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Abstract: A new step-by-step deceding algorithm for decoding Reed-Solomon codes over GE(2¥) is
presented, Based on several properties of the syndrome matrices, the new sicp-by-step decoding
algotithm can directly determine whether every received symbol is an error locator. The detection of
error location is bascd only on the determinant of a v x v syndrome matrix, where v is the number of
errors. When an error location is found, its corresponding error value can also be determined by
performing a determinant division operation between two syndrome matrices. The new decoding
algorithm can significantly reduce computation complexity and improve the decoding speed
compated with the conventional step-by-step decoding algorithm.

1 Introduction

Among the many error-correcting codes, Recd-Solomon
{RS) codes arc the most frequently employed in digital
communication and storage systems. Many decoding tech-
niques have been proposed for decoding RS codes, such as
the Betlekamp-Massey algorithm [1-4], the Euclidean algo-
rithm [1--5], and the step-hy-step decoding algorithm [6, 7].
The step-by-step decoding algorithm was first presented by
Massey in 19635. The difference between the step-by-step
methed and the standard algebraic method is that the step-
by-step method decodes every potential error location and
ctror value disectly, instead of searching the error locators
and cvaluating the error valucs.

The conventional step-by-step decoding algorithm cor-
rects the crrors in terms of the differences between the orig-
inal syndrome matrix and the temporarily changed
syndrome matrices. This idea is based on the fuct thal the
weight of error palterns can he disiinguished from each
other by using the syndrome matrices. Thercfore, the con-
ventional step-by-step algorithm adds in order all possible
27 — 1 nonzero elements of GE(2¥) to every symbol of the
received word to determine whether the weight of the crror
patiern has been reduced. If the weight of the ervor paltern
is reduced, both the error location and the corresponding
error value are found, When the number of errors v in the
received word is determined, the decoding procedure only
needs 1o detect whether g determinant of the v x v changed
syndrome malrix vanishes for every nonzero element of
G2 added in every detected symbol. If the determinant
vanishes, the detecied symbol is an error and the added
nonzero element is its error value. Compared with other
decoding algorithms, the step-by-step algorithm offers the
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advantage of a simple decoding concepl because the step-
by-step algerithm only depends on a v x v syndrome
malrix. However, 2% — | iterations must be performed for
every received symbol in the conventional step-by-step
decoding algorithm. In order to speed up the decoding
process, a new step-by-sicp decoding atgorithm is devel-
oped in this paper, Ln the new deceding algorithm, instead
of trying every potential element, a new method for directly
searching the error locators is presented. The new error
locator scarching method is based on several properties of
the syndrome matrix to detect directly whether every
received symbol is an crror. The detection of ertor location
is only based on whether a v x v syndrome matrix is singu-
lar or not, where v is the number of errors. When an etror
is four! by the new searching method, the corresponding
error value can easily be obtained by performing a determi-
nant division operation of two syndrome matrices.

2  Properties of syndrome matrix

For a terror-correcting RS code with symbols from the
Galos ficld GF(2™), the codeword can be expressed as

efe) =cotazt+ear®+. .tz (1)
Due to the presence of the channel noise, the received word
#{x) in the receiver may be different from the encoded code-
word ¢(x} in the transmitter. Let the crror polynomial
caused by the channel noise have the form

c@)=cogt+ermtex® +.. +epqx? (2)
Then the received word can be expressed as

ria) = efx) +efz)
=1+ T+t . A2 (3)

The weight of the error polynomial e(x) would be the
number of errors in the received polynomial r(x}, The syn-

drome values of a received word with v errors can he
obtained from

Si=

= e(a’)

{(a)

~

Yvxi i=12,..,2

7=l
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where X; indicates the crror location of the jih erroncous
symbol ancl Y, is the wrmspondmg ereor value. Therefore,
the decoding td.‘sk is, given the syndrome values, 1o find the
error locations and error values.

The conventional step-by-step decoding algorithm cor-
rects the errors dircctly in terms of the difference between
the original syndrome matrices and the temporarily
changed syndrome matrices. The various weights of crror
patterns can be distinguished from the syndrome matrices.
A k x k syndrome matrix, &, has the following relation
with the syndrome values [2, 5-8]

Sp 0 Sy e Sy
Sy Sy o S

Ne=1. . . . (4)
Se Sk Sok—1

For t-error-correcting RS codes, the syndrome matrix &, is
singular if the number of crrors in #(x) is & — 1 or Igss; the
syndrome matrix N is nonsingular if’ the number of errors
is & [2, 5-8). That is, the determinant of the syndrome
matrix det{N,) equals zero if the number of errors is & — |
or less and det(N;) = 0 if the number of errors is & The
conventional step-by-step decoding algorithm adds in order
all 2 — 1 nonzero etements of GF(2™) to every symbol of
the received word (o determine whether the weight of the
crror patiern has been reduced. Il the weight of the crror
pattern is reduced, both the error location and the corre-
sponding crror value are found.

For a received word #(x), we add a nonzero element g of
GF(2") to the [irst symbol 7. Then the changed syndrome
values, denofed as Sy 1 = 7 = 2¢, will be :

Si=5+8 )

and the changed syndrome matrices, denoted as N, 1= &
< #, can be cxpressed as .

- TR
! ! - !
N = 5.'2 Sy Bl
| S5 S.k+1 Shi—1
[S1+8 S+ S+ 8
S22 S3+ 8 Skt1+ B
- : : : (®)
L Skys Sk + 8 Sop—1 + 8
Then the value of det{N'y) can be obtained as
S8 8
Sy, 5L - L.
vy = 0 "
S Sk San1
S S e S
Sy S 0 Sk
= . . . [ +B
Sy Sk Sk
Sy + 83 Sy + 55 Sp—1 + Skt
Sa 4+ 54 Sy -+ Sk S 4 Spas
Sp-1+Sup1 Se + Sege Sak—g + a1
{7)
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Now, a new & x & syndrome matrix M), is delined as

My =
51+ 55 Sa + 54 Sy + Seya
S+ 5. Sz + 55 Sy + Skta
Sk + Sk2 Skt + Sk Sap—1 + Sappr

(8)
Then del(A') can be expressed as
det (V) = det{Ng) + - det{My_1) {9
with initial value det(Afg) = 1.
For the jth cyclic shifted polynonual of #{x), denoted as
(2 = rpeg A g1 gt
N Y SRR DRI (10)

the corresponding syndrome values are denoted as 87, [ = §
= 2t. Similarly, the corresponding syndrome matrices can
be expressed as

s s ... Si
| s s S,
Ni=| (1)
Sp i S
and
Ml =
S+ 53 53+ 8% SJ+S,€+2
8+ 53 S5+ S?: Sk+1 + S
Si+ Ski'z SiL + 513 Stx1 ¥ S3rt1

(12)

Then, a nonzero element g is added to the first symbol r,
of rm(x) to obtain the new polynomial #/%(x) and the corre-
sponding syndrome valucs 8%, 1 =/ < 21, Consequently, we
can obtain the following equation

det(N7) = det(N7) + 8 - deu(M7)  (13)

where
sfosy o 8¢
_ gy s L gy
Ni= TP T . (14)
S.:c;‘ Sk—i 1 SEJL—I

Henceforth, in order to describe some theorems and the
decoding algorithm for convenience, we lel the notation
HO%x) = A%(x) = 1(x) denote the initial reccived word r(x)
and N,%, M,° denote the corresponding syndrome matrices.
Some properties of the new syndrome matrices are pre-
sented as follows.
Theorer 1; For a received word of (, &, 1) RS code, if the
number of errors is v and det(Mf,) = 0, then the symbol
Fy s THUS be a correct symbol,
Prooft See the Appendix (Section 6.1}
Theorem 2; For an {(n, k, 1) RS code, if the number of
errors in a received word #(x} is v < 4, thcn the symbol Tai
ig an erroneous symbol if and only if det(MN=0,1s5sn
Otherwise, r,; must be a correct symbol.

Proof: See the Appendix (Section 6.2).



For a general f-error-correcting RS code, the number of

errors v can be pre-determined by the syndrome matrices
N, i =t, as defined in eqn. 4. Bascd on theorem 1, r,; must
be a correct symbaol il the (v — 1} x (v — 1) syndrome matrix
M is singular, i.e. det(Af ) = 0. However, this theorem
does not cnsurc thal r,; is an errongous symboel if
det{(Af# 1) = 0. Based on tﬂcm‘em 2, r,; must be an error
symbol if and only if the v x v syndrome matrix A/ is sin-
pular, ie, det(M}) = 0. However, when v = 7, 8, and
hence M/ are not calculable. Therefore, when the error
number of the received word r(x) is equal to 7, the (t— 1) %
(t — 1) syndrome matrix A/, will be first detected. IF
det(M/ ) = 0, the symbol s, ; must be a correct symbol. If
det(MY,) = 0, the symbol r,; may possibly be an erroneous
symbaol. Assuming that r,,_; is an erroncous symbol, we may
find a nonzero clement 3 in GF(2) te let the error number
of ¥'U(x) become ¢ — 1. That is, det(N'/) = det(N"4,) = 0.
Based on the equation

det(N7) = det(N]) + 8- det{(M]_,) =0
only the nonzero cloment f = det{N/)/det(M{,) would let
det{A’)) = 0, If the nonzero element § = det(N/¥det(M,)
can also let det(N'4,) = 0, then the symbol r,; is an erro-
neous symbol and the value B = del(W//de ML) is the
corresponding error value. Although S, and hence
det(N'4, ), arc not caloulable for a t-error-correcting RS
code. However, det(V'/) equals zero and is the cofactor of
S in the syndrome matiix N'%;. The value of
det(W4, ;) is independent of S§%.; and can thus be
oblained, Therefore, if the number of errors in #(x) is 1, we
first caleulate the value dei(Af/, ), if det{A7/ ;) = 0, then the
symbol r,; is a correet symbol; if det{M{ )= 0, then let 8 =
det(W/ydet(M ) and calculate the value det(N4, ) . TIf
det(N') = 0, r,; is an error symbol and § = det(N/y
det{MY ) is the corresponding error value. Consequently,
we have the following corollary.
Corollary I For a received word of (n, &, /) RS code and
number of errors v = 1, the symbol ¥y must be an errone-
ous symbol if and only iff a unique nenzero value § =
det(NYdet(M{,) cxists such that det(NY%, ) = 0.

Based on theorem 2 and corollary 1, the crror locations
can be found symbol-by-symbol. Then, the corresponding
error values can casily be obtained from the following theo-
ren.

Theorem 3. For a received word of (i, &, /) RS code, if the
number of erors is v and the symbol r,; is an erronecus
symbol, then det(dd ) = 0 and the corresponding error
value is det(V/ydet(Ad] ).

Proof Sce the Appendix (Section 6.3),

3  New step-by-step decoding algorithm

Based on the syndrome matrices and the new method for
scarching the error locations and error values, 4 new step-
by-step decoding slgorithm is presented. First, the syn-
drome values S, 7 = 1, 2, ..., 21, and syndrome mattices
N2 k=1,2, .., ¢ of the teceived word #(x) are calculated
to determine the number of crrors (i.e., the value of v). For
a general s-error-correcting RS code, the number of crrors
can be deterrnined by just consceutively testing det(N,”),
det(¥8), ..., until a nonzero determinant, say det(¥V,%), is
found [6]. When the error number v is known, the new
algorithm tests every symbol of r(x) step-by-step to detect
whether or not it is an crror. If an error locator is found, its
error value can easily be obtained by calculating det(V,/y
det(M{ ). Based on these properties ol syndrome matrices,
two types of the new decoding algorithm, the parallcl
vorsion and sequential version, are presented as follows.

10

3.1 Parallel decoding algorithm

Step It Caleulate the initial syndrome values SP ¢ =1, 2,
e 26) and the determinants of the initial syndrome mairi-
ces dei{ N9 (k= 1, 2, ..., ) from the received word #9(x)
=) =1y + Fix + rax? + ...+ 5y, (¥, Then determine the
nuimber of ercors v,

Step 2. If v =0, go to step 7,

Step 3. Calculate the syndrome values Sfi =80 ¥ 1 =i
= 2v, and the determinants det(N) = /% - det(N,°} lor all

J [see the Appendix (Sections 6.4 and 6.3)].

Step 4 If v = ¢, go to step 6.

Step 5 Calculaie the value dot(M), 1 = j = . For all j, if
det(M) = 0, let r,; = r,; + det(Nidet(M{ ;). Go to step
7

Step 6. Calculate det(M7Y ), 1 = = n. For all j, if det(M,)
# 0, let B, ; = det(V/)idet (M7} and calculate the determi-
nant det(Ny4, ) For all j, it det{M7 |} = O and det(¥,) =0,
let 1, = 1, + det(N/Vdet(ML, ).

Step 7 The decoding algorithm has been completed.

3.2 Sequential decoding algorithm

Step It Caleulate the initial syndrome values S? (G = L, 2,
w20y and determine the number of errors v from det(¥,%)
k=1,2,..,0.

Step 2: I v = 0, go 10 step 13,

Srep 3 Let j= 1,

Step 4 Caleulate the syndrome values S = SF e, § =1,
2, v 2r — |, and the determinants deti NS = of
det(NZ ), k =1, 2, ..., v [sec the Appendix (Sections 6.4
and 6.5)].

Step 51 If v < ¢, go to step 11.

Step 6 Calculate det(M/ ) from the syndrome values S7.
Step 72 1T det(M/)) = 0, go to step 13,

Step & Let = det(N/)idet(M{,) and #, ;= r, + B

Step 9: Let 8Y = 5/ + 8,7 =1, 2, .., 21, and caleulate
det{N"/,,).

Step 10; If det{N'f,;) = 0, go to step 13. Otherwise, calcu-
late det(M), k= 1,2, ,t—2,andlet v =v— 1,1, =
Fap S = 8% delNy) = det(N) + - det{M ), k = 1, 2,
s . Go to step 13

Step 1f: Caleulate the value det(Ay).

Step 120 If det(Mfy « 0, go to step 13. Otherwise, calculate
the values det(Mi, & = 1, 2, ., v— 1, and ket 8= det(N/)/
det(MS), by = 1 + B, §E= S/ + Bov=v— 1, det(Nyy =
det(Ny + B-det{M i) k=1,2, ..., v

Step 13: I j = 1 or v = 0, then this decoding algorithm is
completed. Otherwise, let j = j + 1 and go to step 4.

The new decoding algorithm can also be applied in
decoding shortened RS codes. Consider a (n - 4L k-1 6
shortened RS code, the encoded codeword «(x) and the
reccived word #(x) can be cxpressed, respectively, as

cle) =+ artas®+.. .+t

and

) =10+ e+t . ozt t
For the parallel decoding, only replace ‘1 = j=» by 7+ 1
= j = # for all sieps, For the sequential decoding, just mod-
ily step 3 as (ollows:
Step 3: Calculate S/ =588 af | =i<2v— 1, and det(NH
= o det(NO). Let j=T+ L.

iR Proc-Comnmn., Vol 147, No. 4, February 2000



Becuuse the new decoding algorithm is performed symbol-
by-symbol, the computation complexity can be reduced lor
the shortened codes.

4 Conclusions

The conventional step-by-step decoding algorithm corrects
the errors in terms of the differences between the original
syndrome matrices and the temporarily changed syndrome
matrices. Comparcd with the other decoding algorithims,
the slep-by-step algorithm offers the advantage of a simple
decoding process which depends on caleulating det(N'f)
(and det(N*%..) if v = 5. However, the conventional step-
by-step algorithn must perform 2% — | itcrations to detect
the determinant det(N’/) (and det(N'f. ) if v = ¢} for cvery
received symbol. In order to speed up the decoding process,
a new step-by-step decoding algorithm has been presented.
A new syndrome matrix M, was developed. Based on some
properties of the syndrome matrices, o new method for
searching the error locations and the corresponding error
values has also been presented. The new sicp-by-step
decoding algorithm only detects the determinant of the v x
v mateix det(M ) once for every received symbol (it detects
det(M /) and det(NV,4,) il v = ). Compared with Lhe con-
ventional step-by-step  algorithm, the new  algorithm
reduces the computational complexity by a factor of 2 — 1.
Bascd on the new step-by-step decoding method, a parallel
decoding algorithm and a sequential decoding algerithn
have been proposed. The parallel decoding algerithm
detects all received symbols to obtain the corresponding
error pattern in parallel, Thus, a high-speed parallel
decoder can be constructed to perform the decoding proc-
gss in the iterval of one iteration, which is particularly
suitable for shortened RS codes. The sequential decoding
algorithm tests one symbol at a time. The decoder has
lower circuit-complexity and can complste the decoding
process with » iterations.
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6 Appendix A

6.1 Proofof theorem 1

The number of errors ¥ can be pre-determined by the syn-
drome matrices N, [ = t as delined in eqn. 4. Based on the
property of cyclic codes, the number of crrars in F¥9(x) is
also v, and then det(N) = 0. By adding a nonzero element
B to r,, we obtain the new polynomial '¥(x). From
eqn. 13, we have

det(N?) = det (N2} + A - det{M_,)

Il the symbol #,; is an crroncous symbol, the correspond-
ing error value must be lfound, and also del(WV' /) = ¢, How-
ever, for all nonzero elements in GF(2"), it is impossible to
have the relation det(¥') = 0 because det{¥,) = 0 and
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det(M[,) = 0. Therefore, the symbel #,; st be a correct
svmbol il det(M/, ) =0

6.2 Proofof theorem 2
First, we add an arbitrary nonzero element 8 from GF(2™)
to the symbol 7, to obtain a new polynomial #'¥(x). If 1, _;
is a correct symbol, the number of errors in +@(x) should
be v + L If . is an erroncous symbol, the number of
errors in #'W(x) would be v — | (8 is the crror value) or v (B
is not the correct crror value). Based on eqn. 13:
det( N7 ) = det(N2 ) + 8 - det (M)
Because det{V{,;) = 0 and f§ = 0, det{\""{,, ) » 0 if and
only if det(A/y = 0. That is, the symbol ry 18 a correct
symbal originally and then the nonzero element g is added
to let the error number of #'W(x) become v + 1 if and only
if det(M) » 0. On the other hand, det(¥%,,;) = 0 if and
only if det(d) = 0. This means that the error number of
F%(x) is less than v + 1, That is, the symbol Ty I8 an erro-
neous symbol originally and then the nonzero clement 5 is
udded to let the error number of #¥(x) be v or v — |, and
thus det{(N*},,) = 0 il and only il det{A7;) = Q.

8.3 Proof of theorem 3

Suppose that the symbol ¥, is an erroneous symbol and let
the nonzero element 8 in GF(2™) be its cotresponding error
value. Then adding the error value § to r,; will reduce the
atror number of #'¥Y(x) to v — 1 and thus '

det(V) = det(V))+ 2 - det{M]_) =10
Recause dei(Vy) = 0 and B = 0, det(M ) = 0 must be true
and B = deUNHideM ;) is the only possible solution.
Thercfore, il the symbol #,; is an error symbol, then
det(M4,;) cannot be equal to zero and the corresponding
error value must be det(N)/det(Adi;).

6.4 Calculation of syndrome values
The syndrome values §/, | = f = 2, can be obtained from
SPor S/ by performing the following opetations:

S,f =a". 80 and Sf = ﬂ’:-Sf"l, 1<«
Proof:
ST = (@)] o
=ty 1Tk T3
+orpzd ..+ ?‘n_j_.lx"’lhzw

=Puei tramjriet o rasralTlE
B T A EUU SR TN o Do (15)

For GF(Q."’), agm_l =g =1 and (an}z‘ = am‘ =1,
Then
Sf = a"! ('r"n*j + Pn_jt1 51'£ + ...+ Tnfla(jil)i)
+rga?t T s Latn—1)e
=road . @ PTE e

+ ...+ .?nn_la('n"\‘.?l' 1}d

=ali- S0
(16)

Similarly
571 =i . g0 (17)

Therefore

5 =al. 80 =t (ai'(v"" 4 S?) =a'- 877" (18)

1



8.5 Calculation of determinants
It is complex to directly caloulate the determinants of the
syndrome matrices

siosios o s

_ s & & S
det(N]) = ‘ ¥ 4 Fhl
Si Sg-l—l Sf='|~2 Sgkfl

1<i<t (19)

The determinants del(Ng), | =i=t, can be easily obtained
from det(N,0) or det(Vy ) as follows:

det(N}) = &'¥ - dot(N])

and det(N]) = o*" - det(V] ™)

Proof
ATy —
det{N]) =
j—1 2 gf-1 3gi-1 ko=l
oSy ) oSy 1 a5y . o 5] 1
agi— 30— Agy! k-1 gd—
a5 53 o*S] af TS
O k2 qi—1 k1 gg=1
n* S} af TSI atTES, oY 530,
=a-0fat . =
57 {rSﬂfT CEQSE‘_J*l ak18]”
-1 F—1 2gi—1 k—1gi—1
53 @Sy a5y Q Sk+1

Sl gi-l agi-l . hlgi ol
Si aSiyy @S @ TSy

(The laclors @, o, ..., af

row.)
=(a-a® a") (oo
d=Ll  gi=l il
Sy 1 5 L 53 X
‘. 7 7
Sg S:i 84
j=1  gi-1  gi-lL
5y, k4L Pkto
(The factors 1, o, o2, ...
every column,)

Bik+1) | (h=1)k
o~ 2 z

-1 i—1 i—1
S{ . 53 ] Sg; 1
52 53 5y
—1  ci-l  gie1
S.Ije S§+1 Sk+2
=a* - det(N] ")
Similarly,

2--v

are extracted in order for every

k—])
gt

i—1
“k+1

4]

-1
SQJ{:-—].

, ! are extracted in order for

det(N{) = o*" - det(7 1)
= o [  det(v2 )
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S

Sha

531
(20)
(21)
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