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Magnetic monopole in induced Einstein-Yang-Mills models

W. F. Kao
Institute of Physics, Chiao Tung University, Hsin Chu, Taiwan

~Received 22 July 1999; published 24 January 2000!

We show that a regular SO~3! non-Abelian monopole cannot exist in induced gravity models with a variety
of symmetry breaking potentials. The no-hair theorem is also shown to be true in these models. We also
analyze the global behavior of the gauge field in the presence of a black hole with a nonvanishing cosmological
constant. It is shown that the nontrivial non-Abelian monopole solution exists only if the radius of the event
horizon is smaller than the characteristic radius of the classical monopole.

PACS number~s!: 04.70.Bw, 11.15.Ex, 14.80.Hv
a

ha
ol
r
n
try

s
ds
n-

m
c
ic

un
-
ac
nt
o-
ac
of

-

o

d
gs
th
e
ls

em
no

ty

lar
in
m-
e a
rem
d-
ge
on-
ent
las-
and

ic
iety
al
olu-

-

va-

u-

ed
n-
ur

ym-
I. INTRODUCTION

The classical behavior of a non-Abelian monopole in
static and spherically symmetric curved space@1–4# has
been the focus of many research activities. It is known t
the U~1! gauge theory admits a singular magnetic monop
solution @5#. ’t Hooft and Polyakov show that a regula
spherically symmetric monopole solution exists in a no
Abelian SO~3! gauge theory with a spontaneously symme
breaking~SSB! Higgs potential@6#. It was shown that the
magnetic monopole configuration exists only when the as
ciated second homotopy group is nontrivial. In other wor
one needsP2(M)Þ0 in order for a system to have a no
trivial magnetic monopole solution. HereM[G/H denotes
the Higgs vacuum configuration associated with the sym
try breaking processG→H @7#. The quest for the magneti
monopole has since been an interesting research top
many different contexts@8,9#.

Note that a regular monopole solution has also been fo
in curved space-time@1–3,10#. In particular, the physical be
havior of a magnetic monopole in the presence of a bl
hole event horizon has also been the focus of research i
est @1–4#. On the other hand, the well-known no-hair the
rem is a long-standing conjecture in the research of bl
hole physics@11#. Evidence indicates that only three kinds
physical quantities—the electric chargeQ, the gravitational
massM, and the angular momentumJ—can be detected out
side the event horizon of a black hole@12#. Hence a model
independent way of checking the validity of the no-hair the
rem is also very important.

In addition, the induced gravity model@13# has also been
shown to be related to various fields of interest@14# includ-
ing its applications in inflationary universe@15#. Note that
the gravitationalconstantand cosmologicalconstantare pro-
posed to be dynamical variables in the induced gravity mo
@16#. In fact, it was shown that the behavior of the Hig
scalar field in induced gravity affects the properties of
classical black hole@2,4,17#. The problem of the existenc
and stability of the magnetic monopole solution has a
been studied in induced Einstein-Yang-Mills-Higgs~EYMH!
models@4,17#.

We will present a more complete analysis of the probl
of the existence and global properties of non-Abelian mo
poles in an SO~3! induced Einstein-Yang-Mills~EYM!
model. We will generalize our result to models with a varie
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of SSB potentials. In particular, we will show that a regu
spherically symmetric monopole solution does not exist
these models. We will also show that the only way to acco
modate a regular magnetic monopole solution is to hav
magnetic monopole charged black hole. The no-hair theo
will be shown to be valid with the scalar field in these mo
els. In addition, the black hole solution with nontrivial gau
field imposes a number of constraints on the coupling c
stants. In particular one will show that the radius of the ev
horizon is smaller than the characteristic radius of the c
sical monopole. These constraints are listed in this paper
should be helpful for numerical studies.

This paper will be organized as follows:~i! In Sec. II, we
will present the field equations of the induced model;~ii ! In
Sec. III, we will show that a regular spherically symmetr
monopole solution cannot exist in the presence of a var
of SSB potentials;~iii ! the no-hair theorem and the glob
behavior of the magnetic monopole charged black hole s
tion will be studied in Sec. IV; and~iv! finally, we will
discuss our results in Sec. V.

II. INDUCED EINSTEIN-YANG-MILLS MODELS

The induced Einstein-Yang-Mills model with a real SO~3!
triplet scalar fieldFa is given by the following action:

S5E d4xAgF2
1

2
eF2R2

1

2
DmFaDmFa

2
1

4
Fmn

a Famn2V~F2!G , ~2.1!

whereR is the scalar curvature ande denotes a dimension
less coupling constant.a,b, . . . 51,2,3 will denote the
SO~3! gauge indices. Note that the gauge covariant deri
tive DmFa and the field tensorFmn

a are defined asDmFa

5]mFa1eeabcAm
b Fc and Fmn

a 5]mAn
a2]nAm

a 1eeabcAm
b An

c ,
respectively. Heree denotes the dimensionless gauge co
pling constant. It is known that the action~2.1! is invariant
under a global scale transformation ifV;F4.

We will focus on the applications of the above induc
Einstein-Yang-Mills model coupled with a variety of spo
taneously symmetry breaking potentials. In particular, o
analysis will be done assuming a static and spherically s
metric pseudo-Riemannian metric given by
©2000 The American Physical Society04-1
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ds252B2~r !C~r !dt21
dr2

C~r !
1r 2~du21sin2uf2!,

~2.2!

in addition to the spherically symmetric ’t Hooft–Polyako
magnetic monopole ansatz:

Fa5f~r ! r̂ a, ~2.3!

Ai
a5eai j

12w~r !

er
r̂ j , ~2.4!

A0
a50. ~2.5!

Note that we will assume thatf is positive for simplicity.
The result is invariant under the discrete transformationf
→2f due to the symmetry of the action.

Note that the ansatz for gauge fields is written in Car
sian coordinates. The equations of motion can be show
be

C85
1

r
~12C!2rr, ~2.6!

B85
rB

2C
~r2t!, ~2.7!

~BCw8!81BwF12w2

r 2
2e2f2G50, ~2.8!

~BCr2f8!81
BCr2f82

f
5

Br2

~116e! F]fV24
V

fG . ~2.9!

Here a prime always denotes differentiation with respec
the argument throughout this paper. In addition, the gene
ized energy densityr is defined by

r5CH 2

f Ff91S C8

2C
1

2

r Df8G1
1

f2 F S 21
1

2e Df82

1
1

e

w82

e2r 2G J 1
1

e Fw2

r 2
1

1

f2 S ~12w2!2

2e2r 4
1V~f2!D G ,

~2.10!

while the generalized radial pressuret is defined as

t5CF2f8

f S B8

B
1

C8

2C
1

2

r D2
1

ef2 S f82

2
1

w82

e2r 2D G
1

1

e Fw2

r 2
1

1

f2 S ~12w2!2

2e2r 4
1V~f2!D G . ~2.11!

It is known that the trace equation for an induced grav
model will result in a scalar equation~2.9! independent of
the gauge field. This equation will be useful in our attemp
show that there is no regular monopole solution and no s
lar hair for a variety of scalar potentials.
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III. ONLY SINGULAR MONOPOLE FOR A VARIETY
OF SCALAR POTENTIALS

The most general boundary conditions of the field va
ables at the originr 50 are known to beC(0)51, w(0)
51, f(0)50, B(0),`. Therefore, one can expand the
as f(r )5f01kfr 1•••, w(r )512kwr 21•••, C(r )51
2kCr m1•••, and B(r )5B02kBr n1••• near the origin.
Herekf , kw , kC , kB , andB0[B(0) are expansion coef
ficients subjected to constraints from the field equatio
Moreover, one can show thatm,n>2 are both positive inte-
gers.

On the other hand, the asymptotic flatness and regula
of the field variables implies thatC(`)5B(`)51, (`)
50, andf(`)5v at spatial infinity.

Starting from now, we will be working on a class of po
tentials such that

~f]fV24V!~f2v !.0 ~3.1!

for all fÞv. Herev denotes a constant parameter. We w
call this kind of potential a scaling potential in this paper.
fact,the above inequality will imply that (f]fV24V)50
when f5v. This indicates thatv is in fact the local mini-
mum of any scaling potential. Note that this inequality in fa
tells us that the effective dimensiondeff[f]fV/V is greater
than 4 if f.v and vice versa.

For example, one can show that the potentials of the
lowing kinds are scaling potentials:~i! V5l(f22v2)2n for
n>1 and ~ii ! the renormalized effective potential given b
V5lf4ln@f4/v4#2l(f42v4).

In order to show the nonexistence theorem, one need
show the following proposition.

Proposition I. f is a monotonically increasing~decreas-
ing! function if f,v (f.v) for any scaling potential.

Proposition I can be shown by noting thatf has no maxi-
mum ~minimum! for f.v (f,v). Indeed, Eq.~2.9! shows
that

f95
1

~116e!Cf
@f]fV24V# ~3.2!

at any local extremum off. Let r 0 be the point of the local
minimum such thatf8(r 0)50. It follows that f9.0 (f9
,0) at r 0 if f.v (f,v). This means thatf is a local
minimum ~maximum! if f.v (f,v) at r 0. Hence propo-
sition I is proved. It in fact tells us the following.

Corollary I. F is monotonically approachingv as r in-
creases independent of its initial data.

Note that one can show that

1

116eE0

`

drBr2@f]fV24V#5BCr2f8fur 5` ~3.3!

from Eq. ~2.9!. Note that the boundary termBCr2f8fur 50
50 sincef(0)50. Equation~3.3! implies that the left-hand
side of Eq.~3.3! is positive ~negative! definite if f.v (f
,v). On the other hand, corollary I says thatf8,0 (f8
.0) everywhere; hence the right-hand side of Eq.~3.3! is
negative~positive! definite. This leads to a contradiction un
4-2



e
ng

et
o

th
a

nd

i-

b

e-

la

o
to
le

la

in
t

s
wi
t

n-
hi

ole

as

ole
a

ons

d
at

-
ce
is
le
ble
on
has
q.

lysis

on
ant
ther
o

e

his
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lessf5v. Note that the regularity ofF demands thatf0
50. Therefore, a regular ’t Hooft-Polyakov monopole do
not exist in this induced EYM model coupled to any scali
potential. Note that the singularf5v monopole solution has
been studied in Ref.@17#. Our analysis shows that thef
5v solution is the only possible regular spherically symm
ric monopole in these induced models. Hence the only p
sible way to have a regular monopole solution is to hope
the singularity is hidden inside the event horizon of
charged black hole in these induced gravity models.

IV. NO-HAIR THEOREM AND THE MONOPOLE
CHARGED BLACK HOLES

We will assume that a black hole is present withr H de-
noting the radius of the event horizon. Note that the bou
ary conditions at the event horizon areC(r H)50 and
C8(r H)>0 while the functionsf, f8, w, w8, and B are
finite @18# at the horizon. In addition, the asymptotic cond
tions are the same as given in Sec. II.

The no-hair theorem of the scalar field can be shown
noting that

E
r H

`

drBr2FvCf82

f
1

1

~116e!f
@f]fV24V#~f2v !G

5BCr2f8~f2v !ur H

` . ~4.1!

This is derived from multiplying Eq.~2.9! by (f2v). The
right-hand side of Eq.~4.1! vanishes at both boundaries b
cause~i! C(r H)50 at the lower boundr H and ~ii ! f(`)
→v. Therefore one must havef(r )5v for all r .r H due to
the fact that the integrand on the left hand side of Eq.~4.1! is
positive. Hence the no-hair theorem still holds for the sca
field in these induced gravity models.

Note also that one can show that a regular monopole d
not exist ifV5(l/4)f4. The scalar hair can also be shown
be absent in this scale invariant model. As a result, one is
with a cosmological constant proportional toV05lv4/4 if
f5v. Note thatv is no longer the minimum ofV in this
case.

Indeed, one can show that Eq.~2.9! can be integrated to
give

BCr2ff85k0 , ~4.2!

with k0 denoting a constant. Assuming that there is a regu
monopole in this model,f(0)50 shows thatk050. The
only way to haveBCr2ff850 everywhere is thatf850
everywhere. This says thatf50 for all r. This is not accept-
able becausef50 everywhere will introduce an infinite
gravitational constant everywhere. In addition, the vanish
scalar field sets the curvature scalar term decoupled from
system. The only solution ofw in the system of equations i
w51. Therefore, one shows that a scale invariant action
not come along with the regular monopole solution. No
that the requirementf(0)50 is not too bad because a va
ishing scalar curvature at the origin can make up for t
problem.
04400
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Therefore, we turn our attention to the charged black h
solution again. Equation~4.2! implies that k050 because
C(r H)50 at any black hole event horizon. Therefore one h
f850 again and hencef5v as promised. The only differ-
ence with the regular monopole solution without a black h
is that v need not be 0 anymore. Hence one is left with
cosmological constant coupled with the system of equati
in this f4 theory.

Having solved the scalar equation, one still has

E
r H

`

drBFCw821
w2

r 2
~e2v2r 21w221!G5BCw8wur H

`

~4.3!

from Eq.~2.8!. A similar argument shows that the right-han
side of Eq.~4.3! vanishes. The left-hand side implies th
w(r )50 for all r .r H provided thatr H is not less than the
characteristic radius 1/(ev) of the classical monopole. There
fore r H,1/(ev) is the necessary condition for the existen
of a nontrivial monopole black hole solution. Note that th
kind of nontrivial charged black hole is in fact a black ho
in a monopole@2#. This is possible because that any possi
singularity near the origin is hidden inside the event horiz
of a charged black hole. One notes that the above result
nothing to do with the form of scalar potential because E
~2.8! is independent of the potentialV. In fact, only Eq.~2.6!
depends onV explicitly.

Note that the field equations reduce to

C85
1

x
~12C!2

1

ex FCw821
~12w2!2

2x2
1w21

x2V0

e2v4G ,

~4.4!

B85
Bw82

ex
, ~4.5!

~BCw8!85
Bw

x2
~w21x221!, ~4.6!

if f5v. Here we have writtenx5evr , C5C(x), B
5B(x), andw5w(x) for simplicity. Note that a cosmologi-
cal constant term is added for completeness of the ana
even though we know thatV0[V(v)50 for any scaling
potential. In other words, the analysis shown from now
will remain valid in the presence of a cosmological const
term if the scalar hair can be shown to be absent by o
methods. For example, thef4 potential has been shown t
leave us a nonvanishing cosmological constant.

Note that the solution withw50 is the Reissner-
Nordström black hole solution given byB51 and C51
2m/4pev2r 11/2ev2e2r 2. Here m is the Arnowitt-Deser-
Misner ~ADM ! mass of the black hole. In addition, on
needs the constraintm>4pvA2e/e in order to prevent ex-
posure of the naked singularity.

Note that one needsxH,1 in order to have a black hole
solution with nontrivialw. Hence we will assume thatxH
,1 from now on and try to analyze various properties of t
kind of charged black hole. One notes that Eqs.~4.4!–~4.6!
4-3
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W. F. KAO PHYSICAL REVIEW D 61 044004
are similar to those of theories with a minimally coupl
SU~2! gauge field. It has been studied in the limit of a
infinite Higgs self-coupling constant by Aichelburg and B
zon @4#.

Two propositions@4# governing the properties ofw will
be in need.

Proposition II. w is a monotonically decreasing~increas-
ing! function of x if w>1 (w<21).

We will assumewH.0 for simplicity. Here we have de
finedwH[w(xH). Note that the result will remain valid with
w→2w because the field equations are invariant under
discrete transformation. Note that Eq.~4.6! becomes

Cw95
w0

x0
2 ~w0

21x0
221! ~4.7!

at local extrema wherew8(x0)50. Here we have written
w0[w(x0). If w>1, one hasw9.0 at the local extrema fo
all x0.0. Hencew0 is a local minimum ifw0>1. Similarly,
w0 is a local maximum ifw0<21. Hence any physical so
lution of w has to be a monotonically decreasing~increasing!
function inx as long asw>1 (w<21). This proves propo-
sition II. Therefore the boundary conditionw(`)→0 implies
that there is no local extremum forw in the regionuwu>1.
Otherwise, proposition II tells us thatw can never turn
around and approach 0 at spatial infinity.

Proposition III. w monotonically approaches 0 for allx
>1.

Note thatw0w9>0 at the extrema ofw if x0>1. Hence
local extrema ofw are local minima~maxima! if w.0 (w
,0). Hence proposition III is proved becausew(`)→0.

On the other hand, Eq.~4.6! reads

C8w85
wH

xH
2 ~wH

2 1xH
2 21! ~4.8!

at the event horizon of a black hole whereC(xH)50. Note
thatC8(xH)>0 sinceC is assumed to be positive definite fo
all x.xH . HencewH>1 will imply w8(xH).0. This is in
contradiction to the result of proposition II claiming th
wH>1 implies thatw is a monotonically decreasing functio
such thatw8(x),0 for all x if w>1. Hence one conclude
that uwHu,1. Note that the conclusion2wH,1 comes from
the discrete symmetry underw→2w.

On the other hand, one should havewH
2 1xH

2 21>0 if
w8(xH)>0. In addition, a local maximum ofw must exist
somewhere atx.xH in order for w to turn around and ap
proach zero at spatial infinity. And this maximum must sh
up beforew reaches 1. Otherwisew will never be able to turn
around according to proposition II. And this maximum al
has to show up beforex reaches 1 according to propositio
III. This is becausew will never be able to turn around onc
x>1. The conclusion so far can be stated as follows
w8(xH).0, there is a local maximum ofw at x0P(xH ,1)
such that 1>w0.wH .

On the other hand, Eq.~4.7! says thatw0
21x0

221,0 at
the local maximum. Note that this inequality andwH

2 1xH
2

21>0 @since we have assumed thatw8(xH).0# imply that
04400
is

if

w0,wH . This is not consistent with the resultw0.wH .
Therefore, one shows thatw8(xH),0 in addition to the re-
sult wH,1 shown earlier.

Note that w8(xH),0 and wH.0 indicate that 12wH
2

.xH
2 according to Eq.~4.8!. Therefore the necessary cond

tion for the existence of awÞ0 non-Abelian monopole black
hole isxH,1. This agrees with our earlier result.

Moreover, Eq.~4.4! becomes

C8~xH!5
1

xH
2

~12wH
2 !2

2exH
3

2
wH

2

exH
2

xHV0

ee2v4 >0

at the event horizon. Hence one has

wH
4 22~12xH

2 !wH
2 22exH

2 111xH
4 2V0

e2v4 <0. ~4.9!

ThereforewH real implies that

S 12
2V0

e2v4D xH
2 22~12e!>0. ~4.10!

There are a number of combinations of possible c
straints available at this moment. First of all, let us consi
the case whereV0,e2v4/2. One can show that~i! xH

>A2(12e)/(12Vh) if (1 1Vh)/2,e,1 ~note that the first
inequality aboute comes from the fact thatxH,1), ~ii ! a
magnetically charged black hole cannot exist if 0,e<(1
1Vh)/2, and~iii ! there is no constraint at all fore>1. Here
we have writtenVh[2V0 /e2v4 such thatVh,1.

On the other hand, we can also consider the case w
V0.e2v4/2 such thatVh.1. In that case, one has that~iv!
xH<A2(e21)/(Vh21) if e.(11Vh)/2, ~v! there is no so-
lution for e<1, and ~vi! if 1 ,e,(11Vh)/2, there is no
constraint exceptxH,1.

Finally, one can consider the case whereV05e2v4/2.
This will imply that e<1.

In addition, one notes that the inequalities 12wH
2 .xH

2

and Eq.~4.9! saturate for extremal black holes. This implie
that xH5A2(12e)/(12Vh) if (1 2e)(12Vh).0.

In summary, we have shown that~a! w can be an oscilla-
tory function in the domainxP(xH ,1), ~b! w has to ap-
proach 0 monotonically in the domainx>1, ~c! wH,1, ~d!
w8(xH),0, ~e! xH>A2(12e)/(12Vh) if (1 1Vh)/2,e
,1 andV0,e2v4/2, ~f! a magnetically charged black hol
cannot exist if 0,e<(11Vh)/2 andV0,e2v4/2, ~g! there is
no constraint at all fore>1 and V0,e2v4/2, ~h! xH

<A2(e21)/(Vh21) if e.(11vh)/2 andV0.e2v42, ~i! a
magnetically charged black hole cannot exist ife<1 and
V0.e2v4/2, ~j! if 1 ,e,(11Vh)/2 andV0.e2v4/2, there is
no constraint exceptxH,1, ~k! in the case whereV0
5e2v4/2 ande.1, there is no additional constraint, and~l!
there is no solution ifV05e2v4/2 ande<1.

Note that these constraints will be very helpful for choo
ing appropriate initial data for numerical solutions. Note th
Eqs.~4.4!–~4.6! can be written as
4-4
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C85
1

x
~12C!2

1

ex FCw821
~12w2!2

2x
1w2G2

xV0

ee2v4 ,

~4.11!

Cw91C8w81
Cw83

ex3
1

w

x
~12w22x2!50, ~4.12!

onceB(x) is eliminated. Note that one can expandC(x) and
w(x) asC(x)5c(x2xH) andw(x)5wH1v(x2xH) to lin-
ear order inx2xH near the neighborhood ofxH . Therefore
one has

c5
1

xH
2

~12wH
2 !2

2exH
3

2
wH

2

exH
2

xHV0

ee2v4 , ~4.13!

v52
wH

cxH
2 ~12wH

2 2xH
2 !, ~4.14!

for the leading term. Note thatwH is confined by

12xH
2 2xHAxH

2 ~12Vh!22~12e!<wH
2 <12xH

2 .
~4.15!

Note that the first inequality comes from Eq.~4.9! and the
second inequality comes from Eq.~4.14! by noting thatv
,0. In addition, one hasxH5A2(12e)/(12Vh) and wH

5A(2e212Vh)/(12Vh) for extremal black holes.

V. CONCLUSION

We have shown that a regular SO~3! non-Abelian ’t
Hooft–Polyakov monopole solution does not exist in
.

04400
duced Einstein-Yang-Mills theories with a variety of SS
potentials. The only way to obtain a regular monopole so
tion is to have a charged black hole inside the magn
monopole. We did show that scalar hair for these mod
cannot exist in the presence of a black hole. It is also sho
that the same conclusion holds for the scale invariant po
tial.

We also show that a nontrivial monopole-charg
black hole imposes a number of constraints on the fi
parameterse, wH , w8(xH) as well as the size of the
event horizonxH . In particular, it is shown that a nontrivia
non-Abelian monopole charged black hole soluti
exists only if the radius of the event horizon,r H , is
smaller than the characteristic radius 1/ev of the classical
monopole. The global behavior of the monopole functionw
is also analyzed in the presence of a nonvanishing cos
logical constant. The large distance behavior ofw is found
without solving the field equation directly. These analys
may be helpful for related studies. In particular, it was sho
that the presence of the cosmological constant affects
properties of the monopole charged black hole in a very s
nificant way. Our results indicate that this induced grav
model deserves more attention. The effect of the indu
theory should have more applications in different areas
interest.
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