

Linear Algebra and its Applications 306 (2000) 45–57

LINEAR ALGEBRA AND ITS APPLICATIONS

www.elsevier.com/locate/laa

On sums of three square-zero matrices^{\ddagger}

K. Takahashi¹

Department of Mathematics, Hokkaido University, Sapporo 060, Japan Received 23 September 1999; accepted 15 October 1999

Submitted by R.A. Brualdi

Abstract

Wang and Wu characterized matrices which are sums of two square-zero matrices, and proved that every matrix with trace-zero is a sum of four square-zero matrices. Moreover, they gave necessary or sufficient conditions for a matrix to be a sum of three square-zero matrices. In particular, they proved that if an $n \times n$ matrix A is a sum of three square-zero matrices, the dim ker $(A - \alpha I) \leq 3n/4$ for any scalar $\alpha \neq 0$. Proposition 1 shows that this condition is not necessarily sufficient for the matrix A to be a sum of three square-zero matrices, and characterizes sums of three square-zero matrices among matrices with minimal polynomials of degree 2. © 2000 Elsevier Science Inc. All rights reserved.

Let $\mathbb{C}^{n \times m}$ denote the space of all $n \times m$ complex matrices. The block diagonal matrix with diagonal blocks A_1, \ldots, A_m is denoted by $A_1 \oplus \cdots \oplus A_m$, and if $A_1 = \cdots = A_m = A$, then we write $A_1 \oplus \cdots \oplus A_m = A^{(m)}$. Let I_n denote the $n \times n$ identity matrix.

Proposition 1. Let A be an $n \times n$ matrix with tr A = 0 and assume that A is similar to

 $\begin{bmatrix} \beta & 0 \\ 0 & \alpha \end{bmatrix}^{(m)} \oplus \alpha I_r,$

^{*} All correspondence to: Pei Yuan Wu, Department of Applied Mathematics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan, ROC.

E-mail address: pywu@cc.nctu.edu.tw (P.Y. Wu).

¹ Deceased.

where $\alpha \neq \beta$ and $m, r \ge 1$. Then A is a sum of three square-zero matrices if and only if r is a divisor of 2m.

Lemma 1. Let

$$A = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}^{(2)} \in \mathbb{C}^{4 \times 4} \quad and \quad \alpha \neq \beta.$$

Then, for any γ and δ such that $\gamma \neq \delta$ and $\gamma + \delta = \alpha + \beta$, there is a square-zero matrix N such that A + N is similar to

$$\begin{bmatrix} \gamma & 1 \\ 0 & \gamma \end{bmatrix} \oplus \begin{bmatrix} \delta & 1 \\ 0 & \delta \end{bmatrix}.$$

Proof. Clearly, A is similar to

$$\begin{bmatrix} \gamma I_2 & I_2 \\ c I_2 & \delta I_2 \end{bmatrix}$$

where $c = (\alpha - \gamma)(\gamma - \beta)$. By considering the matrix

$$S^{-1}\begin{bmatrix} \gamma I_2 & I_2 \\ c I_2 & \delta I_2 \end{bmatrix} S \quad \text{for} \quad S = I_1 \oplus \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \oplus I_1,$$

we see that there is a square-zero matrix N such that A + N is similar to

,

which is similar to

$$\begin{bmatrix} \gamma & 1 \\ 0 & \gamma \end{bmatrix} \oplus \begin{bmatrix} \delta & 1 \\ 0 & \delta \end{bmatrix}$$

because $\gamma \neq \delta$. \Box

The following lemma is a special case of Proposition 1.

Lemma 2. Let A be an $n \times n$ matrix with tr A = 0 and suppose that A is similar to

$$\begin{bmatrix} \beta & 0 \\ 0 & \alpha \end{bmatrix}^{(m)} \oplus \alpha I_r,$$

where α and β are scalars with $\alpha \neq \beta$. If $r \leq 2$, then A is a sum of three square-zero matrices.

Proof. Since tr A = 0, the condition $\alpha \neq \beta$ is equivalent to $\alpha \neq 0$. The case when r = 0 or 1 follows from [1, Proposition 3.3] and its proof. (Indeed, since $\alpha \neq \beta$, the proof of [1, Proposition 3.3] with $c = -\alpha$ shows the case of r = 1.) Thus we

consider the case when r = 2. Suppose that *m* is even. Then *A* is similar to $A_1 \oplus A_1$, where

$$A_1 = \begin{bmatrix} \beta & 0\\ 0 & \alpha \end{bmatrix}^{(m/2)} \oplus \alpha I_1 \quad \text{and} \quad \text{tr } A_1 = 0$$

As remarked above, A_1 is a sum of three square-zero matrices, and hence so is A. Next, suppose that m is odd and m = 2k + 1. The condition tr A = 0 implies $\beta + \alpha = -2\alpha/m$. By Lemma 1, for $1 \le i \le k$, there is a square-zero matrix N_i such that

$$\begin{bmatrix} \beta & 0 \\ 0 & \alpha \end{bmatrix}^{(2)} + N_i$$

is similar to

$$\begin{bmatrix} -(2\mathbf{i}+1)\alpha/m & 1\\ 0 & -(2\mathbf{i}+1)\alpha/m \end{bmatrix} \oplus \begin{bmatrix} (2\mathbf{i}-1)\alpha/m & 1\\ 0 & (2\mathbf{i}-1)\alpha/m \end{bmatrix}.$$

Also, there is a square-zero matrix M such that the matrix

$$\begin{bmatrix} \beta & 0 \\ 0 & \alpha \end{bmatrix} + M$$

is similar to

$$\begin{bmatrix} -\alpha/m & 1 \\ 0 & -\alpha/m \end{bmatrix}$$

(see [1] or the proof of Lemma 1). Let

$$N = N_1 \oplus \cdots \oplus N_k \oplus M \oplus \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Then $N^2 = 0$ and the matrix $\begin{pmatrix} \begin{bmatrix} \beta & 0 \\ 0 & \alpha \end{bmatrix}^{(m)} \oplus \alpha I_2 \end{pmatrix} + N$

is similar to

$$B = \bigoplus_{i=1}^{k} \left(\begin{bmatrix} -(2i+1)\alpha/m & 1\\ 0 & -(2i+1)\alpha/m \end{bmatrix} \right)$$
$$\oplus \begin{bmatrix} (2i-1)\alpha/m & 1\\ 0 & (2i-1)\alpha/m \end{bmatrix} \right)$$
$$\oplus \begin{bmatrix} -\alpha/m & 1\\ 0 & -\alpha/m \end{bmatrix} \oplus \begin{bmatrix} \alpha & 1\\ 0 & \alpha \end{bmatrix}.$$

Clearly, *B* is similar to -B, and so by [1, Theorem 2.11] *B* is a sum of two square-zero matrices. Therefore it follows that *A* is a sum of three square-zero matrices. \Box

Lemma 3. Let A be an $n \times n$ matrix whose minimal polynomial is $m(\lambda) = (\lambda - \alpha)(\lambda - \beta)$, and let N be an $n \times n$ square-zero matrix. If γ is the eigenvalue of A + N and $\gamma \neq \alpha$, β , then $\alpha + \beta - \gamma$ is also the eigenvalue of A + N.

Proof. Since $N^2 = 0$, we can take an invertible matrix P such that

$$P^{-1}NP = \begin{bmatrix} 0 & 0\\ N_1 & 0 \end{bmatrix},$$

where $N_1 \in \mathbb{C}^{r \times (n-r)}$. Let

$$P^{-1}AP = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

where $A_{21} \in \mathbb{C}^{r \times (n-r)}$. Then, since $(A - \alpha I)(A - \beta I) = 0$, we have

$$A_{11}A_{12} + A_{12}A_{22} = (\alpha + \beta)A_{12}$$

and the invariant polynomials of the matrix polynomials

$$\begin{bmatrix} A_{11} - \lambda I, A_{12} \end{bmatrix}$$
 and $\begin{bmatrix} A_{12} \\ A_{22} - \lambda I \end{bmatrix}$

are divisors of $(\lambda - \alpha)(\lambda - \beta)$.

Hence the lemma follows from [2, Theorem 6(b)]. \Box

Proof of Proposition 1. Suppose that 2m = rs for some integer *s*. Then, according as *r* is odd or even, *A* is similar to $C^{(r)}$ or $D^{(r/2)}$, where

$$C = \begin{bmatrix} \beta & 0 \\ 0 & \alpha \end{bmatrix}^{(s/2)} \oplus \alpha I_1 \quad \text{and} \quad D = \begin{bmatrix} \beta & 0 \\ 0 & \alpha \end{bmatrix}^{(s)} \oplus \alpha I_2.$$

In each case, the condition tr A = 0 implies tr C = 0 or tr D = 0. By Lemma 2, the matrices C and D are sums of three square-zero matrices and so A is a sum of three square-zero matrices.

Conversely, assume that *A* is a sum of three square-zero matrices. Then there is a square-zero matrix *N* such that A + N is a sum of two square-zero matrices. Since rank $(A - \alpha I) < n/2$ and rank $N \leq n/2$ because *N* is square-zero, we have $\alpha \in \sigma(A + N)$, so it follows from [1, Theorem 2.11] that $-\alpha \in \sigma(A + N)$. Since tr A = 0, the conditions $\alpha \neq \beta$ and $r \geq 1$ imply that $-(k\alpha + (k - 1)\beta) \neq \beta$ for every integer $k \geq 1$ (and $-\alpha \neq \alpha$). Therefore, if $-(k\alpha + (k - 1)\beta) \neq \alpha$ for all integers $k \geq 2$, then it follows from Lemma 3 and [1, Theorem 2.11] that $k\alpha + (k - 1)\beta \in$ $\sigma(A + N)$ for all *k*, which is impossible. Thus we have $-(k\alpha + (k - 1)\beta) = \alpha$ for some integer $k \geq 2$ and therefore 2m = (k - 1)r because tr A = 0. \Box

For a matrix *A*, let $\mu_A = \max\{\dim \ker(A - \alpha I) : \alpha \in \mathbb{C}\}$. If tr A = 0 and $\mu_A = \dim \ker A$, then the rational form of *A* shows that *A* is similar to $A_1 \oplus \cdots \oplus A_m \oplus 0$, where each A_i is a cyclic matrix of size at least 2. By [1, Proposition 3.3], $A_1 \oplus \cdots \oplus A_m$ is a sum of three square-zero matrices, hence so is *A*. Thus we consider matrices *A* with $\mu_A = \dim \ker(A - \alpha I)$ for some $\alpha \neq 0$.

Lemma 4. Let A be an $n \times n$ matrix with $\mu_A > n/2$ and N be an $n \times n$ square-zero matrix. Then there is an invertible matrix P such that

$$P^{-1}AP = \begin{bmatrix} \alpha I_{k_1} & 0 & 0 & 0 \\ * & B_{11} & B_{12} & 0 \\ * & B_{21} & B_{22} & 0 \\ * & * & * & \alpha I_{k_2} \end{bmatrix}$$

and

$$P^{-1}(A+N)P = \begin{bmatrix} \alpha I_{k_1} & 0 & 0 & 0 \\ * & B_{11} & B_{12} & 0 \\ * & B_{21}+M & B_{22} & 0 \\ * & * & * & \alpha I_{k_2} \end{bmatrix},$$

where α is a scalar such that dim ker $(A - \alpha I) = \mu_A$, $k_1 + k_2 = 2\mu_A - n$, $B_{ij}(i, j = 1, 2)$ and M are $(n - \mu_A) \times (n - \mu_A)$ matrices and * are some matrices.

Proof. Let r = n/2 or r = (n - 1)/2 according as *n* is even or odd. Since *N* is square-zero, we may assume that

$$N = \begin{bmatrix} 0 & 0 \\ N_1 & 0 \end{bmatrix},$$

where $N_1 \in \mathbb{C}^{r \times (n-r)}$. We write

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix},$$

where $A_{21} \in \mathbb{C}^{r \times (n-r)}$. Then

$$\operatorname{rank}[A_{11} - \alpha I, A_{12}] \leqslant \operatorname{rank}[A - \alpha I] = n - \mu_A$$

and

$$\operatorname{rank}\begin{bmatrix} A_{12}\\ A_{22} - \alpha I \end{bmatrix} \leqslant n - \mu_A.$$

Therefore there are invertible matrices $Q_1 \in \mathbb{C}^{(n-r) \times (n-r)}$ and $Q_2 \in \mathbb{C}^{r \times r}$ such that

$$\begin{bmatrix} Q_1 & 0 \\ 0 & Q_2 \end{bmatrix}^{-1} A \begin{bmatrix} Q_1 & 0 \\ 0 & Q_2 \end{bmatrix} = \begin{bmatrix} \alpha I_{\mu_A - r} & 0 & 0 & 0 \\ * & B_{11} & B_{12} & 0 \\ * & B_{21} & B_{22} & 0 \\ * & * & * & \alpha I_{\mu_A + r - n} \end{bmatrix},$$

where $B_{ij} \in \mathbb{C}^{(n-\mu_A)\times(n-\mu_A)}(i, j = 1, 2)$, and we can write

$$\begin{bmatrix} Q_1 & 0 \\ 0 & Q_2 \end{bmatrix}^{-1} N \begin{bmatrix} Q_1 & 0 \\ 0 & Q_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ * & M & 0 & 0 \\ * & * & 0 & 0 \end{bmatrix}$$

in the same block form as the one of the matrix

$$\begin{bmatrix} Q_1 & 0 \\ 0 & Q_2 \end{bmatrix}^{-1} A \begin{bmatrix} Q_1 & 0 \\ 0 & Q_2 \end{bmatrix}.$$

This proves the lemma. \Box

Proposition 2. Let A be an $n \times n$ matrix with tr A = 0, and suppose that $\mu_A =$ dim ker $(A - \alpha I)$ for some $\alpha \neq 0$.

- (1) If n = 4m and $\mu_A = 3m$, then A is a sum of three square-zero matrices if and
- (1) If n = int and μ_A = con, intervention of a second secon $A_2 = \operatorname{diag}(-2\alpha, \alpha, \alpha).$

Proof. The "if" parts of the assertions (1) and (2) follow from the fact that A_1 and A₂ are sums of three square-zero matrices (see [1, Corollary 3.5]). So suppose that A is a sum of three square-zero matrices, or equivalently, there is a square-zero matrix N such that A + N is a sum of two square-zero matrices.

(1) By Lemma 4, we may assume that

$$A = \begin{bmatrix} \alpha I_{k_1} & 0 & 0 & 0 \\ B_{10} & B_{11} & B_{12} & 0 \\ B_{20} & B_{21} & B_{22} & 0 \\ B_{30} & B_{31} & B_{32} & \alpha I_{k_2} \end{bmatrix}$$

and

$$A + N = \begin{bmatrix} \alpha I_{k_1} & 0 & 0 & 0 \\ B_{10} & B_{11} & B_{12} & 0 \\ * & B_{21} + M_1 & B_{22} & 0 \\ * & * & B_{32} & \alpha I_{k_2} \end{bmatrix},$$

where B_{11} , B_{22} and M_1 are $m \times m$ matrices and $k_1 = k_2 = m$. Let

$$B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \quad \text{and} \quad M = \begin{bmatrix} 0 & 0 \\ M_1 & 0 \end{bmatrix}$$

which are $2m \times 2m$ matrices. Since A + N is a sum of two square-zero matrices, it follows from [1, Theorem 2.11] that A + N is similar to -(A + N) and therefore $\sigma(B+M) = \{-\alpha\}$, which implies that A + N is similar to

$$\begin{bmatrix} \alpha I_{k_1} & 0 \\ * & \alpha I_{k_2} \end{bmatrix} \oplus (B+M).$$

Then, since A + N and -(A + N) are similar, it follows that $(B + M + \alpha I)^2 = 0$. On the other hand, the invertibility of $B + M - \alpha I$ implies

$$rank[B_{11} - \alpha I, B_{12}] = m = rank(A - \alpha I).$$

Hence there are matrices F and G such that

$$F[B_{10}, B_{11} - \alpha I, B_{12}] = [B_{20}, B_{21}, B_{22} - \alpha I]$$

and

$$G[B_{10}, B_{11} - \alpha I, B_{12}] = [B_{30}, B_{31}, B_{32}],$$

and therefore we have

$$\begin{bmatrix} I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & F & I & 0 \\ 0 & G & 0 & I \end{bmatrix}^{-1} A \begin{bmatrix} I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & F & I & 0 \\ 0 & G & 0 & I \end{bmatrix} = \begin{bmatrix} \alpha I & 0 & 0 & 0 \\ B_{10} & B_{11} + B_{12}F & B_{12} & 0 \\ 0 & 0 & \alpha I & 0 \\ 0 & 0 & 0 & \alpha I \end{bmatrix}$$

and

$$\begin{bmatrix} I & 0 \\ F & I \end{bmatrix}^{-1} (B+M) \begin{bmatrix} I & 0 \\ F & I \end{bmatrix} = \begin{bmatrix} B_{11} + B_{12}F & B_{12} \\ M_1 & \alpha I \end{bmatrix}$$

Since $(B + M + \alpha I)^2 = 0$, it follows that the matrix B_{12} is invertible and $(B_{11} + B_{12}F + 3\alpha I)B_{12} = 0$, so that $B_{11} + B_{12}F = -3\alpha I$. Therefore we can conclude that A is similar to $A_1^{(m)}$ because $-3\alpha \neq \alpha$.

(2) The argument similar to the proof of (1) with $k_1 = m$ and $k_2 = m - 1$ shows that the characteristic polynomial of B + M is $p(\lambda) = \lambda(\lambda + \alpha)^{2m-1}$ and its minimal polynomial is a divisor of $\lambda(\lambda + \alpha)^2$. Thus $B + M - \alpha I$ is invertible and as in the proof of (1), we see that A and B + M are similar to

Γ	αI	0	0	0			
	*	С	B_{12}	0	and	$\int C$	B_{12}
	0	0	αI	0		M_1	αI ,
	0	0	0	αI		-	-

where $C \in \mathbb{C}^{m \times m}$. We also have that $\operatorname{rank}(B + M + \alpha I)^2 = 1$. Hence $\operatorname{rank}(C + 3\alpha I)B_{12} \leq 1$ and, since the invertibility of $B + M - \alpha I$ implies that of B_{12} , dim $\ker(C + 3\alpha I) \geq m - 1$. This, together with the identity tr $B = -(2m - 1)\alpha$, shows that -2α is the eigenvalue of *C* and dim $\ker(C + 3\alpha I) = m - 1$ ($\alpha \neq 0$). Thus *A* is similar to $A_1^{(m-1)} \oplus A_2$. \Box

Lemma 5. Let $A = B \oplus \alpha I_r$, where B is an $m \times m$ cyclic matrix and $r \leq m - 2$. Then, for any m + r scalars $\delta_1, \ldots, \delta_{m+r}$ with $\sum_{i=1}^{m+r} \delta_i = \text{tr } A$, there is a squarezero matrix N such that

 $\sigma(A+N) = \{\delta_1, \ldots, \sigma_{m+r}\}.$

Proof. The case of r = 0 is shown in [1, Lemma 3.2], and if $\alpha \notin \sigma(B)$, then $B \oplus \alpha I_1$ is cyclic. Thus, by considering $B \oplus \alpha I_1$ instead of *B* in this case, we may assume that $\alpha \in \sigma(B)$. Let $p(\lambda) = \prod_{i=1}^{m} (\lambda - \beta_i)$ be the characteristic polynomial of *B*, where $\beta_1 = \alpha$, and let *P* be an $(m + r) \times (m + r)$ invertible matrix whose *j*th column p_i is

K. Takahashi / Linear Algebra and its Applications 306 (2000) 45-57

$$p_{j} = \begin{cases} \left(\prod_{i=1}^{j} (B - \beta_{i}I)x\right) \oplus 0 & \text{ for } j \leq m-1, \\ x \oplus 0 & \text{ for } j = m, \\ \left(\prod_{i=1}^{j-m} (B - \beta_{i}I)x\right) \oplus e_{j-m} & \text{ for } m+1 \leq j \leq m+r, \end{cases}$$

where x is a cyclic vector of B and $\{e_1, e_2, \ldots, e_r\}$ is a basis for \mathbb{C}^r . Then we have

$$P^{-1}AP = \begin{bmatrix} A_{11} & A_{12} \\ 0 & \alpha I_{r+1} \end{bmatrix},$$

where

$$A_{11} = \begin{bmatrix} \beta_2 & 0 & \cdots & \cdots & 0 \\ 1 & \beta_3 & 0 & \cdots & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 & \beta_m \end{bmatrix} \in \mathbb{C}^{(m-1) \times (m-1)}$$

and

$$A_{12} = \begin{bmatrix} 1 & \beta_2 & 0 & \cdots & 0 \\ 0 & 1 & \beta_3 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \beta_{r+1} \\ \vdots & \ddots & \ddots & 0 & 1 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 \end{bmatrix} \in \mathbb{C}^{(m-1) \times (r+1)}.$$

Since the pair (A_{11}, A_{12}) is of full range, that is,

rank
$$[A_{12}, A_{11}A_{12}, \dots, A_{11}^{m-2}A_{12}] = m - 1,$$

and rank $A_{12} = r + 1$, by [2, Theorem 1] there is a matrix X such that

$$\sigma\left(\begin{bmatrix}A_{11} & A_{12}\\X & \alpha I\end{bmatrix}\right) = \{\delta_1, \ldots, \delta_{m+r}\}.$$

Therefore, if N is the square-zero matrix defined by

$$N = P \begin{bmatrix} 0 & 0 \\ X & 0 \end{bmatrix} P^{-1},$$

then we have $\sigma(A + N) = \{\delta_1, \dots, \delta_{m+r}\}$, which proves the lemma. \Box

Lemma 6. Let $A = B \oplus \alpha I_{m-2}$, where B is an $m \times m$ cyclic matrix such that $\alpha \in \sigma(B)$, and let $1 \leq s \leq m-1$. Then, for scalars γ and $\delta_1, \ldots, \delta_{2(m-1)-s}$ such that

$$s\gamma + \sum_{i=1}^{2(m-1)-s} \delta_i = \text{tr } A \quad and \quad \delta_i \neq \delta \quad for \ 1 \leq i \leq 2(m-1)-s,$$

there is a square-zero matrix N such that A + N is similar to $C_1 \oplus C_2$, where $C_1 \in \mathbb{C}^{s \times s}$ and $C_2 \in \mathbb{C}^{(2(m-1)-s) \times (2(m-1)-s)}$ are matrices such that

$$(C_1 - \gamma I)^2 = 0$$
 and $\sigma(C_2) = \{\delta_1, \dots, \delta_{2(m-1)-s}\}.$

Proof. The proof of Lemma 5 with r = m - 2 shows that A_{12} is invertible and so A is similar to

$$\tilde{A} = \begin{bmatrix} A_1 & I \\ 0 & \alpha I \end{bmatrix},$$

where $A_1 \in \mathbb{C}^{(m-1)\times(m-1)}$ is cyclic. Since $D = A_1 + \alpha I$ is cyclic, for a cyclic vector x of D, the matrix Q whose *j*th column is $\prod_{i=1}^{j-1} (D - d_i)x$, where $d_i = \delta_i + \delta_{m-1+i}$ for $1 \leq i \leq m-1-s$ and $d_i = \delta_i + \gamma$ for $m-s \leq i \leq m-1$, is invertible, and

$$Q^{-1}DQ = \begin{bmatrix} d_1 & 0 & \cdots & \cdots & c_1 \\ 1 & d_2 & \ddots & \ddots & c_2 \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & c_{m-2} \\ 0 & \cdots & \cdots & 1 & d_{m-1} \end{bmatrix},$$

for some scalars $c_1, c_2, \ldots, c_{m-2}$. Let

$$G = Q \begin{bmatrix} \delta_1 & 0 & \cdots & \cdots & 0 \\ 1 & \delta_2 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 1 & \delta_{m-1} \end{bmatrix} Q^{-1}$$

and H = D - G. Then

$$\sigma(G) = \{\delta_1, \dots, \delta_{m-1}\} \text{ and } H = \begin{bmatrix} H_{11} & H_{12} \\ 0 & H_{22} \end{bmatrix},$$

where $H_{11} = \text{diag}(\delta_m, \delta_{m+1}, ..., \delta_{2(m-1)-s}),$

$$H_{12} = \begin{bmatrix} 0 & \cdots & 0 & c_1 \\ \vdots & \cdots & \vdots & \vdots \\ 0 & \cdots & 0 & c_{m-1-s} \end{bmatrix} \in \mathbb{C}^{(m-1-s) \times s}$$

and

$$H_{22} = \begin{bmatrix} \gamma & 0 & \cdots & c_{m-s} \\ 0 & \gamma & \ddots & \vdots \\ \vdots & \ddots & \ddots & c_{m-2} \\ 0 & \cdots & 0 & \gamma \end{bmatrix} \in \mathbb{C}^{s \times s}.$$

Since $\gamma \neq \delta_i$ for all *i*, *H* is similar to diag $(\delta_m, \ldots, \delta_{2(m-1)-s}) \oplus H_{22}$, and $(H_{22} - \gamma I)^2 = 0$. We also have

$$\begin{bmatrix} I & 0 \\ G - A_1 & I \end{bmatrix}^{-1} \tilde{A} \begin{bmatrix} I & 0 \\ G - A_1 & I \end{bmatrix} = \begin{bmatrix} G & I \\ HG - \alpha A_1 & H \end{bmatrix},$$

so that if N is the square-zero matrix defined by

$$N = \begin{bmatrix} I & 0 \\ G - A_1 & I \end{bmatrix} \begin{bmatrix} 0 & 0 \\ \alpha A_1 - HG & 0 \end{bmatrix} \begin{bmatrix} I & 0 \\ G - A_1 & I \end{bmatrix}^{-1}$$

then $\tilde{A} + N$ is similar to

$$\begin{bmatrix} G & I \\ 0 & H \end{bmatrix}.$$

But, since $\gamma \neq \delta_i$ for all *i*, the matrix

$$\begin{bmatrix} G & I \\ 0 & H \end{bmatrix}$$

is similar to

$$\begin{bmatrix} G & J \\ 0 & H_{11} \end{bmatrix} \oplus H_{22},$$

where

$$J = \begin{bmatrix} I_{m-1-s} \\ 0 \end{bmatrix} \in \mathbb{C}^{(m-1) \times (m-1-s)}.$$

This proves the lemma. \Box

Note that the proof of Lemma 6 shows that in Lemma 6, if s < m - 2, the matrix C_1 can be also taken to be $C_1 = \gamma I$.

Proposition 3. Let A be an $n \times n$ matrix with tr A = 0, and let m be the number of its invariant polynomials of degree 2. If $\mu_A \leq (2n - m)/3$, then A is a sum of three square-zero matrices.

Proof. Let α be a scalar such that dim ker $(A - \alpha I) = \mu_A$, and let ℓ and r be the numbers of the invariant polynomials of A of degree tleast 3 and of degree 1,

respectively. Using the rational form of *A*, we may assume that $A = \left(\bigoplus_{i=1}^{\ell+m} B_i\right) \oplus \alpha I_r$, where each B_i is a cyclic matrix with $\alpha \in \sigma(B_i)$ whose size k_i is $k_i \ge 3$ for $1 \le i \le \ell$ and $k_i = 2$ for $\ell + 1 \le i \le \ell + m$. (Indeed, $B_{\ell+1} = \cdots = B_{\ell+m}$.) Note that since $n = \sum_{i=1}^{\ell} k_i + 2m + r$ and $\mu_A = \ell + m + r$, the condition $\mu_A \le (2n - m)/3$ is equivalent to $r \le \sum_{i=1}^{\ell} (2k_i - 3)$. First suppose that $r \le \sum_{i=1}^{\ell} (k_i - 2)$, which is equivalent to $\mu_A \le n/2$. Take ℓ nonnegative integers r_1, \ldots, r_ℓ such that $\sum_{i=1}^{\ell} r_i = r$ and $r_i \le k_i - 2$ for all *i*, and let $A_i = B_i \oplus \alpha I_{r_i}$ for $1 \le i \le \ell$ and $A_i = B_i$ for $\ell + 1 \le i \le \ell + m$. Then *A* is similar to $\tilde{A} = \bigoplus_{i=1}^{\ell+m} A_i$. Let $t_i = \text{tr } A_i$ for $1 \le i \le \ell + m$ and take a scalar *c* such that $c > \sum_{i=1}^{\ell+m} |t_i|$. As in the proof of [1, Proposition 3.3], we apply Lemma 5 to the matrices $A_1, \ldots, A_{\ell+m}$ to obtain square-zero matrices $N_1, \ldots, N_{\ell+m}$ such that

$$\sigma(A_i + N_i) = \left\{ c - \sum_{j=1}^{i-1} t_j, \sum_{j=1}^{i} t_j - c, \ 0, \dots, 0 \right\}$$

for $1 \le i \le \ell + m$. Then, since $c - \sum_{j=1}^{i-1} t_j$ and $\sum_{j=1}^{i} t_j - c$ are different nonzero numbers, each $A_i + N_i$ is similar to

diag
$$\left(c - \sum_{j=1}^{i-1} t_j, \sum_{j=1}^{i} t_j - c, 0, \dots, 0\right)$$
,

and so the matrix $\tilde{A} + N$, where $N = \bigoplus_{i=1}^{\ell+m} N_i$, is similar to $-(\tilde{A} + N)$. Hence it follows from [1, Theorem 2.11] that $\tilde{A} + N$ is a sum of two square-zero matrices. Since $N^2 = 0$, we can conclude that A is a sum of three square-zero matrices.

Next suppose that $r > \sum_{i=1}^{\ell} (k_i - 2)$, and let $s = r - \sum_{i=1}^{\ell} (k_i - 2)$. Then *A* is similar to $\tilde{A} = (\bigoplus_{i=1}^{\ell+m} A_i) \oplus \alpha I_s$, where $A_i = B_i \oplus \alpha I_{k_i-2}$ for $1 \le i \le \ell + m$. Since $r \le \sum_{i=1}^{\ell} (2k_i - 3)$ by assumption, $0 < s \le \sum_{i=1}^{\ell} (k_i - 1)$, so we can take *q* integers s_1, \ldots, s_q ($q \le \ell$) such that $\sum_{i=1}^{q} s_i = s$ and $1 \le s_i \le k_i - 1$ for each *i*. Let $t_i = \text{tr } A_i + \alpha s_i$ for $1 \le i \le q$ and $t_i = \text{tr } A_i$ for $q + 1 \le i \le \ell + m$, and let *c* be a scalar with $c > \sum_{i=1}^{\ell+m} |t_i| + |\alpha|$. Then, for each *i*, the numbers $-\alpha, c - \sum_{i=1}^{i-1} t_i$ and $\sum_{j=1}^{i} t_j - c$ are nonzero and mutually different. Hence, for $1 \le i \le q$, by Lemma 6 there is a square-zero matrix N_i such that $A_i + N_i$ is similar to $C_i \oplus D_i$, where C_i is an $s_i \times s_i$ matrix with $(C_i + \alpha I)^2 = 0$ and

$$D_i = \operatorname{diag}\left(c - \sum_{j=1}^{i-1} t_j, \sum_{j=1}^{i} t_j - c, 0, \dots, 0\right) \in \mathbb{C}^{(2(k_i-1)-s_i) \times (2(k_i-1)-s_i)}.$$

Also, for $q + 1 \le i \le \ell + m$, we have a square-zero matrix N_i such that $A_i + N_i$ is similar to

$$D_{i} = \begin{bmatrix} c - \sum_{j=1}^{i-1} t_{j} & 0\\ 0 & \sum_{j=1}^{i} t_{j} - c \end{bmatrix}$$

(see [1] or Lemma 5). By [1, Theorem 2.11], $\bigoplus_{i=1}^{\ell+m} D_i$ is a sum of two square-zero matrices, and since $\sigma(C_i) = \{-\alpha\}$, the matrices $C_i \oplus (C_i + 2\alpha I_{s_i}), i = 1, ..., q$, are sums of two square-zero matrices too. Now, let

$$N = \left(\bigoplus_{i=1}^{\ell+m} N_i\right) \oplus \left(\bigoplus_{i=1}^q (C_i + \alpha I)\right).$$

Then $N^2 = 0$ and $\tilde{A} + N$ is similar to

$$\left(\bigoplus_{i=1}^{\ell+m} D_i\right) \oplus \left(\bigoplus_{i=1}^q (C_i \oplus (C_i + 2\alpha I))\right),$$

which is a sum of two square-zero matrices. Thus it follows that A is a sum of three square-zero matrices. \Box

Corollary 1. Let A be an $n \times n$ matrix with tr A = 0. If $\mu_A \leq n/2 + 1$, then A is a sum of three square-zero matrices.

Proof. Let ℓ and r be the numbers of the invariant polynomials of A of degree at least 3 and of degree 1, respectively. The condition $\mu_A \leq n/2 + 1$ is equivalent to $r \leq \sum_{i=1}^{\ell} (k_i - 2) + 2$, where k_1, \ldots, k_{ℓ} are the degrees of the invariant polynomials of A with degree ≥ 3 . So, if $\ell = 0$, then $r \leq 2$ and it follows from Lemma 2 that A is a sum of three square-zero matrices. If $\ell \neq 0$, then the inequality $r \leq \sum_{i=1}^{\ell} (k_i - 2) + 2$ implies $r \leq \sum_{i=1}^{\ell} (2k_i - 3)$, so the assertion follows from Proposition 3. \Box

Corollary 2. Let A be an $n \times n$ matrix with tr A = 0 and suppose that $\mu_A = \dim \ker(A - \alpha I)$ for some $\alpha \neq 0$.

- (1) When n = 6, A is a sum of three square-zero matrices if and only if $\mu_A \leq 4$.
- (2) When n = 7, A is a sum of three square-zero matrices if and only if (i) $\mu_A \leq 4$ or (ii) $\mu_A = 5$ and A is similar to $(-3\alpha I_1) \oplus (-2\alpha I_1) \oplus \alpha I_5$.
- (3) When n = 8, A is a sum of three square-zero matrices if and only if (i) $\mu_A \leq 5$ or (ii) $\mu_A = 6$ and A is similar to $(-3\alpha I_2) \oplus \alpha I_6$.

Proof. The "only if" parts of (1)–(3) follow from [1, Theorem 3.1] and Proposition 2. On the other hand, the "if" parts follow from [1, Corollary 3.4] and Corollary 1. \Box

References

- [1] J.-H. Wang, P.Y. Wu, Sums of square-zero operators, Studia Math. 99 (2) (1991) 115–127.
- [2] K. Takahashi, Eigenvalues of matrices with given block upper triangular part, Linear Algebra Appl. 239 (1996) 175–184.