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Magnetic monopole in induced Einstein-Yang-Mills models
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We show that a regular S8 non-Abelian monopole cannot exist in induced gravity models with a variety
of symmetry breaking potentials. The no-hair theorem is also shown to be true in these models. We also
analyze the global behavior of the gauge field in the presence of a black hole with a nonvanishing cosmological
constant. It is shown that the nontrivial non-Abelian monopole solution exists only if the radius of the event
horizon is smaller than the characteristic radius of the classical monopole.

PACS numbe(s): 04.70.Bw, 11.15.Ex, 14.80.Hv

[. INTRODUCTION of SSB potentials. In particular, we will show that a regular
spherically symmetric monopole solution does not exist in
The classical behavior of a non-Abelian monopole in athese models. We will also show that the only way to accom-
static and spherically symmetric curved spdde-4] has modate a regular magnetic monopole solution is to have a
been the focus of many research activities. It is known thafmagnetic monopole charged black hole. The no-hair theorem
the U(1) gauge theory admits a singular magnetic monopoleNi” be shown to be valid with the scalar field in these mod-
solution [5]. 't Hooft and Polyakov show that a regular €ls. In addition, the black hole solution with nontrivial gauge
spherically symmetric monopole solution exists in a non-field imposes a number of constraints on the coupling con-
Abelian SG3) gauge theory with a spontaneously symmetrystants. In particular one will show that the radius of the event
breaking (SSB Higgs potential[6]. It was shown that the horizon is smaller than the characteristic radius of the clas-
magnetic monopole configuration exists only when the assasical monopole. These constraints are listed in this paper and
ciated second homotopy group is nontrivial. In other wordsshould be helpful for numerical studies.
one needdI,(M)#0 in order for a system to have a non-  This paper will be organized as follows) In Sec. I, we
trivial magnetic monopole solution. Heret=G/H denotes  Will present the field equations of the induced modg); In
the Higgs vacuum configuration associated with the symmeSec. lll, we will show that a regular spherically symmetric
try breaking proces§— H [7]. The quest for the magnetic Monopole solution cannot exist in the presence of a variety
monopole has since been an interesting research topic #f SSB potentials{iii) the no-hair theorem and the global
many different contextgs,9]. behavior of the magnetic monopole charged black hole solu-
Note that a regular monopole solution has also been fountion will be studied in Sec. IV; andiv) finally, we will
in curved space-timgL—3,10. In particular, the physical be- discuss our results in Sec. V.
havior of a magnetic monopole in the presence of a black
hole event horizon has also been the focus of research inter-  |I. INDUCED EINSTEIN-YANG-MILLS MODELS
est[1-4]. On the other hand, the well-known no-hair theo- ) ) ) ) )
rem is a long-standing conjecture in the research of black 1he induced Einstein-Yang-Mills model with a real &D
hole physic§11]. Evidence indicates that only three kinds of triplet scalar fieldd? is given by the following action:
physical quantities—the electric char@ the gravitational
massM, and the angular momentudr—can be detected out- S:f d4x\/§
side the event horizon of a black hdl&€2]. Hence a model
independent way of checking the validity of the no-hair theo- 1
rem is also very important. — ZF2 Faur_\(d?)
In addition, the induced gravity modEL3] has also been 4 v
shown to be related to various fields of interfglst] includ-
ing its applications in inflationary univerdd5]. Note that ~WhereR is the scalar curvature anddenotes a dimension-
the gravitationatonstantand cosmologicatonstantare pro-  less coupling constanta,b, ...=1,2,3 will denote the
posed to be dynamical variables in the induced gravity modePO(3) gauge indices. Note that the gauge covariant deriva-
[16]. In fact, it was shown that the behavior of the Higgstive D,®? and the field tensoF?, are defined a® ,d*®
scalar field in induced gravity affects the properties of the=d,P%+ eeabcAZCDC andF§ =d,A%—d,A%+ eeabcAfLAi,
classical black hol¢2,4,17. The problem of the existence respectively. Heree denotes the dimensionless gauge cou-
and stability of the magnetic monopole solution has alsling constant. It is known that the acti@@.1) is invariant
been studied in induced Einstein-Yang-Mills-HigdgsY MH) under a global scale transformationvf- &4,
models[4,17]. We will focus on the applications of the above induced
We will present a more complete analysis of the problemEinstein-Yang-Mills model coupled with a variety of spon-
of the existence and global properties of non-Abelian monotaneously symmetry breaking potentials. In particular, our
poles in an S@) induced Einstein-Yang-Mills(EYM)  analysis will be done assuming a static and spherically sym-
model. We will generalize our result to models with a variety metric pseudo-Riemannian metric given by
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dr?

ds?=—B2(r)C(r)dt?+ 0

+r2(d6?+sirf6¢?),
(2.2

in addition to the spherically symmetric 't Hooft—Polyakov

magnetic monopole ansatz:

D= p(r)r?, 2.3
A?: Eaij 1_ev\:(r)FJ, (24)
A3=0. (2.5

Note that we will assume thap is positive for simplicity.
The result is invariant under the discrete transformatfon
— — ¢ due to the symmetry of the action.

Note that the ansatz for gauge fields is written in Carte-
sian coordinates. The equations of motion can be shown to

be
1
C'=—(1-C)=rp, (2.6
rB
B'=5c(p—7), (2.7
1-w?
(BCw')’ +Bw| —e?¢?|=0, (2.9
,,,., BCr’¢’?  Br? %
(BCrig")'+ 4 (1160 a¢v—4$. (2.9

Here a prime always denotes differentiation with respect td"9
the argument throughout this paper. In addition, the general-

ized energy density is defined by

=C 2 "+ ’+2 "+ 2+ L2
=% ¢ >t T ¢ ? e ¢
. 1 w'? . 1 W2+ 1 (1_W2)2+v 5
€ leZ € I,2 ¢2 2e2r4 (¢ ) !
(2.10

while the generalized radial pressurés defined as

B’ C’ 2) 1 (¢72 W72>
€

20
¢ (B 7

¢
w? . 1 ((1—W2)2
r2 ¢2 2e2r4

7=C

+
2 &2

B 2cr)”

1
+ —
€

+V(4?)

1. (2.1)
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Ill. ONLY SINGULAR MONOPOLE FOR A VARIETY
OF SCALAR POTENTIALS

The most general boundary conditions of the field vari-
ables at the origimr =0 are known to beC(0)=1, w(0)
=1, #(0)=0, B(0)<x. Therefore, one can expand them
as @(r)=go+kyr+---, W(r)=1l—kyr?+---, C(r)=1
—ker™+ .-+, and B(r)=By—kgr"+--- near the origin.
Hereky, ky, Kc, kg, andB,=B(0) are expansion coef-
ficients subjected to constraints from the field equations.
Moreover, one can show that,n=2 are both positive inte-
gers.

On the other hand, the asymptotic flathess and regularity
of the field variables implies tha€(»)=B(»)=1, (=)
=0, and¢()=v at spatial infinity.

Starting from now, we will be working on a class of po-
tentials such that

(pdgV—4V)(dp—Vv)>0 (3.1

for all ¢#v. Herev denotes a constant parameter. We will
call this kind of potential a scaling potential in this paper. If
fact,the above inequality will imply that#d,V—4V)=0
when ¢=v. This indicates that is in fact the local mini-
mum of any scaling potential. Note that this inequality in fact
tells us that the effective dimensiahy= ¢d,V/V is greater
than 4 if $>v and vice versa.

For example, one can show that the potentials of the fol-
lowing kinds are scaling potential§) V=X\(¢$>—v?2)2" for
n=1 and(ii) the renormalized effective potential given by
V= ¢*In[ g*v—N(g*—Vv?).

In order to show the nonexistence theorem, one needs to
show the following proposition.

Proposition | ¢ is a monotonically increasinglecreas-
) function if p<v (¢>v) for any scaling potential.
Proposition | can be shown by noting thathas no maxi-
mum (minimum) for ¢>v (¢p<v). Indeed, Eq(2.9) shows
that

[,V —4V] (3.2

1
¢ = 1¥6eCo

at any local extremum o$. Let rq be the point of the local
minimum such thatp’(rg)=0. It follows that ¢">0 (¢"
<0) atrg if ¢>v (¢<v). This means thatp is a local
minimum (maximum) if ¢>v (¢$p<<v) atry. Hence propo-
sition | is proved. It in fact tells us the following.

Corollary 1. & is monotonically approaching asr in-
creases independent of its initial data.

Note that one can show that

: 2 — — 2 41
1+6J0 drBri[¢d,V—4V]=BCr’¢'¢|,—.. (3.3

from Eq. (2.9). Note that the boundary terBCr2¢’ ¢|,_

It is known that the trace equation for an induced gravity=0 since¢(0)=0. Equation(3.3) implies that the left-hand

model will result in a scalar equatiof2.9) independent of

side of Eq.(3.3) is positive (negative definite if p>v (¢

the gauge field. This equation will be useful in our attempt to<v). On the other hand, corollary | says that<O0 (¢’
show that there is no regular monopole solution and no sca>0) everywhere; hence the right-hand side of E13) is

lar hair for a variety of scalar potentials.

negative(positive) definite. This leads to a contradiction un-
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less ¢=v. Note that the regularity o demands that, Therefore, we turn our attention to the charged black hole
=0. Therefore, a regular 't Hooft-Polyakov monopole doessolution again. Equationi4.2) implies thatk,=0 because
not exist in this induced EYM model coupled to any scalingC(r) =0 at any black hole event horizon. Therefore one has
potential. Note that the singulgr=v monopole solution has ¢’ =0 again and hencé=v as promised. The only differ-
been studied in Refl17]. Our analysis shows that th¢  ence with the regular monopole solution without a black hole
=v solution is the only possible regular spherically symmet-is thatv need not be 0 anymore. Hence one is left with a
ric monopole in these induced models. Hence the only possosmological constant coupled with the system of equations
sible way to have a regular monopole solution is to hope thain this ¢* theory.

the singularity is hidden inside the event horizon of a Having solved the scalar equation, one still has

charged black hole in these induced gravity models. )

w
Cw'2+ —(evr?+w?—1) |=BCw'w|"
r2 "

drB
IV. NO-HAIR THEOREM AND THE MONOPOLE frH
CHARGED BLACK HOLES (4.3

We will assume that a black hole is present withde-  from Eq.(2.8). A similar argument shows that the right-hand
noting the radius of the event horizon. Note that the boundside of Eq.(4.3 vanishes. The left-hand side implies that
ary conditions at the event horizon a@(ry)=0 and  w(r)=0 for all r>r provided thatr, is not less than the
C’(rn)=0 while the functionsp, ¢’, w, w’, andB are  characteristic radius 1é() of the classical monopole. There-
finite [18] at the horizon. In addition, the asymptotic condi- fore r,,< 1/(ev) is the necessary condition for the existence

tions are the same as given in Sec. Il. of a nontrivial monopole black hole solution. Note that this
The no-hair theorem of the scalar field can be shown byind of nontrivial charged black hole is in fact a black hole
noting that in a monopold?2]. This is possible because that any possible

singularity near the origin is hidden inside the event horizon
fwdrBrz of a charged black hole. One notes that the above result has
fy nothing to do with the form of scalar potential because Eq.
(2.9 is independent of the potentidl In fact, only Eq.(2.6)
=BCr¢’'(¢— V)7, (4. depends otV explicitly.
Note that the field equations reduce to

VC(f)’Z
& [pdsV—4V](p—V)

T 17660

This is derived from multiplying Eq(2.9) by (¢—v). The

right-hand side of Eq(4.1) vanishes at both boundaries be- ol e 1 1—C)— 1 w4 (1-w?)? N 2+X2Vo
cause(i) C(ry)=0 at the lower bound, and (i) ¢(x) =% )~ x| CW w2 T
—V. Therefore one must hawg(r)=v for all r>r due to

the fact that the integrand on the left hand side of @dl) is (4.4
positive. Hence the no-hair theorem still holds for the scalar Bw'?

field in these induced gravity models. B'=— . (4.9

Note also that one can show that a regular monopole does
not exist ifV=(\/4)¢*. The scalar hair can also be shown to B
be absent in this scale invariant model. As a result, one is leftg cyy )’ = _W(W2+ x2—1), (4.6)
with a cosmological constant proportional Y= \v*/4 if 2
¢=v. Note thatv is no longer the minimum o¥ in this

case. if ¢=v. Here we have writtenx=evr, C=C(x), B
Indeed, one can show that E@.9) can be integrated to = B(X), andw=w(x) for simplicity. Note that a cosmologi-
give cal constant term is added for completeness of the analysis

even though we know tha¥,=V(v)=0 for any scaling
BCri¢e’' =k, (4.2 potential. In other words, the analysis shown from now on

will remain valid in the presence of a cosmological constant
with k, denoting a constant. Assuming that there is a regulaterm if the scalar hair can be shown to be absent by other
monopole in this model$(0)=0 shows thatk,=0. The methods. For example, thé* potential has been shown to
only way to haveBCr?¢ ¢’ =0 everywhere is thap’=0 leave us a nonvanishing cosmological constant.
everywhere. This says thgt=0 for all r. This is not accept- Note that the solution withw=0 is the Reissner-
able becausep=0 everywhere will introduce an infinite Nordstran black hole solution given byd=1 and C=1
gravitational constant everywhere. In addition, the vanishing- m/4mev?r + 1/2ev?e’r?. Here m is the Arnowitt-Deser-
scalar field sets the curvature scalar term decoupled from thdisner (ADM) mass of the black hole. In addition, one
system. The only solution of in the system of equations is needs the constraimh=4mv J2€le in order to prevent ex-
w= 1. Therefore, one shows that a scale invariant action wilposure of the naked singularity.
not come along with the regular monopole solution. Note Note that one needs ;<1 in order to have a black hole
that the requiremen$(0)=0 is not too bad because a van- solution with nontrivialw. Hence we will assume thady
ishing scalar curvature at the origin can make up for this<1 from now on and try to analyze various properties of this
problem. kind of charged black hole. One notes that E@s4)—(4.6)
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are similar to those of theories with a minimally coupledwy<wy. This is not consistent with the resulig>w,.
SU(2) gauge field. It has been studied in the limit of an Therefore, one shows that’'(x4) <0 in addition to the re-
infinite Higgs self-coupling constant by Aichelburg and Bi- sult wy<<1 shown earlier.

zon[4]. N . ' ' Note thatw’(x,)<0 andw,>0 indicate that +wj
Two propositiong 4] governing the properties off will > x2 according to Eq(4.8). Therefore the necessary condi-
be in need. _ _ o tion for the existence of @+ 0 non-Abelian monopole black
. Proposltlon I wis a monotonically decreasin@ncreas- pgle isx,<1. This agrees with our earlier result.
We will assumewy >0 for simplicity. Here we have de-
finedwy=w(xy). Note that the result will remain valid with 232 2
B ) ; . . . 1 (I-wp)® wg  xyVo
w— —Ww because the field equations are invariant under this C'(X)=————F————— —22>0
discrete transformation. Note that E4.6) becomes XH 2exy EXy €€V
., Wo at the event horizon. Hence one has
Ccw =?(w§+x§—1) 4.7

0

at local extrema wherev'(x,)=0. Here we have written Wﬁi_z(l_xa)wa_kxiﬁ1+Xﬁg2V_OS0- (4.9
Wo=W(Xg). If w=1, one haw”">0 at the local extrema for
all xo>0. Hencewy is a local minimum ifwg=1. Similarly,
W is a local maximum ifwy< — 1. Hence any physical so-
lution of w has to be a monotonically decreasiimcreasing

Thereforewy, real implies that

function inx as long asv=1 (w=<—1). This proves propo- _ % 2 _ =

sition 1I. Therefore the boundary conditiov(e) — 0 implies ! vl 2(1-e)=0. (4.19

that there is no local extremum fev in the region|w|=1.

Otherwise, proposition Il tells us that can never turn There are a number of combinations of possible con-

around and approach 0 at spatial infinity. straints available at this moment. First of all, let us consider
Proposition lll. w monotonically approaches 0 for all  the case where/y<e?v#/2. One can show thafi) x,

=1. =2(1—€)/(1—-V,) if (1+V})/2<e<1 (note that the first

Note thatwow”=0 at the extrema ofv if xo=1. Hence inequality aboute comes from the fact that,<1), (i) a
local extrema ofw are local minima(maxima if w>0 (W magnetically charged black hole cannot exist i 8<(1
<0). Hence proposition Ill is proved becausg=)—0. +V})/2, and(iii) there is no constraint at all far=1. Here

On the other hand, E¢4.6) reads we have writterV,=2V,/e?v* such thatv,,<1.

On the other hand, we can also consider the case where
Vo>e?v4/2 such thatv,>1. In that case, one has th)
xp=<v2(e—1)/(Vy—1) if e>(1+V})/2, (v) there is no so-
lution for e<1, and(vi) if 1<e<(1+V.)/2, there is no
at the event horizon of a black hole wheZéx,)=0. Note  constraint excepx,<1.
thatC’(xy)=0 sinceC is assumed to be positive definite for ~ Finally, one can consider the case wharfg=e’v*/2.
all x>xy . Hencewy=1 will imply w’(xy)>0. This is in  This will imply that e<1.
contradiction to the result of proposition Il claiming that  In addition, one notes that the inequalities- W7 >x2
wy=1 implies thatw is a monotonically decreasing function and Eq.(4.9) saturate for extremal black holes. This implies
such thatw’(x)<0 for all x if w=1. Hence one concludes thatxy=2(1—¢€)/(1—V,) if (1—€)(1—V)>0.
that|wy|<1. Note that the conclusior w, <1 comes from In summary, we have shown th@) w can be an oscilla-
the discrete symmetry under— —w. tory function in the domainxe (xy,1), (b) w has to ap-

On the other hand, one should hawréﬁrxﬁ—lzo if proach 0 monotonically in the domak®1, (¢) wy<<1, (d)
w’(x4)=0. In addition, a local maximum of¢ must exist w’(xy)<0, (&) xy=\2(1—e€)/(1-V,) if (1+V,)/2<e
somewhere ax>xy, in order forw to turn around and ap- <1 andV,<e?v*/2, (f) a magnetically charged black hole
proach zero at spatial infinity. And this maximum must showcannot exist if 0< e<(1+V},)/2 andV,<e?v*/2, (g) there is
up beforew reaches 1. Otherwise will never be able toturn  no constraint at all fore=1 and Vo<e?v%/2, (h) xy
around according to proposition Il. And this maximum also</2(e—1)/(V,— 1) if e>(1+v;)/2 andVy>eXv*2, (i) a
has to show up before reaches 1 according to proposition magnetically charged black hole cannot existe#1 and
Ill. This is becausev will never be able to turn around once Vo>e?v?2, (j) if 1 <e<(1+V)/2 andVy>e?v?/2, there is
x=1. The conclusion so far can be stated as follows: ifno constraint excepty<1, (k) in the case wherev,

w
C'w =— (W3 +x4—1) 4.9
XH

w’(xy)>0, there is a local maximum off at Xoe (Xy,1)  =e?v*2 ande>1, there is no additional constraint, afigl
such that Bwy>wy, . , there is no solution iV,=e?v4/2 ande<1.
On the other hand, Ed4.7) says thatwg+x5—1<0 at Note that these constraints will be very helpful for choos-

the local maximum. Note that this inequality awi,+xﬁ ing appropriate initial data for numerical solutions. Note that
—1=0 [since we have assumed that(xy)>0] imply that  Egs.(4.4—(4.6) can be written as
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cetiao- e '2+(1_W2)2+ | XV
“xIO e ox VT e
(4.1

W/3 w ) )
3 +;(1—W -x9)=0, (4.12

Cw'+C'w'+
€X

onceB(x) is eliminated. Note that one can expadk) and
w(x) asC(x)=c(x—xy) andw(x)=wy+ w(X—Xy) to lin-
ear order inx—xy near the neighborhood of;. Therefore
one has

1 (1-wd)? Wi x4V
X 2eq e e
H 2 2
w=——>(1-Wi—x3), (4.14
CXiy

for the leading term. Note that,, is confined by

1—XxG— Xy VX5 (1= V) —2(1— e)<wi<1—x3.

(4.195

Note that the first inequality comes from E@.9) and the
second inequality comes from E(.14) by noting thatw
<0. In addition, one hasy=2(1—¢€)/(1—V;) andwy
=\(2e—1-V,)/(1-V,) for extremal black holes.

V. CONCLUSION

We have shown that a regular 8D non-Abelian 't

Hooft—Polyakov monopole solution does not exist in in-

PHYSICAL REVIEW D 61 044004

duced Einstein-Yang-Mills theories with a variety of SSB
potentials. The only way to obtain a regular monopole solu-
tion is to have a charged black hole inside the magnetic
monopole. We did show that scalar hair for these models
cannot exist in the presence of a black hole. It is also shown
that the same conclusion holds for the scale invariant poten-
tial.

We also show that a nontrivial monopole-charged
black hole imposes a number of constraints on the field
parameterse, wy, W'(xy) as well as the size of the
event horizorxy . In particular, it is shown that a nontrivial
non-Abelian monopole charged black hole solution
exists only if the radius of the event horizom,, is
smaller than the characteristic radiusg\/of the classical
monopole. The global behavior of the monopole function
is also analyzed in the presence of a nonvanishing cosmo-
logical constant. The large distance behaviomois found
without solving the field equation directly. These analyses
may be helpful for related studies. In particular, it was shown
that the presence of the cosmological constant affects the
properties of the monopole charged black hole in a very sig-
nificant way. Our results indicate that this induced gravity
model deserves more attention. The effect of the induced
theory should have more applications in different areas of
interest.
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