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ABSTRACT

This study explores ambient air quality forecasts using
the conventional time-series approach and a neural net-
work. Sulfur dioxide and ozone monitoring data collected
from two background stations and an industrial station
are used. Various learning methods and varied numbers
of hidden layer processing units of the neural network
model are tested. Results obtained from the time-series
and neural network models are discussed and compared
on the basis of their performance for 1-step-ahead and
24-step-ahead forecasts. Although both models perform
well for 1-step-ahead prediction, some neural network
results reveal a slightly better forecast without manually
adjusting model parameters, according to the results. For
a 24-step-ahead forecast, most neural network results are
as good as or superior to those of the time-series model.
With the advantages of self-learning, self-adaptation, and
parallel processing, the neural network approach is a prom-
ising technique for developing an automated short-term
ambient air quality forecast system.

INTRODUCTION

Air pollutants exert a wide range of impacts on biologi-
cal, physical, and economic systems. Their effects on hu-
man health are of particular concern. The decrease in

IMPLICATIONS

Air pollutants adversely impact biological, physical, and
human respiratory systems. Monitoring variations of am-
bient air quality is therefore essential. Because of the tem-
poral, random nature of ambient air quality, a time-series
approach is generally applied in order to develop a fore-
cast model. With the merits of self-learning, self-adaptation,
and parallel processing, the neural network approach
adopted herein is highly promising for developing a fore-
cast system. The work has demonstrated the compatibil-
ity of the neural network approach with the time-series
approach for developing a short-term ambient air quality
forecast system.
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respiratory efficiency and impaired capability to transport
oxygen through the blood caused by a high concentra-
tion of air pollutants may be hazardous to those who have
pre-existing respiratory and coronary artery disease. Con-
sequently, it has become a vital task to accurately keep
track of the variation of ambient air pollutant levels.
Natural phenomena are mostly a time series with
some degree of randomness. Pollutants in the atmosphere
may disperse or concentrate during varied time periods.
Previous studies*3*#5 have indicated that the data of am-
bient air quality are stochastic time series, thereby mak-
ing it possible to make a short-term forecast on the basis
of historical data. However, when applying the conven-
tional time-series model to the ambient air pollution fore-
cast, the pollutant level variations are generally not simple
autoregressive or moving average models.® Analysts must
employ statistical graphs of the autocorrelation function
(ACF) and partial autocorrelation function (PACF) to iden-
tify an appropriate time-series model. In the model iden-
tification stage, the resulting model quality frequently
relies on individual experience and knowledge of time-
series statistics; in addition, different analysts might ren-
der contradictory interpretations, given the same data.
In the literature related to air pollution forecasts, the
application of a time-series model is not prevalent. Kapoor
and Terry” indicated that a time-series model requires con-
siderable knowledge in time-series statistics. Individuals
without statistical training would likely create an inap-
propriate model. Engineers in the field of air pollution
generally lack such knowledge for time-series statistics. A
program for automatically determining an appropriate
model for most circumstances is unavailable, although
some software packages such as SAS® can provide valu-
able assistance in identifying a time-series model. This
situation creates difficulty in applying the time-series
model to ambient air quality forecasting. Furthermore, a
time-series model may not be applicable for varied peri-
ods of data. A model applicable in one period may
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require manual adjusting of its model parameters to meet
the data characteristics in other time periods. These com-
plexities make applying a time-series model to regular air
quality forecast an inefficient task.

Due to its advantage of self-correction, self-learning,
and parallel processing, the neural network approach is a
promising alternative to substitute the conventional time-
series model for developing an automatic ambient air qual-
ity forecast technique. This work explores the applicability
of a neural network for air quality forecasts and compares
it with the conventional time-series method.

Neural networks have found extensive applications
in recent years for information processing (e.g., voice rec-
ognition, hand-written character recognition, voice syn-
thesis, or image processing®). Nevertheless, applying a
neural network in air pollution forecast has only received
limited attention. Boznar et al.!° established a multi-
factor neural network for a 1-step-ahead forecast. In their
study for Saleska, Slovenia, a regular air pollution disper-
sion model could not accurately forecast sulfur dioxide
(SO,) because of complex topography. In order to control
the emission of SO, at the Sostanj thermal power plant,
they developed a neural network to forecast the variation
of SO, levels. Multiple meteorological factors such as wind
velocity, wind direction, temperature, and SO, data col-
lected at six monitoring stations surrounding the plant
were utilized to construct the network. The meteorologi-
cal factors and SO, data of one specific station and those
of neighboring stations were normalized and input into
the established neural network to forecast the SO, pollu-
tion level of the next period (in 30-min intervals) of the
specific station. The results indicated that a neural net-
work could keep track of the peak value of the SO, level.
Comrie* compared the neural network and multiple re-
gression models for daily ozone forecasting. Results
showed that the neural network model is compatible with
the multiple regression model.

Other successful examples of employing a neural
network in other types of time-series forecasts have
also been observed. For instance, Lapedes!? used a
backpropagation operation to forecast the variation of
the Standard & Poor’s 500 index, using indexes of the
previous 10 weeks to forecast that of the following
week. The accuracy rate could reach 61%, higher than
the 53% achieved by the moving average method.
Chakraborty et al.*® studied the flour prices in Buffalo,
NY; Minneapolis, MN; and Kansas City, Kansas. Prices
from August 1972 to November 1980 were used as a
data source to perform both a 1-step-ahead-forecast and
a multi-step-ahead-forecast of the univariate and mul-
tivariate time series using a neural network and a statis-
tical model, respectively. The neural network generally
exhibited a higher accuracy than the statistical method.
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The current meteorological and air pollution monitor-
ing data acquisition and transmission system in Taiwan is
not widespread. Comprehensive data are currently unavail-
able. A forecast system on the basis of multiple factors such
as the one described by Boznar et al.* is not suitable for the
present stage of monitoring. This work therefore attempts
to develop an air quality forecast model employing a
univariate time-series neural network. A univariate forecast
model requires less data processing, less memory space for
data storage, less staff power for data analysis, and ultimately,
less cost, although it poses some limitations for complex
data affected by multiple factors.

This paper is organized as follows: The monitoring data
used in this study are first described, followed by the pro-
cess and results of using the conventional time-series analy-
sis in establishing a forecast model, and those of using the
neural network. Finally, the performances of these two fore-
cast models are compared for the studied data.

MONITORING DATA

Seventy-two ambient air quality-monitoring stations are
operating in Taiwan and are categorized into five types:
general, transportation, industrial, national park, and
background. Data used in this work were collected prima-
rily from two background and one industrial-monitoring
stations. Figure 1 shows their locations. Stations A and B
are background monitoring stations in Wangli and
Kuanying, respectively. Station C is an industrial station
in Toufen, with metal, chemical, and petrochemical fac-
tories located nearby. Data employed were those collected

Wanli (Station A)

3
@
. e

Figure 1. The location of monitoring stations in this study.
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at the aforementioned three stations between September
1, 1993 and August 31, 1994. During this period, data for
four weeks, as the training stage, were used to construct
forecast models, and data for the week following the train-
ing stage, as the forecast stage, were used to verify and com-
pare the forecast performances of each model. The data are
hourly average values for atmospheric quality levels moni-
tored at these stations.

FORECAST MODEL DEVELOPMENT—TIME SERIES
The auto-regressive integrated moving average model
(ARIMA), since being proposed by Box and Jenkins,*® has
been applied in various fields. The model determines simu-
lated values by a combined measure from historical data
with associated temporal variation. Its general equation,
as described by Bowerman and O’Connell,*® can be ex-
pressed as

0,(B)9,(B)(1-BY°(1-B)Yy,= 5+ 6,(B)6,(B)a, (1)

where ¢(B) is the nonseasonal auto-regressive operator
with order p, qap(BL) is the seasonal auto-regressive opera-
tor with order p, B is back shift operator, L is the number
of seasons, D is the degree of seasonal differencing, d is
the degree of nonseasonal differencing, y, is the time-
series data, transformed if necessary, 0 is a constant term,
6&(B) is the nonseasonal moving average operator with
order q, GQ(BL) is the seasonal moving average operator
with order Q, and a, is white noise with normal distribu-
tion N (0,0?). This study employed univariate ARIMA mod-
els, and SAS/ETS® was used to establish the models. The
process of establishing the models followed the four steps
suggested by Newton:!® model identification, parameter
estimation, selection of an appropriate ARIMA model, and
forecast made on the basis of the selected model.

Data stability, variation, and trend, and plots of ACF
and PACF values of a studied data series were evaluated in
the model identification step. If the data series is not sta-
tionary, a decision must be made whether to employ an
appropriate data transformation, such as log transforma-
tion, or other difference methods. Next, plots of statisti-
cal data variations, including ACF and PACF, were used to
determine an appropriate time-series model type in ac-
cordance with the ARIMA model identification standards.
Q statistics, as defined by Ljung and Box!” and reported
from SAS/ETS for an auto-correlation check for white
noise, were used to evaluate the suitability of a candidate
ARIMA model. If the selected model was inappropriate
for the data series, the entire model identification step
would have to be restarted. Significant temporal varia-
tions of the studied air pollution monitoring data series
were observed and made it difficult to distinctly identify
an appropriate ARIMA model type from the standards, as
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determined from ACF and PACF and described by Box
and Jenkins.** A trial-and-error procedure and empirical
judgment were applied to determine the model type on
the basis of ACF and PACF.

During the parameter estimation step, Q statistics for
an auto-correlation check for residuals reported by SAS/
ETS were used to determine a candidate model. Of the
models determined by these two steps, more than one
appropriate model is frequently available for the provided
data series. Goodness-of-fit criteria of Akaie’s information
criterion and Schwartz’s Bayesian criterion® were applied
to determine the most appropriate model.

The final step entails making a forecast based on the
selected model. The forecast methods adopted in this study
were 1-step-ahead and 24-step-ahead. The former forecasts
the value of the next hour on the basis of the established
forecast model. When forecasting the value of the hour
following the next, the actual monitoring value replaces
the preceding forecast value. The latter forecasts values in
the next 24 hr by repeating the 1-step-ahead forecast 24
times without replacing the actual value in each 1-step-
ahead forecast.

Following the aforementioned four-step procedure,
the forecast models established for data series for the three
monitoring stations are listed below.
= The ARIMA model for ozone (O,) of Station A

(1-B)(1-B*)y, = (1-0.19583B%- 0.1523B%- 0.23088B*~
0.20912B5- 0.10748B°)(1- 0.71186B*)a,  (2)

= The ARIMA model for SO, of Station B

(1-B)(1-B?)y, = (1-0.23488B-0.19882B*
0.21062B% 0.14562B%)(1- 0.9565B*)a,  (3)

= The ARIMA model for O, of Station B

(1-B*)y, = (1 + 0.23391B- 0.158B%- 0.27427B%-
0.21670B%-0.13497B%)(1- 0.92434B*)a,  (4)

= The ARIMA model for SO, of Station C

(1-B?)y, = (1- 0.71342B- 0.3454B7 + 0.14562B%)
(1-0.92762B%)a, (5)

= The ARIMA model for O, of Station C

(1-B)(1-B*)y, = (1 + 0.34278B)
(1- 0.99975B%)a, (6)

Figure 2 illustrates typical results obtained from the
above listed models in the training stage. Results from
the ARIMA models closely match the observed values in
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Figure 2. Simulated results of ARIMA and neural network models with observed data.

the training stage, although results for SO, were not as
good as those for O,. All of the ARIMA models were then
applied to the data in the forecast stage for both 1-step-
ahead and 24-step-ahead predictions. Figure 3 illustrates
typical results of the 1-step-ahead forecast and 24-step-
ahead forecast implemented with the models. The results
of the 1-step-ahead forecast are obviously better than the
24-step-ahead results. The 1-step-ahead results match
closely the observed values. The 24-step-ahead results, as
indicated by the two samples on the left-hand side of Fig-
ure 3 for Stations A and B, reflect the general trend of the
data. This is despite the fact that some unusual trends
(e.g., the first two days of Station A and the unusual peak
of Station B in the data series) were not well predicted.
Those results are discussed later in further detail and in
comparison with results obtained from the neural net-
work models described in the next section.

FORECAST MODEL DEVELOPMENT—NEURAL
NETWORKS

Network Configuration
A typical neural network is generally constructed into
three layers of processing units: the input, hidden, and
output layers. Processing units in each layer are connected

222 Journal of the Air & Waste Management Association

through links, each of which is assigned a weight to de-
pictits strength. A three-layer neural network is sufficient
to define arbitrary linear decision regions under math-
ematical space. Cybenko!® demonstrated that simple
backpropagation neural networks, when given sufficient
processing units in the hidden layer, can approximate any
function. This three-layer configuration is most likely
applicable for the studied data series.

Observation of the daily variations of pollutant lev-
els provided by the monitoring data reveals that a roughly
24-hr cycle exists. In addition, among tested ARIMA mod-
els, the 24-hr model was found to be the best one. There-
fore, this work used the 24-n-1 neural network
configuration, as illustrated in Figure 4. The input layer
used 24 input units, representing the data obtained in a
consecutive 24 hr. The output layer used 1 output unit,
representing the forecast value obtained 1 hr after the 24-
hr interval for data used in the input layer. Regarding the
number of hidden layer processing units, no appropriate
theory is yet available to determine the optimal number.
Following the suggestions of Weigend et al.,’®* numbers
not exceeding one-tenth the size of the training patterns
were used to determine the number of hidden layer pro-
cessing units. In this work, 2, 5, 8, 11, 14, 17, 20, 23, 26,
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Figure 3. Typical results for 1-step-ahead and 24-step-ahead forecasts obtained from ARIMA and neural network models.

29, 32, 35, and 38 hidden layer processing units were used.
In forecasting the value of x,,, the normalized data at X,
X, ., ----X, Were taken as the input values of the processing
units of the input layer, and the value at x,, was ob-
tained from the unit of the output layer; that is, past air
pollution monitoring data were input into the input layer
and the value of the next period was predicted from the
output layer data. Xerion,? a publicly accessible neural
network software, was used to construct the neural net-
work models.

Training Pattern Preparation
A neural network is established through learning. Repre-
sentative known patterns or samples must be provided
for training the network. An insufficient amount of pat-
terns may render the neural network incapable of learn-
ing the properties of the system, and its forecast capability
may subsequently diminish. On the other hand, too many
patterns prolong its learning time. This study used nor-
malized monitoring data obtained in four consecutive
weeks as the training pattern set. The interval correlation
method, probability correlation method, and the normal-
ization method with a target range of —1 to 1 were tested

Volume 50 February 2000

in the process of normalizing the input data. Those re-
sults revealed that the air quality data for this study re-
quired only simple linear transformation by dividing the
data by their maximal value to make them between 0 and
1 after normalization.

Neural Network Training

The learning algorithm adopted in this study to train a
neural network was the backpropagation learning algo-
rithm.? With the algorithm, the derivatives of predicted
errors to network link weights were utilized to correct the
weights. The algorithm attempts to find the optimal set
of weights to let the network be able to produce predicted
outputs that match the provided training patterns. It is
basically a nonlinear programming optimization problem.
The vector of all derivatives was used as a gradient vector.
Each iteration determined the search direction and the
moving distance in that direction, and the weight set was
corrected according to the determined direction and dis-
tance. This process was repeated until all training patterns
were learned. The algorithm is divided into two steps: the
forward pass and the backward pass. A brief description
of these two steps is provided below.

Journal of the Air & Waste Management Association 223
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output units

input units

hidden units

Xer1

output patterns

Figure 4. Structure of the univariate neural network used in this study.

Forward Pass. This step involves calculating the differ-
ence between output value and target value according to
the current weight set. The net input and output values
of every pattern are first computed. The output values of
the preceding layer are used as the input values of the
processing units linked behind them. The net input value
of pattern p on unit i can be computed as

net, = Zwiian/ +b
JE previous
layer

)

where a, is the activation value of unit j of pattern p, w; is
the weight of the link connecting unit j in the previous
layer and current unit i, and b, is the bias linked to unit i.
The activation or output value of unit i is determined by
a conversion function f(netpj). The mathematical objec-
tive of the conversion function is to determine the out-
put range at every point to coordinate with the data of a
training pattern. Results obtained from the sigmoidal con-
version function, f(netpj) =(1+ exp[—netpj])'l, were reported;
other functions such as identical, exponential, and nega-
tive exponential functions were also tested but not re-
ported herein.

After the output value is determined for each input
pattern, it can be compared with the real value (or target
value). Assuming the training pattern set is (x;, T,) (X,
T,). ..., and (x,, T), where x,, x,, ..., X are input vectors,
the total prediction error can then be calculated by the
following equation:

E=Y(,-0,f
4

®
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where T, is the target output unit value of pattern p and
0, is the output unit value predicted by the neural net-
work for pattern p.

Backward Pass. After computing the prediction error of
the network, a backward (going backward from the out-
put layer) correction of weight values was carried out.
Backward pass is a nonlinear optimization solving pro-
cess with the objective of E being minimized. Therefore,
methods used to solve a nonlinear programming optimi-
zation problem can be also applied. This study adopted
steepest descent, momentum descent, and conjugate gra-
dient, Rudi’s conjugate gradient, and conjugate gradient
with restart methods? during this step. Rudi’s conjugate
gradient method, developed by Rudi Mathon,? is a re-
vised version of the conjugate gradient method. Of these
methods, the steepest descent and momentum descent
methods required a long training computational time,
with results worse than those from other conjugate gradi-
ent-based methods. Therefore, results for the two meth-
ods are not discussed here.

These methods are mainly gradient-based. Each it-
eration of the methods determines an appropriate search
direction to improve the objective function. Once the
search direction is determined, the step size to move along
the direction in the searching space must be determined.
Three line search methods—Rudi’s, Ray’s, and Tap’s—?
were applied. A line search method attempts to find the
minimum value of the objective function value along a
given search direction. For instance, a situation is consid-
ered in which W is the weight set and S is the search di-
rection vector. The line search methods should find a n
that minimizes the error function E(W+nS). When this
pass is finished, the forward pass is initiated again to re-
calculate errors. Such a process is repeated until the error
is reduced to a pre-specified, acceptable tolerance value.

Prediction
Table 1 lists the 16 case sets tested in this study with
varied gradient and varied line search methods, exclud-
ing the cases with the steepest and momentum descent
methods. With 13 different numbers of hidden layer pro-
cessing units for each case set, a total of 208 cases were
implemented. The seed numbers listed in the table were
used for a random generator to generate an initial weight
set of the neural network to be established. Figure 2 il-
lustrates the typical results obtained by the neural net-
works in the training stage. In this stage, most neural
networks have adequately learned the provided patterns.
Following the completion of training, neural networks
were utilized to perform a 1-step-ahead and 24-step-ahead
forecast. Figure 3 illustrates partial results of those fore-
casts. The 1-step-ahead forecast gave better results than
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Table 1. Tested case sets for the neural network model.

Case Set Seed Number Gradient Method Line Search Method

1 197 Conjugate gradient Rudi
2 197 Rudi conjugate gradient Rudi
3 197 Conjugate with restarts Rudi
4 197 Conjugate gradient Ray
5 197 Rudi conjugate gradient Ray
6 197 Conjugate with restarts Ray
7 197 Conjugate gradient Tap
8 197 Rudi conjugate gradient Tap
9 197 Conjugate with restarts Tap
10 1709 Conjugate gradient Ray
11 1709 Rudi conjugate gradient Ray
12 1709 Conjugate with restarts Ray
13 2591 Conjugate gradient Ray
14 2991 Rudi conjugate gradient Ray
15 2591 Conjugate with restarts Ray
16 197 Rudi conjugate gradient Ray

the 24-step-ahead forecast. Figure 5 shows mean-square-
error values of the 1-step-ahead forecast of the neural
networks with varied numbers of units of the hidden
layer. This figure reveals that the different numbers of
hidden layer processing units did not significantly affect
the neural network results.

COMPARISON OF THE TWO MODELS

In the training stage, the performances of neural network
models were slightly better than those of time-
series models, although both sets of results were gener-
ally acceptable. The forecast results indicate that the
neural network performances in the forecast stage were
generally as good as those of time-series models. A com-
parison of the forecast value with the actual value re-
vealed the mean-square-error values of the neural
network model results to be generally smaller than those
of time-series models for a 1-step-ahead forecast, although
the differences were insignificant. In the 24-step-ahead
forecast, some neural network model results, such as the
one shown in Figures 3(c) and 3(d), were superior to those

Table 2. Summary of numbers of cases® with neural network prediction performance better than that of ARIMA models

based on mean-square-errors.

Kao and Huang

16 T T

14 }+ + Case set 4 - o
A

1

10}

Mean-square-error

77 20 23 26 20 32 35 38

2 5 8 11 14
Number of hidden layer processing units

Figure 5. Mean-square-errors of ARIMA and neural network models
for varied case sets with varied numbers of hidden layer processing
units for monitoring station C.

for ARIMA models, although the 24-step-ahead neural
network results were not as good as those for the 1-step-
ahead forecast.

Table 2 summarizes the number of cases (out of 208
tested cases) in which the neural network model result
with a mean-square-error (to the observed data) was
smaller than that of the ARIMA model with varied train-
ing methods (cases) and varied numbers of hidden layer
processing units. According to the table, the forecast per-
formance of a neural network model can be as good as
or superior to that of an ARIMA model. Some neural net-
work results are obviously inadequate, because of the
nonlinearity in the optimization searching procedure for
determining the weights (or strengths) of links of the
neural network, or because of network over-training.

CONCLUSION

Because of its self-learning and self-adaptation capabilities,
a neural network model can automatically adjust connec-
tion weights on the basis of provided training samples. In
contrast, the conventional time-series model frequently re-
quires manual identification of model parameters by an
analyst with expertise and previous experience in estab-
lishing an ARIMA model. A circumstance in which a previ-
ously manually determined model is
not applicable to new data requires that
a similar manual process be performed
again to update the previous model. A

neural network, however, can be self-

Station A Station B Station B Station C Station C diusted without Ilv det o
adjusted without manually determinin
©) (s0,) ©) (s0,) ©) ] ey g
model parameters. With the neural net-
1-step-ahead 184 79 118 190 193 work forecast model, human-made mis-
24-step-ahead 172 135 189 134 202 takes or erroneous judgments can be

minimized and the reliability of the

*The number of all tested cases is 208.
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The simulation results reveal that the forecast perfor-
mance of the neural network is superior to the 3conven-
tional ARIMA in many tested cases. According to the current
status of acquiring ambient air pollution monitoring data
in Taiwan, a neural network requires little space for data
storage without additional technical personnel for estab-
lishing the models. The neural network approach is a prom-
ising technique for developing an automated forecast system
for ambient air quality.

This study applied univariate neural network models
to perform the forecast. Results are acceptable for most 1-
step-ahead forecasts and some 24-step-ahead forecasts.
Such a univariate model requires less space to store data
and less computational time to construct the model and
to perform the desired forecast. However, results for some
24-step-ahead forecasts are not found to be as good as
those for a 1-step-ahead forecast, especially for those data
not following the general trend of the data series. Such
an unusual change may be strongly influenced by exter-
nal factors, which may not possess a temporal nature or
are difficult to predict, thereby making it difficult for both
a univariate ARIMA and neural network to provide an ef-
fective forecast.

Unfortunately, comprehensive monitoring data for
multiple factors are not yet available in Taiwan. Current
research is therefore focused on expanding the neural net-
work with external multiple factors that are not continu-
ously monitored. Unusual cases are extracted from data
series and carefully inspected for possible predictable re-
lations within these occasionally monitored data for ex-
ternal factors. The relations are meant to be used to
improve the neural network for a 24-step-ahead forecast
for unusual data variation with limited data for external
factors. Any significant progress made in this endeavor
will be reported in the future.
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