibited a
superior performance over that of CFS. It was approx-
imately five times faster than CFS. The reduction ratio in
the memory usage is approximately 12. The mean size of
memory required for SEESIM to simulate a gate was
only 172 bytes.

It is interesting to compare performance of SEESIM
with that of PROOFS, which used the parallel fault
simulation scheme. Table 4 lists the results of applying
SEESIM to benchmark circuits by simulating the same
number of patterns as that of PROOFS [ll]. The simu-
lation times for PROOFS were on a SUN3/280 machine.

IEE PROCEEDINGS-G, Vol. 140, No. 2, A P R I L 1993

Table 3: Run results of SEESIM and the commercial concur-
rent fault simulator (CFS) on 24 benchmark circuits

Circuit Fault
coverage
(‘‘4,)

S208
s298
s344
s349
s382
s386
s400
s420
s444
s526
s526n
s641
s713
s820
s832
s838
s953
sl196
sl238
sl423
s1488
s1494
s5378
~35932
Mea”

44 1
48 9
91 9
91 5
20 6
39 7
20 3
40 1
16 0
97
97
76 5
74 0
38 2
37 4
28 3
21 2
60.3
55 7
22 9
50 2
49 2
54 1
63 1

CFS SEESIM

Time Memory
(SI (Mbytel

4 035
6 036
7 040
7 040
6 040
4 040
7 040
7 043
7 040
8 043
8 043
10 055
1 1 056
9 052

Time Memow
(s) (Kbytel

032 171
067 198
035 255
035 258
203 258
060 258
218 268
073 335
257 296
300 329
303 329
058 556
073 598
158 521

14 065
15 064
26 080
19 083
20 083
71 244

9 052 162 525
17 063 175 658
46 073 21 53 659

255 81 2
290 825
937 1020
260 968
287 968
21 58 3630

n.a. n a 1891 23940

Ratio
CFS SEESlM

Time Memow

126 21 1
9 0 185
200 161
200 159
295 158
667 157
321 153
955 131
273 140
267 133
264 133
171 101
150 9 5
568 102
557 101
971 9 8
214 114
549 8 2
517 80
278 80
731 8 8
698 87
329 6 9

7 7 5 1 7 7
n a n a

Table 4: Run results of SEESIM and PROOFS

Circuit PROOFS SEESIM Ratio
PROOFS/SEESIM

Time Memory Time Memory ~

(s) (Kbyte) (s) (Kbyte) Time Memory

s208 1 0 80 1 1 1 6 6 091 4 8
s298 1 8 96 2 0 203 0 9 0 4 7
s344 1 3 104 1 2 249 1 0 8 4 2
~ 3 8 2 320 112 530 331 0 6 0 3 4
s400 248 112 3 1 2 307 079 3 7
s420 4 1 120 3 6 338 1 1 4 3 5
s444 372 120 585 353 0 6 4 3 4
s641 2 5 208 1 2 533 208 3 9
s713 2 6 216 1 4 566 1 8 6 3 8
s820 9 6 192 7 6 568 1 2 6 3 4
s832 9 1 176 7 1 566 1 2 8 3 1
s953 3 5 176 2 5 6 5 0 1 4 0 2 7
s1196 6 7 216 3 5 8 4 9 191 2 5
s1238 8 2 216 3 9 856 210 2 5
s1423 7 0 344 5 7 1030 1 2 3 3 4
s1488 231 272 248 1000 0 9 3 2 7
S1494 2 0 2 272 245 996 0 8 2 2 7
~ 5 3 7 8 9 9 5 752 636 3800 1 5 6 2 0
s35932 3409 5872 181 3 24720 1 88 2 4
Mean 1 2 8 3 3

The simulated patterns were ATPG-generated. The ratio
of simulation times and memory usage for PROOFS to
SEESIM are listed in the last two columns of the Table.
SEESIM was about 1.3 times faster than PROOFS, and
needed about one-third of the memory required by
PROOFS. Furthermore, SEESIM can be easily extended
to multivalued or higher level simulation because no
coding scheme is used, whereas a coding scheme must be
used in PROOFS because of its parallel fault treatment.

4 Conclusion

This paper has proposed an SEE concept for sequential
circuit fault simulation. The concept is basically a
method of dynamic identification of equivalent faults
detected by the simulated pattern. It combines the advan-
tages of critical path tracing, the fanout-free region and
the dominator concept. These techniques were used only
for combinational circuits, but are now applicable to
sequential fault simulation with the SEE technique. It is
very simple in concept and can therefore easily incorpo-

IEE P R O C E E D I N G S - G , Vol. 140, N o . 2, A P R I L 1993

rate other techniques, such as the early stop, fault drop-
ping and the simulation index, to further enhance the
simulation speed, and it can be easily extended to the
higher level or the multivalued fault simulation. The
implemented program, SEESIM, based on the SEE
concept, has achieved a simulation speed comparable to
the parallel-pattern type of fault simulator. Compared
with a state-of-the-art commercial concurrent fault simu-
lator, simulation speed was twice that of the 27 ISCAS
benchmark circuits, but it used far less memory. Com-
pared with PROOFS, it also exhibited a better per-
formance. SEESIM has also demonstrated that it uses
nearly minimal memory: it uses only one-tenth of the
memory of a state-of-the-art commercial concurrent fault
simulator.

5 References

I SESHU, S.: ‘On an improved diagnosis program’, IEEE Trans.,
1965, EC-12, (2). pp. 76-79

2 ARMSTRONG, D.B.: ‘A deductive method for simulating faults in
logic circuits’, IEEE Trans., 1972, C-21, pp. 464-471

3 ULRICH, E.G., and BAKER, T.: ‘The concurrent simulation of
nearly identical digital networks’. Proc. 10th Design Automation
Conf., 1973,6, pp. 145-150

4 FUNATSU, S., WAKATSUKI, N., and ARIMA, T.: ‘Test gener-
ation systems in Japan’. Proc. 12th Design Automation Conf., June
1975, pp. 114-122

5 EICHELBERGER, E.B., and WILLIAMS, T.W.: ‘A logic design
structure for LSI testability’. Proc. 14th Design Automation Conf.,
June 1977, pp. 462-468

6 STEWART, J.H.: ‘Application of scanlset for error detection and
diagnostics’. Proc. International Test Conf., 1978, pp. 152-158

7 ANDO, H.: ‘Testing VLSI with random access scan’. Proc.
COMPCOM S’80, 1980, pp. 50-52

8 WAICUKAUSKI, J.A., EICHELBERGER, E.B., FORLENZA,
D.O., LINDBLOOM, E., and MCCARTHY, T.: ‘Fault simulation
for structured VLSI’. Proc. 14th Design Automation Conf., June
1977, pp. 492-494

9 MAAMARI, F., and RAJSKI, J.: ’A fault simulation method based
on stem regions’, IEEE Trans., 1990, CAD-9, (2), pp. 212-220

10 UNDERWOOD, B., and FERGUSON, J.: ‘The parallel-test-detect
fault simulation algorithm’. Proc. International Test Conf., 1989, pp.
7 12-71 7

11 NIERMANN, T.M., CHENG, W.T., and PATEL, J.H.: ‘PROOFS:
a fast, memory efficient sequential circuit fault simulator’. 27th
ACMiIEEE Design Automation Conference, 1990, pp. 535-540

12 CHENG, W.T., and YU, M.L.: ’Differential fault simulation ~ a
fast method using minimal memory’. 26th ACMiIEEE Design
Automation Conference, 1989, pp. 424-428

13 HONG, S.J.: ‘Fault simulation strategy for combinational logic net-
works’. 8th Int’l Fault-Tolerant Computing Symposium, June 1978,
pp. 96-99

14 ABRAMOVICI, M.A.. MENON, P.R., and MILLER, D.T.: ‘Criti-
cal path tracing: an alternative to fault simulation’, IEEE Des. Test
Cumput., 1984, I, (I), pp. 83-93

15 BRGLEZ, F., and FUJIWARA, H.: ‘A neutral netlist of 10 bench-
mark circuits and a target translator in fortran’, special session on
ATPG and fault simulator, Proc. 1985 Int’l Symp. on Circuits and
Systems, Kyoto, Japan, 5-7 June, 1985.

16 BRGLEZ, F., BRYAN, D., and KOZMINSKI, K.: ‘Combinational
profiles of sequential benchmark circuits’. International Symposium
on Circuits and Systems, lSCAS’89, 1989, pp. 1929-1934

17 SCHNURMANN, H.D., LINDBLOOM, E., and CARPENTER,
R.G.: ’The weighted random test pattern generator’, I E E E Trans.,
1975, C-24, (71, pp. 695-700

18 ABRAMOVICI, M., KULIKOWSKI, J.J., MENON, P.R., and
MILLER, D.T.: ‘SMART and FAST: test generation for VLSI
scan-design circuits’, IEEE Des. Test . Cumpur., 1986, 3, (4). pp.
43-54

19 SCHULZ, M.H., TRISCHLER, E., and SARFERT, T.M.: ‘SOC-
RATES: a hiehlv efficient automatic test nattern eeneration svstem’.
IEEE Tranx.1988, CAD-7, (I), pp. 126-137

20 CHENG, W.T., and CHAKRABORTY, T.J.: ‘GENTEST: an auto-
matic test-eeneration svstem for seauential circuits’. IEEE Comnut.. ~ . .
1989.22, (4, pp. 43-49 ’

21 AGRAWAL, V.D., CHENG, K.T., and AGRAWAL, P.: ‘A directed
search method for test generation using a concurrent simulator’,
IEEE Trans , 1989, CAD-8, (21, pp. 131-138

105

