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Two Systolic Architectures for Modular Multiplication

Wei-Chang Tsai, C. Bernard Shung, and Sheng-Jyh Wang

Abstract—This article presents two systolic architectures to speed up
the computation of modular multiplication in RSA cryptosystems. In the
double-layer architecture, the main operation of Montgomery's algorithm
is partitioned into two parallel operations after using the precomputation
of the quotient bit. In the non-interlaced architecture, we eliminate the
one-clock-cycle gap between iterations by pairing off the double-layer ar-
chitecture. We compare our architectures with some previously proposed
Montgomery-based systolic architectures, on the basis of both modular
multiplication and modular exponentiation. The comparisons indicate
that our architectures offer the highest speed, lower hardware complexity,
and lower power consumption.

Index Terms—Cryptosystems, Montgomery, RSA, systolic.

I. INTRODUCTION

In electronic commerce, secure transactions are becoming a major
concern. Public-key cryptography [1], [2] has been shown to be an at-
tractive technique for such applications. The RSA cryptosystem, one
of the best known public-key systems, performsmodular exponentia-
tion,ME(modN), which can be decomposed into a series ofmodular
multiplications,AB(modN). There have been a lot of research activ-
ities related to the algorithms or architectures of modular multiplica-
tions for RSA [3]–[10]. Among them, Montgomery's modular multi-
plication algorithm has several advantages when implemented in VLSI
[6]. The radix-2 Montgomery's algorithm for the modular multiplica-
tion,A�B(modN), is described as follows, whereA; B, andN are
m-bit numbers (N is an odd number) andA = m�1

i=0
ai2

i:

Montgomery's Algorithm for Modular Multiplication (Radix 2)
R
�1 = 0;

for i = 0 tom� 1

qi = Ri�1 + aiB(mod2);

Ri = (Ri�1 + aiB + qiN)=2;

end.

Here,Ri represents the partial result. The fast computation ofRi in-
herently needs a quick enough broadcast ofqi.

There have been several Montgomery-based systolic VLSI architec-
tures proposed for modular multiplications that can avoid the problem
of broadcastingqi [8]–[10]. In this paper, we propose two systolic ar-
chitectures to speed up the computation of modular multiplication. In
the first architecture, called thedouble-layerarchitecture, the main op-
eration of Montgomery's algorithm is partitioned into two parallel op-
erations after the precomputation of the quotient bitqi. By combining
precomputation and partitioning, the clock period is halved and the
speed of this architecture is improved by a factor of two if the unpar-
titioned circuit is not optimized. In the second architecture, called the
non-interlacedarchitecture, the operations in the double-layer architec-
ture are properly paired off, and their timing is arranged to remove the
one-clock-cycle gap, which is inherent in the double-layer architecture.
The speed is improved then, after optimizing the combined general cell
of this non-interlaced architecture.
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II. DOUBLE-LAYER ARCHITECTURE

The main algorithm of a straightforward systolic implementation of
Montgomery's algorithm can be expressed as

for i = 0 tom� 1

qi = (Ri�1)0 � aib0;

(Ri)j�1 + 2(Carry1i)j + 2(Carry2i)j

= (Ri�1)j + aibj + qinj + (Carry1i)j�1 + (Carry2i)j�1;

j = 0 � m� 1;

end.

Fig. 1(a) shows the data dependency between bits and between
iterations.(Ri�1)j is the result from the previous iteration, while
(Carry1i)j�1 and(Carry2i)j�1 are the carries propagated from the
adjacent lower bit of the same iteration.

In our architecture, the computation of(Ri)j�1 is partitioned into
the following two operations to shorten the clock period

(Pi)j + 2(CPi)j = aibj + qinj + (CPi)j�1 (1)

(Ri)j�1 + 2(CRi)j = (Ri�1)j + (Pi)j + (CRi)j�1 (2)

where(CPi)j and(CRi)j are the carries when calculating(Pi)j and
(Ri)j�1, respectively.

Whenqi is available,aibj andqinj are computed in the first stage
to generate(Pi)j . Then(Ri)j�1 is calculated in the second stage after
(Pi)j and(CRi)j�1 are ready. As shown in Fig. 1(b), two kinds of
simple cells are used, respectively, to calculate(Pi)j and(Ri)j�1. The
upper layer cells compute(Pi)j , and the lower layer cells compute
(Ri)j�1.

However, this partition alone does not improve the computation
speed at all. Note thatqi has to be computed beforePi is computed
bit by bit. On the other hand, due to the divide-by-two operation
in Montgomery's algorithm, the computation of(Ri)0 depends on
(Pi)1. According to these dependencies, there is a four-clock-cycle
delay between(Ri�1)0 and (Ri)0, as shown in Fig. 2. Therefore,
even though the partition has shortened the clock cycle, the number
of clock cycles between adjacent iterations is also doubled. To speed
up the computation, we need some precomputations to break the
dependencies.

We observed that bothqi and(CPi)0 can be precomputed fromaib0;

(Ri�2)1; (Pi�1)1, and (CRi�1)0 directly; (Pi)0 can also be com-
puted from(Ri�2)1; (Pi�1)1, and(CRi�1)0. The precomputations
of qi; (Pi)0, and(CPi)0 can be calculated in parallel with the com-
putation of(Ri�1)0. With these precomputations, the timing sequence
can be rearranged as shown in Fig. 3. Now, the delay time between suc-
cessive iterations is reduced down to two clock cycles. We observe that
there is no impact on the speed of the architecture since the number of
logic levels can be adjusted according to the maximum critical path of
unit cells. The operation speed is enhanced by a factor of two if the un-
partitioned circuit is not optimized. Even though plenty of efforts have
been made before to speed up the computation of Montgomery's algo-
rithm using the concept of precomputation, none of them has discov-
ered the possibility of combining both precomputation and partitioning
to double the speed in a systolic architecture. Note that there is still a
one-clock-cycle gap between(Ri�1)0 and(Ri)0. This is due to the in-
herent characteristics of the divide-by-two operation in Montgomery's
algorithm. This effect will be explained in detail in Section III.

Fig. 4(a) shows the two-dimensional (2-D) systolic implementation
of the double-layer architecture, in which B-cell computes(Pi)j ,
C-cell computes(Ri)j , and A-cell is a modified version of B-cell to

Fig. 1. Data dependency of Montgomery's algorithm. (a) Original architecture.
(b) Double-layer architecture.

Fig. 2. Timing sequence of(P ) and(R ) .

Fig. 3. Timing sequence of(P ) and (R ) after removing some data
dependencies.

take care of precomputation. The outputs of A-cell and B-cell are fed
into both the C-cell of the same iteration and the A-cell and B-cell
of the next bit, while the output of the C-cell is fed into the C-cell
corresponding to the previous bit of the next iteration. The inputs of
the C-cell, which are used to generate(Ri)0, are also connected to the
A-cell of the next iteration for precomputation. By projecting the 2-D
systolic array along they direction, we get the one-dimensional (1-D)
systolic array as shown in Fig. 4(b). In the 1-D systolic structure, each
cell calculates the corresponding bit ofRi for everyi; i = 0 � m� 1.
The HSPICE simulation of the three cells (A, B, C-cells) shows that
the circuit delay is less than 2 ns, if using TSMC 0.35-�m CMOS
technology models.

III. N ON-INTERLACED ARCHITECTURE

As mentioned in Section I, there is a one-clock-cycle gap in a
bit-by-bit architecture. Here, we use a typical systolic architecture to
explain this effect. Fig. 5 shows the spatial connection and temporal
dependency of this systolic array. Here, we use dashed lines to indicate
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Fig. 4. Two-dimensional and one-dimensional structures of the double-layer
systolic array.

Fig. 5. Feasible arrangement of schedule lines (larger than 135�).

Fig. 6. Pair-off style of the non-interlaced architecture.

the schedule lines. Assume that thejth circle at theith row does the
computation of(Ri)j and that the arrows between circles indicate the
data dependency. Due to the divide-by-two operation in Montgomery's
algorithm, (Ri�1)j+1 has to be computed before the computation
of (Ri)j . This is why some arrows have a−45� orientation. Due to

this fact, the angle of the schedule lines must be larger than 135� and
smaller than 180� for a feasible implementation without violating
the data flows. Fig. 5 shows a feasible arrangement of a bit-by-bit
architecture. Under this arrangement,(Ri�1)j+1 is computed before
(Ri)j , and there is no time conflict. However, if(Ri)j is computed
in the kth cycle,(Ri+1)j will be computed in the(k + 2)th cycle.
Up to now, no feasible bit-by-bit architecture has been found that
computes(Ri+1)j in the (k + 1)th cycle. Hence, there is always a
one-clock-cycle gap between adjacent iterations in a feasible bit-by-bit
architecture. Both Walter's and Kornerup's designs have this problem
[8], [9].

In this section, we propose the non-interlaced architecture to
eliminate the one-clock-cycle gap by pairing off the computation of
(Ri)j 's and rearranging the operation timing. Here, we group(Ri)j
and(Ri)j+1 together,(Ri)j+2 and(Ri)j+3 together, and so on (see
Fig. 6). With this arrangement, assume that both(Ri)j and(Ri)j+1
are computed in thekth-clock cycle. Then(Ri+1)j can be computed
right in the(k+1)th-clock cycle. There is no clock-cycle gap between
(Ri)j and (Ri+1)j . Nevertheless, further consideration of this
straightforward grouping is necessary due to some data dependency
between(Ri)j 's. Note that the pair of(Ri)j and (Ri)j+1 depends
on the pair of(Ri�1)j+2 and (Ri�1)j+3; the pair of (Ri�1)j+2
and (Ri�1)j+3 depends on the pair of(Ri�2)j+4; and (Ri�2)j+5,
etc. It may initially appear infeasible to have all of them computed
within the same clock cycle. Fortunately,(Ri�1)j+2 is computed
within the first half of thekth-clock cycle (because both(Ri�1)j+1
and (Ri�2)j+3 have already been computed in the(k � 1)th-clock
cycle) while(Ri)j+1 is to be computed within the second half of the
kth-clock cycle. Similarly,(Ri�2)j+4 is computed within the first half
of the clock cycle, while(Ri�1)j+3 is computed within the second
half. This lag in time makes it possible to have all(Ri)j; (Ri)j+1;
(Ri�1)j+2; (Ri�1)j+3; (Ri�2)j+4; . . . computed in the same clock
cycle. Therefore, after removing the latch between(Ri�1)j+2 and
(Ri)j+1, the latch between(Ri�2)j+4 and(Ri�1)j+3, and so on, all
these operations can be computed in time.

After pairing off (Ri)j 's, the one-clock-cycle gap is removed while
the length of the clock period is doubled. The delay time between it-
erations is not changed, and there is no improvement in speed so far.
However, by applying optimization on the merged pairs, the critical
path can be shortened and the operation speed can thus be improved.
Even though the speed optimization tends to increase the number of
logic gates, the overall area of the non-interlaced architecture actually
decreases slightly compared to the double-layer architecture. This is
because the number of flip-flops in the non-interlaced architecture is
reduced by about one half only. On the other hand, Kornerup's design
[9] can also be thought to have paired off the straightforward systolic
array in a slightly different way. His merging can save about the same
amount of flip-flops as the non-interlaced architecture. However, the
one-clock-cycle gap still exists in his design.

Fig. 7(a) shows the 2-D structure of the non-interlaced architecture.
With this arrangement, the contiguous iterations can be successively
initiated without the one-clock-cycle gap. Fig. 7(b) shows the 1-D pro-
jection of Fig. 7(a) along they direction. The D-Cell represents the
least significant bit cell; the F-Cell represents the general cell; and the
E-cell represents the modified F-Cell for precomputation. For iteration
i, thejth general cell computes the (2j�2)th and (2j�3)th bits ofR
[i.e.,(Ri)2j�2 and(Ri)2j�3] within a clock cycle according to the fol-
lowing:

4(CPi)j + 2(Pi)2j + (Pi)2j�1

= 2aib2j + 2qin2j + aib2j�1 + qin2j�1 + (CPi)j�1 (3)
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Fig. 7. Two-dimensional and one-dimensional structures of the non-interlaced
systolic array.

and

4(CRi)j�1 + 2(Ri)2j�2 + (Ri)2j�3

= 2(Ri�1)2j�1

+ 2(Pi)2j�1

+ (Ri�1)2j�2 + (Pi)2j�2

+ (CRi)j�2: (4)

In these two equations,(Pi)2j�1 comes from(3) and is used by(4)
within the general cell (F-Cell). On the other hand,(Ri�1)2j�1 comes
from the output of the(j +1)th cell and is calculated at the same time
as thejth cell is computing(Ri)2j�2 and(Ri)2j�3. To speed up the
computation, we optimize the whole combinational part of this cell.
The HSPICE simulation of the three cells (D-, E-, F-cells) shows that
the circuit delay is less than 2.7 ns, if using TSMC 0.35-�m CMOS
technology models.

IV. COMPARISON FORMODULAR MULTIPLICATION AND

EXPONENTIATION

The double-layer architecture has the one-clock-cycle gap problem,
while the non-interlaced architecture does not. When computing
a modular multiplication in the double-layer architecture, the
one-clock-cycle gaps can be utilized to simultaneously compute
another independent modular multiplication. On the other hand,
it is more efficient to compute a sequence of dependent modular
multiplications using the non-interlaced architecture.

Tables I–III show various comparisons for a 1024-bit modular mul-
tiplication among several Montgomery-based systolic arrays. In Table
I, we compare the cycle time and the number of clock cycles. The
simulation was performed using SPICE with TSMC 0.35-�m CMOS
technology models. It can be seen that our double-layer architecture
has the shortest cycle time and our non-interlaced architecture has the

TABLE I
COMPARISON OF THE CYCLE TIME, CYCLE

NUMBER, AND COMPUTATION TIME

TABLE II
COMPARISON OFAREA AND THE TRANSISTORCOUNT

TABLE III
COMPARISON OF THEPOWER AMONG SEVERAL SYSTOLIC ARRAYS

smallest number of cycles. Table II shows the comparison of the hard-
ware complexity for computing 1024-bit modular multiplications. This
table does not contain the hardware requirement for the control part of
the systolic arrays. However, the control schemes of these architectures
are roughly the same due to the similar data formats and operation or-
ders. It can be seen that Kornerup's design and our non-interlaced ar-
chitecture have lower hardware complexity, due to the reduced number
of flip-flops. Table III shows the comparison of power consumption for
computing 1024-bit modular multiplications. We assume that the clock
power is one quarter of the total power. We also show a comparison at
a normalized frequency at 278 MHz, which is the maximum working
frequency of (the slowest) Kornerup's design. Once again, Kornerup's
design and our non-interlaced architecture have lower power consump-
tion than most architectures, due to the reduced number of flip-flops.

Tables IV and V show various comparisons for computing a 1024-bit
modular exponentiation. We assume that the added control circuitry for
modular exponentiation does not affect the critical path of the modular
multiplication core. In Table IV, therefore, we use the same simulated
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TABLE IV
COMPARISON OF THECYCLE NUMBER AND COMPUTATION TIME

TABLE V
COMPARISON OFHARDWARE COMPLEXITY IN TERMS OFTRANSISTORCOUNT

cycle time from Table I. With the cycle time and the average number
of clock cycles per modular exponentiation, we obtain the throughput
rate of different architectures. It can be seen that our double-layer and
non-interlaced architectures outperform all the other architectures in
throughput rate.

Table V shows the estimated transistor counts among several sys-
tolic arrays to perform modular exponentiation. In Kornerup's design,
two copies of the modular multiplication hardware core are required to
perform modular exponentiation. The other architectures only require
one copy of the hardware core. Table V also includes the hardware
complexity estimates of the data registers (to store the RSA-specific
constants and variables), and the control circuitry. In Table V, it can
be seen that our double-layer architecture and non-interlaced architec-
ture compare favorably in hardware complexity for a 1024-bit RSA
operation. Since power consumption is closely related to the hardware
complexity, we conjecture that the power consumption of our proposed
architectures is also among the lowest.

V. CONCLUSION

In this paper, we proposed two new systolic architectures for
improving the computation speed of modular multiplication. In the
double-layer architecture, we increase the throughput rate by decom-
posing the main operation and adding some precomputation hardware.
In the non-interlaced architecture, we eliminate the one-cycle gap
between iterations by pairing off the double-layer architecture. We
compare our architectures with some previously proposed Mont-
gomery-based systolic architectures. The comparisons indicate that
our architectures offer the highest speed, low hardware complexity,
and low power consumption among these architectures.
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