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A New Charge-Pumping Technique for Profiling
the Interface-States and Oxide-Trapped Charges in
MOSFET’s

Yu-lin Chu, Student Member, IEEBa-Wen Lin, and Ching-Yuan WiMember, IEEE

Abstract—A new charge-pumping method has been developed
to characterize the hot-carrier induced local damages. By holding
the rising and falling slopes of the gate pulse constant and then
varying the high-level (Var ) and base-level Va1.) voltages, the Yar
lateral distribution of interface-states (Vi («)) and oxide-trapped R
charges(Qox ()) can be profiled. The experimental results show
that during extracting Q.x(x) after hot-carrier stress, a contra-
dictory result occurs between the extraction methods by varing the

high-level (Vex ) and base-leve{ Vg1, ) voltages. As a result, some Source Drain
modifications are made to eliminate the perturbation induced by

the generated interface-states after hot-carrier stress for extracting

Qox ().

Index Terms—Charge-pumping method, interface-states,
MOSFET, oxide-trapped charges.
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HE charge-pumping technigue has become a powerful tool
to quantitatively measure the energy and lateral distribfig- 1. Experimental setup of the charge-pumping measurement and the shape
tion of interface-states and the oxide-trapped charges [1]—[5‘;&,t he gate pulse.

and has been utilized extensively to invesigate the hot carrier o )
degradation induced by localized interface-states and the oxi@EC€ss, the injected carriers are not stable and would leak away

trapped charges [6], [7]. Some researchers [4], [8], [9] had & time passed [11], [12]. Besides, charge-pumping measure-
sumed that the initial interface-states of a fresh device weRENtis very time-consuming, there is no way to ensure that the
uniformly distributed on the SSiO; interface and the posi- injécted carriers would not leak away during charge-pumping
tion of the interface-states generated by hot-carried stress coti@@surement. _ _ 3

be easily extracted by some simple transformations. Actually,!n this paper, a new charge-pumping technique for profiling
the initial interface-states are not necessary to be uniformly dRQth interface-states and oxide-trapped charges is presented,

tributed and hence these methods used to extract the dameRjjSome unreasonable assumptions are removed.

position might not be correct. In some other papers [9], [10],
the “charge-neutralization” technique was used to compensate Il. BASIC PRINCIPLE

the stress-induced oxide-trapped charges, in which carriers ofy this section, the basic principle of the charge-pumping
opposite polarity were injected into oxide layer to make th@chnique is described, some questionable assumptions are dis-
damaged region neutralized (i.e. hot-electron injection for halgissed, and the methods for further improvement are then made.
traps and hot-hole injection for electron trapS). It is extremeiwhe experimenta| Setup for Charge-pumping current measure-
difficult to inject hot-carriers into the gate oxide without genment is shown in Fig. 1, where the gate pulse is provided by a
erating extra interface-states. Therefore, the hot-carrier neutiak 8110A pulse generator, and a HP 4145B parameter analyzer
ization process may introduce errors and the accuracy of tf§sysed to monitor the charge-pumping current. In this work,
technique is doubtful. In fact, it is well known that even no extrghe source/drain and substrate electrodes are always grounded
interface-states are generated by the hot-carrier neutralizatigiprevent any undesirable stress caused by measurement.

The charge-pumping current contributed by a local area can
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(@) (b)

Fig. 2. lllustration of the given gate-pulse voltage versus effective charge-pumping area for (a) baSedgyelnd (b) high-leve(Van).

integration range from zero th’ gives the lateral length that ~ 2° ‘ ‘ ‘ ‘ 0.08

can contribute to the charge-pumpint current. Note that on —— (V) Vg =24V

the region where the surface potential can fully swing fror Voo Vo,=2.0V 10.05

accumulation to inversion would provide the charge-pumpin 15 - " AL/f

current. Based on this fact, the interface-states and t 004

oxide-trapped charges on the-SiO; interface can be profiled. ¥ &
The basic principle is described as follows. As shown i 10 | loos &

Fig. 2(a), the pulse generator gives a series of pulses with t& £

base-level fixed at/sr, and high-levelVgy starting from a = 0.02 =

value slightly larger tharvyr.; to a fixed high-level to ensure

that the charge-pumping current can reach its saturated val ‘ 001

After this step, the charge-pumping current attributed by tr /’ '

region betweenz; and z; can be measured. The result of e

I»(Var1)/ f is shown in Fig. 3. Again, a series of pulses witt %35 0 =5 00 70 20090

the base-level fixed at 1.2 which is slightly larger thaVr Ver (V)

is generated, then the charge-pumping current attributed by

the region betweenr, andz/, can be measured. The result ofig- 3. Two charge-pumping currents with different base-levels and the
. 2 27 : . difference between them.

Ip(Varz)/ f is also shown in Fig. 3. Note that thé;r. differ-

ence used to extract the interface-states and the oxide-trapped

charges should not be too small, otherwise the noise indudéd. 3, which is the charge-pumping current provided by the

by the measurement error will be serious. On the other hasthall region betweer; — z, andz} — z5. AL, /f behaves

if the Vg1, difference is large, the profiling resolution oflike a standard charge-pumping curve, which consists of a

interface-states and oxide-trapped charges will decrease. Tiseng edge and a saturation region with the saturation value

difference betweet.,,(Var)/ f andl,(Vare)/ f is shownin  equal toA L, ../ f. If the interface-states were generated after
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Fig. 5. Two charge-pumping currents with different high-levels and the
Ve, (V) .
difference between them.

Fig. 4. Pre-stress and post-stress charge-pumping currents inside a small area
defined by two different base-levels. 0.20

------------ before stress

hot-carrier stress, the saturation level Aff, ... /f would
’ 0.16 - — after stress 1

increase because there are more interface-states to proc
the charge-pumping current. If the oxide-trapped charges wi
generated by hot-carrier stress, the rising edgeAdf,/ f = VoL r2stress
would shift parallelly because the local threshold-voltage z 012 ¢
changed by the oxide-trapped charges. If the polarity of ti<
trapped charges is negative, the curve would shift to rig<
because the local threshold-voltage increases. If the polaig’
of the oxide-trapped charges is positive, the curve would sh

to left because the local threshold-voltage decreases. 1

\

GL,1/2,fresh

<]

0.08 A

BL1/2

half-maximum value ofAI.,/f is chosen to be the reference 004 ]
point to measure the shift quantitYVy 1 /2 [13], as shown

in Fig. 4. Different base-levels df¢,. are related to different | ‘ ‘

ranges where the potential can be biased into accumulat -4.0 -3.0 2.0

as the gate pulse stays low. This range is simulated by Va (V)

two-dimensional (2—D) device simulator with a critical surface ) o
Fig. 6. Pre-stress and post-stress charge-pumping current inside a small area

hole concentratiop. defined by two different high-levels.
ps(Var, ) 2 pe, ifin accumulation @)
ps(VaL, ) < p., ifnotin accumulation, under different high-levels dfyy, as shown in Fig. 2(b). The

) ] typical I.,/f — Var and Al.,/f — Var, curves are shown
where p;(Var,z) is the local hole concentration on the siliy Fig 5 It should be noted that during the measurement, the
icon surface. By comparing\l.,,/f before and after stress,y, . ",sed should be smaller than the threshold-voltage so that
the total interface-states and the stress-induced oxide-trap measured,,/f — Ve, is mainly contributed by the re-
charges can be extracted by the following two equations:  4ign near or inside the gate and drain overlapped area. Further-

Alepant more, theAl,/f — Vg_L curves andAVqr 1/ (the voltage
' (x) = R (3) shiftrelated to half-maximum value &/, / f after stress) con-

g W-Ax tributed by a local area near the drain junction from the differ-
ence of twol.,/f — V1. curves measured at differebt;y
levels can be obtained, as shown in Fig. 6. It should be noted

Qb = CoxAVii 1/2 (4) thattheAl.,/f after stress slightly falls in lowérqr,, because
the charge-pumping current differen¢Al.,/f) contributed
where by a small area defined by two voltage levelsi@fy is very
Ip(Vara) small (O pA/MHz) even after stress and should be sensitive to

!

and

IC)Sa. IC) V . .
AT o olVer) . (5) the noise during measurement. Therefore, some measurement

! ! ! errors due to noise would result in a slight deviation from its
Similarly, the interface-states and the oxide-trapped chargesgurated value. The rising edgest.,/ f will shift to left for
can also be extracted by measuring thg/f — Vo curves hole-traps and to right for electron-traps due to the change of
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local flat-band voltage. Note that differebt;y levels are re- — I/ (L, =10 pm)

lated to different ranges where the potential can be biased it | -~ lepff (L g =0-8 purmy)

inversion as the gate pulse stays high. This range can also o g/ (L =1.0 )1 JF (L, =0.8 pim)
simulated by a 2—-D device simulator with a critical surface ele: 5

tron concentratiom..:
ns(Vam, ) 2 ne, ifin inversion © =
ns(Vom, ) < ne, ifnotin inversion P
wherens(Van, ) is the local electron concentration on the siI%
icon surface. Also, the generated interface-states and the oxis,

trapped charges should be written as

. A Icp),csat 0
Ni(z) = ——— 7
) q-W- Az " Vaure  Vore
and
-1 L " 1
Qe = CoxAVi1 12 (8) -3.0 -1.0 1.0 3.0
Vg or Vg (V)
where
Fig. 7. I.,/f — Voo andl.,/f — Van curves derived from the difference
Iopsat  Lep(Vam) Iep(Voma) of two devices with different mask channel lengths.
A f = 7 — 7 . 9)

methods for extracting. andp. are described in the next sec-
In theory, both the magnitude and the positiom\gf(x) and tion.
N{(x) should be the same if, andp, are correctly extracted
while @/ andQ?_would not be identical because the rising||. CRITICAL SURFACEELECTRON ANDHOLE CONCENTRATION

edge of bothl.,/f — Vagr andI,/f — Vo curves would . . -
be perturbed by the generated interface-states after hot—carrielln our experiment, two devices with different mask lengths

stress; thatigY’_in (4) is underestimated for electron-traps and'® needed to extract critical surface electron and hole concen-
overestimated for hole-traps, ady’, in (8) is overestimated trations [13]. The mask lengths of the two devices arejfrD

for electron-traps and underestimated for hole-traps. Hence, ﬁ’ped 0.8um, respectively. To extract the critical hole concentra-

more reasonable method to extract the oxide-trapped char&/ 0 pe, the Lep/ f — Vi, curve under a fixed high-levélay,
should be modified and is described as follows. ich can make the entire channel inverted, is applied to the two

. . devices. These two devices are identical except the mask length
AVan/> andAVarzin (4) and (8) can be writtenas - %y o charge-pumping current differenké., /f — Var.

AVgm,1/2 = Van,1/2,stress = VGH,1/2,fresh of the two devices is mainly introduced by a small area inside
= AV, + AViy, (10) the mid-channel region and the charge-pumping current con-
and tributed by the source/drain proximity effect can be ignored.
The AI,,/f — VgL of the two devices is shown in Fig. 7,
AVar,1/2 = Var,1/2,stress = VGrL,1/2,resh whereVgr, 1,2 corresponding to half-maximum ak/.,/f —
= AV, — AV, (11) V41, is set to be the flat-band voltage of the mid-channel re-

where AV, is the shift value due to oxide-trapped charge§iOn- Var.1/2 is then put into a two-dimensional device simu-
which is positive for hole-trap and is negative for electron-traftor to simulate the surface hole concentraion. In our experi-
AV, is the absolute shift value due to generated interface-staf&nt, the simulated value is5 x 10'*/cm3 and hence we de-
after stress; and the subscripts “fresh” and “stress” mean & Pe = 1.5 X 10**/cm8. Similarly, a series of pulses with

conditions before and after stress. Combining (10) and (18)fixed base-levelc;, are applied to the two devices to ex-
gives tractn. with the same procedure, th®l.,/f — Van is also

1 shown in Fig. 7, wheré/qy 1,2 corresponding to half-max-
AV = §[VGH,1/2,stress + Var,1/2,stress imum of AL,/ f — Ven is set to be the threshold-voltage of
— (Var12.mesh + Var1/2.mest)]- (12) the mid-channel region. The simulated surface electron concen-

_ X ] traion atVgy 1 /2 is 7.8 x 10**/cm3 andn,. can be defined to be
Therefore, the oxide-trapped charges excluding the interfers .. 413/

ence caused by the generated interface-states should be written
as IV. EXPERIMENTAL RESULTS AND DISCUSSION

Qox = CoxAVoy. (13) Based on the aforementioned charge-pumping technique,
the interface-states and the oxide-trapped charges generated
During profiling the interface-states and the oxide-trappdua hot-carrier stress are measured. The test devices are LDD
charges, the critical surface electron and hole concentration®OSFET’'s with the mask channel length of Quén, the
must be carefully defined, otherwise the position of extracted inhannel width of 12Qum and the oxide thickness of 110 A,
terface-states and oxide-trapped charges may be incorrect. Teedevice structure parameters used in 2-D device simulation
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Lines : Measured by varying base-level V. 0.0 . ‘ . 0.0
4 + Marks : Measured by varying high-level V, g Stress condition : V=7 V, V=7V
Stress condition : V=7 V, V=7V 05 - 1 .05
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Distance from drain junction (im) Fig.9. Vam 1/2.stress ANAVaAL 1/2 stress €Xtracted from\ /., /f — Vg and

AT,/ f — Voo curves, respectively.

Fig. 8. Distribution of the cumulative interface-states with the stress condition:
Vo =7VandVs = 7 V.

8 T T
are extracted by accurately simulating the curent-voltadg (| Stress condition : Vo=7 V, V=7 V |
characteristics of the fresh device.
As described in Section I, the extraction procedures are su 6L |

marized as follows.
1) Measure thé.,,/f — VL andl.,/f — Ve curves under 5L -

—

various Vg and Vgr, conditions, respectively, then the
Aly,/f—VgrandAl,,/ f—Vgu curves can be obtained. -© 4 - R

cm

2) ExtractVgr, 1,2 andVgw 1,2 fromtheAly,/f—Var and 8
Al.,/f — Van curves, respectively. a3r .

3) Extractn,. andp.. from the charge-pumping current differ-
enceAl.,/f — Vaun andAl,,/f — Var. of the specified 2r e stress 200 sec ]
two short-channel devices, respectively. +——« stress 400 sec

4) ExtractN;;(x) according to (3) and (7), an@..(x) ac- 1r *——e stress 600 sec ’
cording to (12) and (13). ‘ .

In our experiments, thé.,/f — Vaou curves are measured E)0.10 -0.05 0.00

with Vi1, varying from-2.4 Vt0-0.4 V and thel .,/ f — VaL Distance from drain junction (1m)

curves are measured will varying from-0.1V to-1.7 V,
and both the rising S|Op(§R) and the faIIing S|OpéSF) ofthe Fig. 10 . (jistriblition of tr]e cumu_lative oxide-trapped charges with the stress
. . condition:Vp = 7VandVg = —7 V.

gate pulse are fixed to ensure that the charge-pumping currents
are contributed by the same band-gap region. In our case, both
Sr and Sy of the gate pulse for measuring tig,/f — Veu  invariant, this is contradictory if the hole-traps are generated
andl.,/f — VL curves are set to be 2 8. after the BTBT-induced hot-hole stress. As a result, we can say

In this work, the stress condition &, = 7V andVg; = -7  that the extracted values By, 1 /2 siress Were perturbed by the
V, which may generate band-to-band tunneling(BTBT)-inducegenerated interface-states so that the valué&:@f; /2 sress dO
hot hole [14], [15], is taken for example. As shown in Fig. 8not shift to a more negative value with cumulative stress time.
the magnitude and the position of interface-states are vefgnce, (12) should be used to modify the contradictory results
close for the extraction method under different base-levaizentioned above and the extract@gd.(«) for different stress
of Vg, and high-levels ofVgy, this confirms the correct- times are shown in Fig. 10. Note that as the surface potential
ness of the extracted critical electron-surface concentrationder the gate/drain overlap region would be changed due to
(n.) and hole-surface concentratigp,.). It also shows that the generated interface-traps and oxide-trapped charges, the
the distribution of the interface-states for a fresh device iteration process is necessary to obtain the accurate distribution,
not uniform, this result contradicts the basic assumption af mentioned in our previous work [5]. It should be noted that
some previous papers [4], [8], [9]. Furthermore, as shown because the charge-pumping currents are very small for fresh
Fig. 9, Var,1/2,stress Under different high-levels o¥gyr and  devices, Vg 1/2,mesn @Nd Var, 1/2.mesn IN (12) are generated
Van,1/2,stress UNder different base-levels &t are extracted, by 2-D numerical simulation instead of experimental results to
where the values g1 /2,stress DECOME smaller as the stresprevent the measurement errors caused by noise. From Figs. 8
time incerases while the values &%y, 1,2 siress @re nearly and 10, the maximum position of generated interface-traps is
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inconsistent with that of oxide-trapped charges. The phenomnji3] H. H. Liand C. Y. Wu, “A novel extraction technique for the effective
enon is possible due to the fact that the generated electrons will ~ channel length of MOSFET devicesEEE Trans. Electron Devices
't d th t d d th ted interf ¢ vol. 42, p. 856, May 1995.

travel towar € gate edge an € generated Interflace-raps) c. chang, s. Haddad, B. Swaminathan, and J. Lien, “Drain-Avalanche
are located near the gate edge; and the generated hole will and hole trapping induced gate leakage in thin-oxide MOS devices,”
travel away from the gate edge and the generated oxide-trapped  !EEE Electron Devices Lefwol, 9, p. 588, Nov. 1988, _

h | d f h d 15] Y. Igura, H. Matsuoka, and E. Takeda, “New device degradation due to
charges are located away from the gate edge. ‘cold’ carriers created by band-to-band tunnelindsEE Electron De-
vices Lett.vol. 10, p. 227, May 1989.

V. CONCLUSION

In this paper, the charge-pumping technique has be Yu-Lin Chu (S'91) was born in Taiwan, R.0.C., on
successfully applied to the characterization of stressd LC September 10, 1968. He received the B.S. degree
) . . from the Department of Material Science and En-
n-MOSFET devices. In particular, a new method with moc o gineering, National Tsing-Hua University, Taiwan,
L!r-
=
*

ifying the existing extraction technique of oxide-trappe: in 1991, and the M.S. degree from the Institute
charges is presented. By holding the rising and failing slop afsiféﬁﬁtf‘%’;'imn’Niﬁt'fgg'& E.';"",‘;’ ;ﬂ?gntt’/“;‘t’ﬁg'gg
of the gate pulse constant and then varying the high-level a the Ph.D. degree at the same institute.

base-level of the gate pulse, the smodtfi,/f — Ven and His present research areas focus on deep-submi-
Al,/f — Var curves related to a localized area near or insic. crometer MOS device physics and reliability issues.
the drain and gate overlapped region can be easily obtained,

and the interface-states and oxide-trapped charges related to _ _ _

this area can be calculated at the same time. The experime E:b%earr‘y ig‘ i ggrr”ecgvgg't"r‘]’i”é SFf-(?e-gCr-ere‘f’rnom
results obtained fromjep/f — Ven and AIcp/f - VoL the Department of Electronics Engineering, National
curves during the extraction @p.«(x) after hot-carrier stress Chiao-Tung University (NCTU), Hsinchu, Taiwan,
contradict to each other, and some unreasonable assumpt J in 1996, and the M.S. degree from the Institute of
are removed to eliminate the interference induced by tl
generated interface-states after hot-carrier stress for extract

Qox().

+
E -'E‘ Electronics, NCTU, in 1998.
3 He is currently in military service as a second Lieu-
#r tenant. His research interest is in the modeling and
\e

physics of MOSFET reliability.
Mr. Lin is a member of Phi Tau Phi.
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