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Abstract

In this paper, multichannel image "ltering using local gradient information is studied and evaluated which is simpler
and more appropriate than the traditional approaches that have been addressed by means of groupwise vector ordering
information. Two adaptive weighted multichannel "lters based on local gradient information to noise removal in color
images are introduced. The "rst proposed multichannel "lter is rather highly e!ective for Gaussian and Uniform noise
removal in preserving good edges. The second proposed multichannel "lter is robust to Gaussian, Uniform, Impulse
noise, and Gaussian noise mixed with outliers. ( 2000 Elsevier Science B.V. All rights reserved.

Zusammenfassung

In dieser Arbeit wird eine mehrkanalige Filterung von Bildern unter BenuK tzung lokaler Gradienteninformation
untersucht und bewertet. Eine solche Methode ist einfacher und besser geeignet als traditionelle AnsaK tze, die Information
uK ber die gruppenweise Ordnung von Vektoren benuK tzen. Es werden zwei adaptive, gewichtete, auf lokaler Gradientenin-
formation beruhende Mehrkanal-Filter zur RauschunterdruK ckung in Farbbildern eingefuK hrt. Das erste vorgeschlagene
Mehrkanal-Filter unterdruK ckt Gau{-und gleichverteiltes Rauschen sehr wirkungsvoll, wobei Kanten weitgehend erhal-
ten bleiben. Das zweite Filter ist robust gegenuK ber Gau{schem Rauschen, gleichverteiltem Rauschen, Impulsrauschen
sowie Gau{schem Rauschen gemischt mit Ausrei{ern. ( 2000 Elsevier Science B.V. All rights reserved.

Re2 sume2

Dans cet article, nous eH tudions et eH valuons le "ltrage d'images à canaux multiples en utilisant l'information de gradient
locale, ce qui est plus simple et plus approprieH que les approches traditionnelles qui ont eH teH adresseH es au moyen de
l'information orienteH e par groupe de vecteurs. Nous introduisons deux "ltres multicanaux pondeH reH s adaptatifs reposant
sur l'information de gradient local pour supprimer le bruit dans des images en couleurs. Le premier "ltre multicanal
proposeH est assez hautement e$cace pour la suppression de bruit gaussien et uniforme tout en preH servant de bons
contours. Le second "ltre multicanal proposeH est robuste aux bruits gaussiens, uniformes, impulsionnels, ainsi qu'au bruit
gaussien me( leH à des points isoleH s. ( 2000 Elsevier Science B.V. All rights reserved.
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Nomenclature

a the parameter of the proposed % "lters
b the common parameter for FVF1, FVF2,

FVF3, FVF4 in Table 4
c the common parameter for FVF1, FVF2,

FVF3, FVF4 in Table 4
f a gray-scale image
X a multichannel RGB color image
g
p
(k) the local gradients

g4
p
(k) the symmetric local gradients

u
p
(k) the vector gradients

u4
p
(k) the symmetric vector gradients

Abbreviations
MMF marginal median "lter
AMF arithmetic (Linear) mean "lter
VMF vector median "lter
DDF directional-distance "lter
FVDF adaptive (Fuzzy) vector directional

"lter
ANNF nearest-neighbor multichannel "lter
ANNMF adaptive nearest-neighbor multi-

channel "lter
ANNMF2 adaptive nearest-neighbor multi-

channel "lter
DWANNF double-window adaptive nearest-

neighbor "lter
FVF1}4 combined fuzzy directional and fuzzy

median "lter
GIWF gradient inverse weighted "lter
AGWF adaptive Gaussian weighted "lter

1. Introduction

Multichannel "ltering has received increased at-
tention due to its importance in color image pro-
cessing. Numerous "ltering techniques proposed to
date utilize correlation among multivariate vectors
[1,3,4,6,7,10}16,22}24,26,27]. Some of these select
directly the minimum as output from an order-
ing sequence using various distance and angle
measures such as these in VMF [1], BVDF [23,24]
and DDF [6]. These vector ordering "lters do well
for long-tailed noise (impulse) but are inferior to the
arithmetic mean "lter (AMF) for high-frequency
noise (Gaussian) [15]. Other approaches, referred
to as the adaptive vector weights "lters, such as
a-TM/GVDF [24], ANNF [12], ANNMF [16],
ANNMF2 [16], FVDF [13,14], and DWANNF
[13], yield output by the combination of image
vectors in the local window. They cope with noise
but at the same time smear sharpness of images
such as edges. Besides, they require a great bulk of
process time for sorting, arccosine function, and
aggregating distance measure. Some approaches
[15,13] reduce the aggregation time by prior esti-
mating or predicting the reference vector (MMF).
Other e!orts [2,20] are devoted to reducing the
complexity. They conclude that vector weighted
"lters with the techniques of parallel processing

and weights determination can diminish the total
process time.

In this paper, the main goal is to devise computa-
tionally e$cient and reliable "ltering structures.
Many gray-scale adaptive weighted "lters, such as
GIWF [25], AGWF [21], Sigma "lter [8], Ra-
tional "lters [17}19], and % "lters [9], all of which
migrate or di!use gray levels in iterative "ltering,
show good performances in attenuating noise and
preserving sharpness. We propose a scheme of
weight determination by vector gradient informa-
tion for reducing the aggregation times in color
images, which is similar to that used in gray-scale
adaptive weighted "lters.

The paper is organized as follows. First, in
Section 2, a % "lter [9] based on local gradient
information for gray-scale image "ltering is
introduced. Then, in Section 3, a new multichannel
% "lter, extended from the gray-scale one,
is proposed, which results in a good perfor-
mance for high-frequency noise (Gaussian and
Uniform). In Section 4, another multichannel %
"lter is proposed which is equipped with symmetri-
cal local gradients having the robustness for
impulsive noise. Experimental results on the
e!ectiveness of the proposed methods are ex-
hibited in Section 5. Our conclusions are given in
Section 6.
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Fig. 1. Two 1-D signals: (a) a signal with nosiy points;
(b) a signal crossed on edge points.

2. Gray-scale image 5ltering

2.1. Noise removing and edge preserving
by gradients

There has been some interest recently in a speci-
"c class of adaptive weighted "lters. One of these is
called adaptive gradient weighted "lters. Examples
include the gradient inverse weighted "lter of Wang
and Vernucci [25], Gaussian weighted "lter of
Spann and Nieminen [21], sigma "lters of Lee [13],
and the rational "lters of Ramponi [17}19].
Let f (x

1
), f (x

2
), f (x

3
),2, f (x

n~k
),2, f (x

n
),2,

f (x
n`k

),2, f (x
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) be a sequence of 1-D signal,

where x
n

is de"ned as a noise point. A generalized
1-D adaptive gradient weighted "lter can be ex-
pressed as
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where g
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"f (x

i
)!f (x

n
) are the local gradients

and F is the weighted function. In all the gradient
weighted "lters mentioned [17}19,21,25], the
weighted function F is reciprocal to the absolute
value of g

xi
. A variety of weighted functions of g

xi
's

was employed in the image processing. Wang [25]
choose the absolute inverse of gradients as adaptive
weights for noise suppression. Spann and Nieminen
[21] used exponential function of gradients to re-
move Gaussian noise and segment images. The
same exponential weighted function also was em-
ployed by Guillon [5] to design adaptive "lter
masks for improving the contrast enhancement.
Also, iterative "ltering techniques are followed to
migrate and di!use gray levels to perform noise
attenuation. However, such gradient weighted
"lters have poor performance if impulse noise
is present. Fig. 1(a) shows one such instance.
The symmetric local gradients de"ned as
g4
xn
"f (x

n`1
)!f (x

n~1
) are then suggested to cope

with such situation [17,18].
On the other hand, as a point x

n
crossed on

an edge with height H as delineated in Fig. 1(b)
where N is the window size, f (x

n~l
) " a for

!1)l)k!2; f (x
n`r

)"b for 2)r)

N!k#1, and b!a"H. The "ltered output is
a#[(N!k)/N]H; in mean "lter. The resultant
value ampli"es the result in [(N!k)/N]H; there-
fore, signal points crossed on edges are blurred. By
way of response of zero or small weights to x

n
's

neighbors with large local gradients, adaptive
gradients weighted "lters would be e!ective for
edge preserving. Thus, the advantage of the adap-
tive gradient weighted "lters is that they are able to
smooth a noisy signal whilst maintaining sharp
transitions in the signal. The idea of our methods is
to extend the iterative nonlinear "ltering using
gradient information to multichannel image "lter-
ing. Our purpose is to design a function that is
reciprocal to the gradients for removing noise and
preserving edges. In our approach, p functions are
chosen to substitute the weighted function F(x).
The reasons for choosing p functions are that (1)
they match our purposes; (2) they are simple, only
second degree with respect to x; (3) the parameter
a provides the adaptability for the "lters. The for-
mulation is given as

p(x)"G
1!2A

x

aB
2

if DxD)
a
2
,

2A
x

a
!1B

2
if

a
2
)DxD)a,

0 if DxD*a

(2)

2.2. The structure of % xlters

Let f : Z]ZPM0, 1, 2, 255N be a gray-level im-
age. In a 3]3 window centered at p, the eight
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neighbors of p are in an order as shown below:

Then, the local gradients are de"ned as

g
p
(k)"f (p

k
)!f (p), k"1, 2,2, 8 (3)

and the symmetric local gradients g4
p
(k),

k"1, 2, 2, 8, are given as
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A gradient weighted % "lter [19] can be formulated
as below:

f% (p)"(1!
8
+
k/1

w
p
(k)) f (p)#

8
+
k/1

w
p
(k) f (p

k
), (5)

where w
p
(k)'s are p-functions of the local

gradients or symmetric local gradients. In our ex-
periments, w

p
(k) is set to 1

8
p(g

p
(k)) or 1

8
p(g4

p
(k)) and

the p-functions are those de"ned in the previous
subsection for some constant or adaptive para-
meter a.

By way of "xing an appropriate a to all image
points, % "lters equipped with local gradients have
the advantages of simplicity and e$ciency with
respect to high-frequency noises such as Gaussian
and Uniform noises. Section 5 will exhibit the
evidential results by experiments. However, if the
center pixel p is an outlier, this outlier will be
preserved as an edge point using local gradients
information due to the fact that p-functions pay
small weights to the neighbors of the center pixel
p and large weights for p itself. Iterative "ltering

and using symmetric local gradients would avoid
the outlier being preserved under impulsive noise
environment.

3. The 5rst proposed multichannel 5lter

Color images compromised with R, G, and
B components are generally regarded as extensions
of gray-scale images. The marginal median "lters,
having the incoming of simple, parallel and non-
expensive computational time, are the most instinc-
tive extensions of gray-scale median "lters for color
image smoothing. The bulk of aggregation time
would be reduced when the reference vector is
chosen [15,13]. However, it su!ers from the chro-
matic distortion if wrong reference is obtained. It is
our goal in this section to develop a computation-
ally e!ective algorithm, which utilizes the similarity
between vector weighted and gray-scale adaptive
weighted "lters to remove noise and obtain good
edge preserving property.

Let X: Z]ZPM0, 1,2, 255Nm be a multichan-
nel image. Note that when m"3, X represents
a digital multichannel RGB color image. In a 3]3
window, the ordering of the eight neighbors of p is
identical to the one shown in Section 2. Let
x
p
"X(p), and x

i
"X(p

i
), i"1, 2, 2, 8. We de"ne

the vector gradients and the symmetric vector
gradients as

u
p
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k
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A vector gradient weighted % "lter can then be
formulated as below:
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where w
p
(k)"1

8
p(Eu

p
(k)E) and E ) E could be any

norm of Rm. The % "lter equipped with vector
gradients is referred to as %1 "lter.

A %1 "lter with a "xed parameter a has the
advantages of the simplicity and e$ciency with
respect to high-frequency noises such as Gaussian
and Uniform noises. Assume the image size of X
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is M]N. The parameter a is proportional to
the noise amount or edge height in each image
point. Here, we suggest that a is chosen by
( i

1
] +

p/(i,j)|MCN
M e a n ( E g

p
( k ) E ) ) / ( M] N )

to re#ect the noise amount and edge height,
where i

1
is a constant and i

1
"1.5 in our invest-

igations.
For adaptive parameter schemes, there are two

goals for deciding a. The "rst is that plausible
a should be obtained to remove noise on non-edge
points. The larger the amount of noise corrupted,
the larger the a needed. That is, the parameter
a depends on the amount of noise. The second is
that a should be obtained for preserving edge on
edge points. Parameter a is proportional to the
amount of noise and edge height. Empirically, it is
set to be i]Mean (Eu

p
(k)E) in each 3]3 window,

where i"1 and Mean (Eu
p
(k)E) using gradient in-

formation is an estimator about the noise amount
or edge height.

4. The second proposed multichannel 5lter

In a 3]3 window=, the aforementioned adap-
tive vector weighted multichannel "lters such as
ANNF [12], ANNMF [16], and ANNMF2 [16],
determine weighted coe$cients by aggregating dis-
tance di!erences from other neighbors and then by
ordering these vectors. The DWANNF [13]
measures the distance di!erences from the pre-
dicted vector, such as MMF or VMF, instead of
groupwise vectors. If a vector possesses the lower
degree distance error, it is regarded as a higher
correction of non-corrupted vector. A large weight
is acquired. The other "lter FVDF [13,14] was
devised to hybridize aggregating distance and angle
discrepancy measures. For our approach in Section
3, we consider the distance information between the
current vector and the center vector only. The ag-
gregation of distance di!erence is diminished dras-
tically. The adaptive weights design discussed here
di!ers from others structures. It is noticeable that
the computation time is accelerated in the pro-
posed "lter.

As mentioned in Section 3, the "xed a %1 "lter
equipped with vector gradients would perform

reasonably well with respect to impulsive noise due
to a large weight paid to the pixel corrupted by
impulse noise or unsuitable a. Vector gradients
with large norms usually result when a pixel is
contaminated with outliers. The proposed "lter
equipped with the vector gradients pays a high
weight to the center pixel due to the p-functions.
This will delimit the ability of the proposed "lter.
Two intuitive recipes can be applied to make up
such insu$ciency. The "rst is that the adaptive
approach indicated in above section can be used to
solve unsuitable a. The second is that iterative
"ltering and symmetric vector gradients can be
equipped in the % "lter structure to diminish large
weights assigned to the pixels corrupted by outliers.
In a 3]3 window shown in subsection 2.2, if there
exists one or more than one large norm of symmet-
ric vector gradients and the center point has large
norm with most of its neighbors, then the center
pixel is regarded as an edge point or "ne detail to be
preserved. If there are no large norms of symmetric
vector gradients, then the center pixel is regarded as
an outlier which is to be removed. A % "lter equip-
ped with symmetric vector gradients is abbreviated
as a %2 "lter.

Similarly, "xed and adaptive schemes of %2 "lter
with regard to a are deduced. For "xed %2 scheme,
a is set to (i

2
]+

p/(i,j)|MCN
Mean (Eg

p
(k)E))/

(M]N) to re#ect the noise amount and edge
height, where i

2
"1, empirically. For adaptive

scheme, parameter a is the same with adaptive %1
scheme.

5. Application to color image processing

We would show the performances of di!erent
multichannel "lters evaluated in the color image
"ltering in this section. It would be found that the
"rst proposed adaptive multichannel "lter by "xed
parameter a performs well with respect to high-
frequency noises such as Gaussian and Uniform
noises. The proposed "lter can not only remove
noise but also preserve sharpness. A synthetic
wheel image composed of diversi"ed colors and
contaminated with Gaussian noise (p"25) is ex-
hibited in Fig. 2. Fig. 3 shows the result of the "rst
proposed method using 3 iterations and a"90.
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Fig. 2. A synthetic image corrupted with p"25 Gaussian noise.

Fig. 3. The result of the "rst proposed method Section 3 to
Fig. 2.

Fig. 4. The original 512]512 &Jet' image. Fig. 6. The result of arithmetic mean "lter (AMF) to Fig. 5.

Fig. 5. The noisy &Jet' image corrupted with 25% Uniform noise.

The proposed "lter removes noise within uniformly
color regions and preserves sharpness between
color regions.

Comparisons with other pioneer's e!orts will be
made in the following. Fig. 4 shows the original
512]512 &Jet' image. Fig. 5 depicts its corrupted
image using 25% uniform noise. Figs. 6}8 show
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Fig. 7. The result of fuzzy vector directional "lter (FVDF) to
Fig. 5.

Fig. 8. The result of adaptive nearest neighbor median "lter
(ANNMF2) to Fig. 5.

Fig. 9. The result of the "rst proposed method in Section 3 to
Fig. 5.

three objective competitions, AMF, FVDF, and
ANNMF2, respectively. Fig. 9 displays the result of
our "rst proposed "lter where a is 50 and the
iterative number is 3. It is apparent that edges and
details such as the numbers attached on the body of
the jet "ghter are well preserved when our method

is used. Moreover, the values of normalized mean
square error (NMSE) and the mean chromaticity
error (MCRE) are calculated for AMF, VMF [1],
DDF [6], FVDF [14], ANNF [12], ANNMF2
[16], and DWANNF [13] to evaluate the quanti-
tative measure of di!erent multichannel "lters.
Here NMSE is de"ned as

NMSE"

+M
i/1

+N
j/1

Ey(i, j)!y( (i, j)E2

+M
i/1

+N
j/1

Ey(i, j)E2
,

where y(i, j) and y( (i, j) represent the original image
and noisy image, respectively. The MCRE that is
based on the distances on Maxwell triangle plan is
given as

MCRE"

+M
i/1

+N
j/1

Ep(i, j)!p( (i, j)E2

M]N
,

where p(i, j) and p( (i, j) are the intersection points of
y(i, j) and y( (i, j) with Maxwell triangle plan, respec-
tively. Table 1 shows their NMSE evaluations with
&Lena' images contaminated with p"10, 15, 20, 25,
30 of Gaussian noise. Table 2 also shows their
NMSE evaluations with &Jet' images contaminated
with 20%, 25%, 30%, and 40% of uniformly noise.
All experiments of our proposed methods in the
following comparisons are set to three iterations
with one accord. From Tables 1 and 2, it is easy to
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Table 4
NMSE (]10~2) for the &Lena' image, corrupted with Gaussian noise mixed with 5% impulsive noise

Window-size Parameters FVDF (FVF1) (FVF2) (FVF3) (FVF4)

3]3 c"1, b"2 1.0 0.81 0.79 0.79
5]5 1.83 0.64 0.62 0.62

Table 3
NMSE (]10~2) for the &Lena' image, corrupted with Gaussian noise mixed with 5% impulsive noise

W i n d o w -
size

Noisy AMF VMF DDF FVDF ANNF ANN MF2 DWA NNF %2 "lter

3]3 4.10 0.87 0.90 1.72 1.0 0.76 0.80 0.80 0.56
5]5 4.10 0.76 0.71 1.84 1.83 0.61 0.65 0.61

Table 2
The NMSE (]10~2) for the noisy &Jet' image corrupted with di!erent amount of Uniform noise, window 3]3

Noise Noisy AMF VMF DDF FVDF ANNF ANN MF2 DWA NNF %1 "lter

20% 0.32 0.14 0.15 0.32 0.13 0.13 0.14 0.15 0.09
25% 0.53 0.17 0.20 0.42 0.16 0.18 0.18 0.20 0.12
30% 0.75 0.20 0.27 0.53 0.20 0.24 0.24 0.26 0.15
40% 1.29 0.29 0.45 0.81 0.30 0.37 0.36 0.40 0.22

Table 1
The NMSE (]10~2) for the noisy &Lena' images corrupted with di!erent amount of Gaussian noise, window 3]3

Noise Noisy AMF VMF DDF FVDF ANNF ANN MF2 DWA NNF %1 "lter

p"10 1.65 0.37 0.48 0.51 0.41 0.43 0.44 0.47 0.32
p"15 2.45 0.50 0.67 1.13 0.58 0.59 0.61 0.65 0.41
p"20 3.22 0.63 0.88 1.47 0.76 0.76 0.77 0.85 0.50
p"25 3.91 0.78 1.11 1.81 0.95 0.93 0.94 1.02 0.58
p"30 4.57 0.91 1.31 2.11 1.14 1.08 1.10 1.18 0.66

see that our proposed % "lters perform better than
others under the investigated images.

Next, the second proposed multichannel "lter by
"xed parameter a is robust with respect to mixed
noise type that would show up. It must be empha-
sized that parts of pioneer's works in Tables 1 and

2 are noise dependent [14]. For comparison, the
&Lena' image corrupted with Gaussian noise
(p"30) mixed with 5% Impulse noise depicted in
Fig. 10 is investigated. The evaluation of NMSE in
Fig. 10 to compare with other known techniques is
shown in Tables 3 and 4. In Table 4, it shows the
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Fig. 11. The result of nearest neighbor multichannel "lter
(ANNF) to Fig. 10.

Fig. 10. The noisy &Lena' image corrupted with Gaussian noise
(p"30) mixed with 5% impulsive noise. Fig. 12. The result of DWANNF to Fig. 10.

Fig. 13. The result of the second proposed % "lter to Fig. 10.

assessment of a FVF family [14], which possesses
robustness on noise type and does not require any
information about the noise characteristics. Results
in Tables 3 and 4 reveal that the second proposed

multichannel "lter performs better than others do.
In addition, Figs. 11 and 12 show the visual result
of competitions FVDF (FVF1) [14] and
DWANNF [16], respectively. Fig. 13 shows the
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Fig. 14. The result of the adaptive %1 "lter to a noisy &Lena'
image contaminated with 20% impulse noise.

Table 5
The comparisons between "xed and adaptive a % "lter schemes: NMSE (]10~2) for the &Lena' image corrupted with Gaussian

noise

Noise Fixed a %1 "lter Adaptive a %1 "lter Fixed a %2 "lter Adaptive a %2 "lter

p"10 0.32 0.33 0.33 0.34
p"15 0.41 0.43 0.41 0.43

p"20 0.50 0.52 0.49 0.52
p"25 0.58 0.62 0.57 0.62
p"30 0.66 0.70 0.64 0.70

result of second proposed mutichannel "lter with
"xed a"90. In summary, our second proposed
multichannel "lter is pretty e$cient under our ex-
perimental cases and has the advantage of robust-
ness to mixed noise.

Note in Section 3, the "xed a %1 "lter equipped
with vector gradients would perform reasonably
well with respect to impulsive noise. Adaptive
scheme would make up the insu$ciency of "xed %1
"lter to impulsive noise. The second and third col-
umns in Table 7 disclose the salient improvements.
Fig. 14 also shows the improved result of adaptive
%1 "lter on a noisy &Lena' image corrupted with
20% impulse noise.

Then, we compare the di!erence between "xed
and adaptive parameter a in % "lter schemes.
Tables 5}7 show the comparison of three types of
noise corruption including Gaussian, Uniform, and
Impulse with respect to NMSE. The "xed a %1
and %2 "lters used in Tables 5}7 indicate the
corresponding %1 and %2 "lters in Tables 1}3. For
the "xed %1 "lter, the experimental results in Figs.
1, 2, 4 and 5 and Table 7 show that it is e!ective for
Gaussian and Uniform noise in preserving good
edges but sensitive to outliers (impulse). Observe
that the adaptive scheme performs as well as "xed
scheme to Gaussian and Uniform noise from
Tables 6 and 7, and it shows an excellent improve-
ment for impulsive noise from Table 5. For the
"xed and adaptive %2 "lters, both are insensitive to
impulse noise compared to the "xed %1 "lter. Here
we can claim that "xed a scheme performs better
than adaptive for Gaussian and Uniform noise.

Inversely, the performance of adaptive a scheme is
better than the "xed one with respect to impulse
noise. In summary, both exhibit a better improve-
ment than the competitors mentioned above (see
Table 8).

Finally, Figs. 15}17 show the NMSE and MCRE
criteria of the competition and the proposed "xed and
adaptive schemes, respectively, on Gaussian, Uniform
and Impulse noise for clarifying the comparisons.
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Fig. 15. The merit of (a) NMSE and (b) MCRE criteria on &Lena' image contaminated with Gaussian noise.
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Fig. 16. The merit of (a) NMSE and (b) MCRE criteria on &Jet' image contaminated with Uniform noise.
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Fig. 17. The merit of (a) NMSE and (b) MCRE criteria on &Lena' image contaminated with Impulse noise.
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Table 6
The comparisons between "xed and adaptive a % "lter schemes: NMSE (]10~2) for the &Jet' image corrupted with Uniform noise

Noise (%) Fixed a %1 "lter Adaptive a %1 "lter Fixed a %2 "lter Adaptive a %2 "lter

20 0.09 0.11 0.11 0.12
25 0.12 0.15 0.14 0.15
30 0.15 0.18 0.16 0.19
40 0.22 0.26 0.24 0.28

Table 7
The comparisons between "xed and adaptive a % "lter schemes: NMSE (]10~2) for the &Lena' image corrupted with impulsive noise

Noise (%) Fixed a %1 "lter Adaptive a %1 "lter Fixed a %2 "lter Adaptive a %2 "lter

10 0.55 0.21 0.26 0.23
15 0.70 0.25 0.32 0.29
20 0.74 0.30 0.36 0.35
25 0.73 0.36 0.42 0.41
30 0.71 0.41 0.47 0.47

Table 8
NMSE (]10~2) for the noisy &Lena' images corrupted with di!erent amounts of impulsive noises, window 3]3

Noise (%) AMF VMF DDF FVDF ANNF
ANN DWA Adaptive Adaptive
MF2 NNF %1 "lter %2 "lter

10 0.31 0.24 0.24 0.39 0.21 0.23 0.21 0.21 0.23
15 0.42 0.34 0.34 0.56 0.28 0.32 0.29 0.25 0.29
20 0.53 0.44 0.44 0.71 0.36 0.41 0.36 0.30 0.35
25 0.64 0.55 0.55 0.87 0.45 0.52 0.45 0.36 0.41
30 0.75 0.64 0.64 1.03 0.53 0.62 0.53 0.41 0.47

6. Conclusion

In this paper, two new adaptive multichannel
"lters are proposed. The proposed multichannel
"lters using local gradient information are simpler
and more appropriate than the traditional ap-
proaches that have been addressed using groupwise
vector ordering information. The "rst proposed
adaptive multichannel "lter has the advantages of
computation e$ciency and good edge preserving
for high-frequency short-tail contamination (Gaus-
sian and Uniform). The proposed method attenu-
ates noise in uniform regions and preserves details
across edges. Moreover, the second proposed "lter

is robust to noise type. In our experimental cases,
they perform better than other known competitors.
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