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Abstract

The integration of neural networks and optimization provides a tool for designing network parameters and improving
network performance. In this paper, the Taguchi method and the Design of Experiment (DOE) methodology are used to
optimize network parameters. The users have to recognize the application problems and choose a suitable Arti®cial Neural

Network model. Optimization problems can then be de®ned according to the model. The Taguchi method is ®rst applied to a
problem to ®nd out the more important factors, then the DOE methodology is used for further analysis and forecasting. A
Learning Vector Quantization example is shown for an application to bicycle derailleur systems. # 2000 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Arti®cial Neural Networks (ANNs) are receiving
much attention currently because of their wide applica-
bility in research, medicine, business, and engineering.
ANNs provide better and more reasonable solutions
for many problems that either can or cannot be solved
by conventional technologies. Especially in engineering
applications, ANNs o�er improved performance in
areas such as pattern recognition, signal processing,
control, forecasting, etc.

In the past few years, many ANN models with
di�erent strengths have been introduced for various
applications. According to the di�erent ANN models
used, many training algorithms have been developed
to improve the accuracy and convergence of the
models. Although a lot of research is being concen-

trated in these two ®elds, there is still a conventional
problem in ANN design. Users have to choose the
architecture and determine many of the parameters in
a selected network. For instance, in a ``Multilayer
Feedforward (MLFF) Neural Network'', the architec-
ture, such as the number of layers and the number of
units in each layer, has to be determined. If a
``Backpropagation with Momentum'' training algor-
ithm is selected, many parameters, such as the learning
rate, momentum term, weight initialization range, etc.,
have to be selected. It is not easy for a user to choose
a suitable network even if he is an experienced
designer. The ``trial-and-error'' technique is the usual
way to get a better combination of network architec-
ture and parameters.

Therefore, there must be an easier and more e�cient
way to overcome this disadvantage. Especially in en-
gineering applications, an engineer, with or without an
ANN background, should not spend so much time in
optimizing the network. In recent years, the Taguchi
method (Taguchi, 1986; Peace, 1993) has become a
new approach that can be used for solving the optimiz-
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ation problems in this ®eld. The parameters and archi-
tectures of an MLFF network were selected by using
the Taguchi method in Khaw et al. (1995). This can
improve the original network design to obtain a better
performance. The same technique has been used to
optimize Neocognitron Networks (Teo and Sim, 1995)
and another MLFF network (Lin and Tseng, 1998).
The Taguchi Method is a type of optimization tech-
nique, which is very well suited to solving problems
with continuous, discrete and qualitative design vari-
ables. Therefore, any ANN model can be optimized by
this method. Another method, the genetic algorithm,
which requires a large computational cost, has been
applied to populations of descriptions of networks in
order to learn the most appropriate architecture
(Miller et al., 1989).

In this study, a systematic process is introduced to
obtain the optimum design of a neural network. The
Taguchi method and the Design of Experiments tech-
nique (DOE) (Montgomery, 1991) are the main tech-
niques used. Unlike previous studies, the Taguchi
method is used here to simplify the optimization pro-
blems. Then, DOE is more easily performed. Because
of the stronger statistical basis of DOE methodologies,
many analyses can be executed. Finally, a Learning
Vector Quantization (LVQ) network is demonstrated
as an example. The method proposed in this paper can
also be applied to any ANN model. The integration of
optimization and ANNs in this paper was simulated
by a computer program which can be executed auto-
matically and easily.

2. Optimization process

Optimization techniques are used to obtain an
improved solution under given circumstances. In ANN
design, it helpful to improve the original settings of a
network in order to get a better performance. For the
convenience of further analysis, the parameters in
ANNs must be classi®ed as follows.

2.1. Design parameter classi®cation

ANNs are de®ned by a set of quantities, some of
which are viewed as variables during the design pro-
cess. These parameters are classi®ed into three parts
according to the numerical quantities. For an n-vector
x��x1, x2, . . ., xn�, there are

1. Continuous design parameters:

xklRxkRxku k � 1, 2, . . . , n �1�
where xk 2 Rn, xkl is the lower bound of xk, xku is
the upper bound of xk:

2. Discrete design parameters: xk 2 �xk1, xk2, . . ., xkm�
and m is the size of the discrete set.

3. Qualitative design parameter: xk is a qualitative vari-
able which cannot be described by a numerical ex-
pression.

For example, consider an MLFF neural network
with a ``backpropagation with momentum'' training
method. The continuous design parameters are the
learning rate, momentum term and weight initializa-
tion range. The discrete design parameters are the
number of hidden layers, the number of units in
each layer and the number of training data items.
The qualitative design parameters are the activation
function type, the network typologies and the nu-
merical method, such as the gradient descent, conju-
gate gradient and BFGS (Arora, 1989).

Fig. 1. Optimization process.

T.Y. Lin, C.H. Tseng / Engineering Applications of Arti®cial Intelligence 13 (2000) 3±144



2.2. Optimization problem

In order to obtain an optimum design for a neural
network, an optimization process is proposed in Fig.
1. First, choose a suitable ANN model for the appli-
cation. The optimization problem can be formulated
as follows.

Find an n-vector x� �x1, x2, . . ., xn� of design vari-
ables to minimize a vector objective function

F�x� �
�
f1�x�, f2�x�, . . . , fq�x�

� �2�

subject to the constraints.

hj�x� � 0; j � 1, 2, . . . , p

gi�x�R0; i � 1, 2, . . . , m: �3�
The design variables x can be classi®ed into three
parts: continuous, discrete and qualitative design vari-
ables, as de®ned above. The objective functions rep-
resent some criteria that are used to evaluate di�erent
designs. In ANN design, the objective function can be
the training error, the learning e�ciency, the grouping
error, etc. For engineering design problems, there are
some limitations, called constraints, and design vari-
ables are not completely freely selected. Equality as
well as inequality constraints often exist in a problem.

2.3. Traditional optimization method

Numerical methods, such as Sequential Linear
Programming (SLP) and Sequential Quadratic
Programming (SQP) (Arora, 1989), which are
employed to solve optimization problems, are usually
referred to as ``traditional methods''. In ANN design,
it is not appropriate to use these schemes to solve pro-
blems. The reasons can be stated as follows.

1. There exist qualitative design parameters and these
qualitative design parameters cannot be described
by a numerical expression. Therefore, they cannot
be solved using numerical methods.

2. There exist non-pseudo-discrete design parameters.
These discrete parameters, which occur when the
solution to a continuous problem is perfectly mean-
ingful but cannot be accepted due to extraneous
restrictions, are termed as ``pseudo-discrete par-
ameters'' which can be solved by traditional
methods (Gill et al., 1981). For instance, the vari-
able in a design problem could be the diameter of a
pipe. The diameter is a continuous variable, but
only speci®c values, such as 1 in, 1.5 in and 2 in,
can be found in the market. This kind of variable is
called a ``pseudo-discrete'' design parameter. Many
non-pseudo-discrete parameters that are intrinsically

discrete, such as the number of units and layers,
have to be determined in ANN design.

3. The objective function is complicated. In applying
the traditional methods, ®rst order or second order
di�erentials of the objective function have to be
checked before using SLP or SQP. However, in
ANN design, it is di�cult or impossible to write the
numerical expressions of the objective function. For
example, the grouping error is treated as the objec-
tive function, but the grouping error of every train-
ing process may be calculated from software or a
user subroutine, which is seen as a ``black box''.
Therefore, only the implicit form of the objective
function can be obtained. There is no explicit form
of the objective function for checking.

For the above reasons, traditional optimization
methods cannot be performed well in ANN design. On
the other hand, there are no such limitations when

Fig. 2. The Taguchi method and DOE methodology.
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using other kinds of optimization methods, such as the
Taguchi method and DOE methodology.

2.4. The Taguchi method

Dr. Genichi Taguchi's methods were developed after
World War II in Japan. His most notable contri-
butions lie in quality improvement, but in recent years,
the basic concepts of the Taguchi method has been
widely applied in solving optimization problems, es-
pecially in zero order problems. Because the Taguchi
method is a kind of fractional factorial DOE, the
simulation or experiment at times can be reduced,
compared to DOE. For example, if there are seven
two-level factors in a design problem, only eight simu-
lations have to be done in the Taguchi method. In
DOE, however there are 27 � 128 simulations that
have to be done.

Fig. 2 shows the process of the Taguchi method.
The engineers must recognize the application problem
well and choose a suitable ANN model. In the selected
model, the design parameters (factors) which need to
be optimized have to be determined. Using orthogonal
arrays, simulations can be executed in a systematic
way. From simulation results, the responses can be
analyzed by level average analysis and signal-to-noise
(S/N ) ratio in the Taguchi method (Taguchi, 1986).

2.5. DOE methodology

DOE is a test or series of tests in which the designer
may observe and identify the reasons for changes in

the output response from the changes in the input par-
ameters. Fig. 2 also shows the process of DOE. Unlike
the Taguchi method, a statistical model is constructed
for the simulations and the experiment. Therefore,
some assumptions and validations of the model (model
adequacy checking) have to be made, both before and
after the experiment. The experimental strategy is to
change one parameter and keep the rest of the par-
ameters constant in each step. Therefore, the exper-
iment and simulation times are much longer than in
the Taguchi method as mentioned before. The exper-
imental response, such as the training error and con-
vergence speed, can be analyzed and forecast by
``Analysis of Variance'' (ANOVA) and other statistical
techniques (Montgomery, 1991).

2.6. The Taguchi method vs. DOE methodology

In the optimization process shown in Fig. 1, the
Taguchi method is treated as a pre-running of the de-
sign parameters. For some engineering applications, it
is quite su�cient to use the Taguchi method. There are
many reasons to do so. In design problems, there are
sometimes a large number of design parameters. It is
not e�cient to use DOE methodologies at this time
because of too many training cases. Therefore, the
Taguchi method is used to reduce the training cases,
and to ®nd the more important parameters that a�ect
the response of the neural network. Afterwards, the
DOE methodology can be easily completed using a
smaller number of important parameters, keeping

Fig. 3. A complete derailleur system on a bicycle.
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other parameters constant from the conclusions of the
Taguchi method.

In the DOE methodology, the experimental matrix
contains all the combinations of factors and levels.
Therefore, the experimental data are su�cient to con-
struct the statistical models for the analytical phase.
Because of the stronger statistical base in DOE meth-
odology, ANOVA can be executed in DOE but it can-
not be executed in the Taguchi method. ANOVA
provides the sensitivity analysis in DOE, and the
characteristics of the parameters can be realized. Also,
a forecast can be made to ®nd the optimal combi-
nations of the design parameters. The process of using
DOE and the Taguchi method is described in
Appendix A.

3. The LVQ example: part 1

In order to demonstrate the optimum design pro-
cesses, an application with a Learning Vector
Quantization (LVQ) model is shown. In this example,
the purpose is to distinguish the type of chain engage-
ment to be used in the rear derailleur system of a
bicycle.

3.1. Problem description

The derailleur system in a bicycle is similar to the
gear box in a motor vehicle. A complete derailleur sys-
tem, as shown in Fig. 3, consists of ®ve components:
chainwheel and freewheel, front and rear derailleurs,
shift levers, cables and a chain. Riders change gears by
moving shift levers, causing the derailleurs to guide the
chain to engage larger sprockets or to drop to smaller
sprockets. In derailleur system designs, two types of
chain engagement, Type I and Type II, have to be con-
sidered (Wang et al., 1996). Fig. 4 shows the construc-
tion and nomenclature of a roller chain. Notice that a
roller chain consists of two alternating types of link:
roller links (or inner links) and pin links (or outer
links). Therefore, in a chain drive system, each tooth
can be engaged by a roller link or a pin link; thus
there are two shifting patterns, Type I and Type II, as

shown in Fig. 5. This can easily be seen from the ®rst
engagable tooth and roller in Fig. 5(a) and (b). The
chainwheel and freewheel sprocket design of the two
types are di�erent. Therefore, it is very important for
the designers to know which type occurs during each
gear shift so that di�erent design defects for the two
types can be found and recti®ed.

In a real riding or testing environment, it is very dif-
®cult to distinguish which type of chain engagement
occurs. There must be a camera for monitoring pur-
poses. This costs a lot of money and it is not very easy
to install. The purpose of this example is to establish a
better and easier method to distinguish the chain
engagement type during gear shifts, using a neural net-
work model.

In the experiments, the vibration signals during the
shifting of gears can be recorded by computer (Lin
and Tseng, 1998) and fed to the neural network. Fig.
6(a) and 6(b) are the typical time-domain signals of
Type I and Type II chain engagements. The x-axis of
Fig. 6 is the time sequence and the y-axis is the voltage

Fig. 4. The construction and nomenclature for roller chain links.

Fig. 5. The solid model: (a) Type I and (b) Type II.
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from the accelerometer. The data fed to the network
are transferred from the time domain to the frequency
domain by the FFT technique (John and Dimitris,
1996). In gathering training data, if the tooth numbers
of two adjacent sprockets are both even and the tooth
number of the chainwheel sprocket is also even, only
one type of chain engagement will occur. If only one
chain link is shifted from the previous situation,
another type will occur. In this example, 80 items are
used to train the network, and 40 items are applied to
test the trained network.

3.2. Choosing an ANN model

In supervised learning models, an LVQ example like
that shown in Fig. 7 is selected because of its fast
training speed, no local minimum traps and better per-
formance in classi®cation (Patterson, 1996). The LVQ
is the transformation from the input vector x of
dimension n to known target output classi®cations
t�x� � t, where each class is represented by a codeword

or prototype vector wi�i � 1, 2, . . ., m�: The index i is
the class label for x: Let C�x� denote the class of x
computed by the network; wc is the weight vector of
the winning unit c. Then, C�x� is found using

kwc ÿ xk � minikwi ÿ xk: �4�
When the class is correct, i.e. C�x� � t, the weight vec-
tor of the winning unit c is shifted toward the input
vector. When an incorrect classi®cation is selected, i.e.
C�x� 6� t, the weight vector is shifted away from the
input vector. The update rule for the LVQ can be sum-
marized as follows:

1. Initialize the weights w to small random numbers.
2. Find the prototype unit to represent x by comput-

ing

kwc ÿ xk � minikwi ÿ xk: �5�
3. Update the weight vectors according to

wnew
c � wold

c � a��xÿ wc � if C�x� � t

wnew
c � wold

c ÿ aÿ�xÿ wc � if C�x� 6� t

wnew
i � wold

i for all i 6� c �6�
where a� > 0 and aÿ > 0 are the learning coe�-
cients of two di�erent cases.

4. Repeat steps 2 and 3 until the weights stabilize.

3.3. De®ne the optimization problem

The optimal physical problem can be covered by a
mathematical model of design optimization involving
the procedures below.

1. Choose design variables: Based on the requirements
of the physical problem, users can choose some fac-
tors as design variables, which can be varied during
the optimization iteration process, and some factors
as ®xed constants. In this example, the chosen de-

Fig. 6. Vibration signals in the time domain: (a) Type I and (b) Type

II.

Fig. 7. A Learning Vector Quantization network.
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sign variables from the LVQ network parameters
are the number of input units, a� and aÿ in Eq. (6),
and the weight initialization range. The number of
input units is a discrete design parameter, a� and
aÿ are continuous design parameters, and the
weight initialization range is a qualitative design
parameter.

2. De®ne an objective function: The objective function
must be de®ned according to the purpose and
requirements of the problem. The objective function
in this example is de®ned as the grouping error of
the network,

cost function �
X
i

fdiff

ÿ
Ci�x�, ti

�
, �7�

where�
fdiff � 0 if Ci�x� � ti
fdiff � 1 if Ci�x� 6� ti

: �8�

and i � 1 to the size of the training data. The out-
put of interest of this example is a ``smaller-the-bet-
ter'' quality characteristic.

3. Identify constraints: A suggested range of design
variables from the solver SNNS (Zell, 1995) will be
described in the next section.

3.4. The Taguchi method

The theories and principles used in the Taguchi
Method (Taguchi, 1986; Peace, 1993) will not be

described in detail; only the key points and analyzed
results are shown below. From the optimization
model, four factors, including the number of input
units, a�, aÿ and the weight initialization range, have
to be determined. The factors and selected levels are
shown in Table 1.

1. For the number of input units, the vibration signals
during gear-shifting are transformed into the fre-
quency domain by the FFT to 256 data points.
Using data compression techniques, 256 points can
be compressed to 128 and 32 points. Therefore, in
this factor (the number of input units), three levels
(256, 128 and 32 points) are selected.

2. For a� and aÿ, the two parameters are continuous
design variables and need to be transferred to dis-
crete ones. In optimization formulation, there must
be lower and upper bounds for the design variables.
According to the suggestion of the software (Zell,
1995), 0.1 is suitable for general purposes.
Therefore, 0:05Ra�, aÿR0:3 is assumed, and three
levels (0.05, 0.1 and 0.3) are selected. If the optimiz-
ation results are located at the boundaries, an
expansion has to be made in the following DOE
process. Otherwise, if the results are acceptable for
an engineering application, no expansion is needed
for the boundaries.

3. For the weight initialization range, a small range is
suggested by the software (Zell, 1995). Therefore,
20.1,20.3 and20.5 are selected.

After the factors and levels are determined, a suit-
able orthogonal array can be selected for the training
process. Table 2 is the L9�34� orthogonal array for the
factors and levels in this example. For instance, in the
®rst training experiment, there are 256 input units, Z�

and Zÿ are set to 0.05, and the weight initialization
range is between +0.1 and ÿ0.1. After nine training
experiments have been made, the grouping errors of
the 80 training data are summarized in Table 2. Since
there are no local minimum traps in this model, repli-
cate training is not needed for the same parameters.
For some other models, the ®nal results may be

Table 1

Factors and levels

Factor Level 1 Level 2 Level 3

No. of input unit 256 128 32

Z� 0.05 0.1 0.3

Zÿ 0.05 0.1 0.3

Weight initial range 20.1 20.3 20.5

Table 2

Training results

Input units Z� Zÿ Weight initial range Grouping error S=N (dB)

1 256 0.05 0.05 20.1 1/80 19.03

2 256 0.1 0.1 20.3 14/80 7.56

3 256 0.3 0.3 20.5 34/80 3.72

4 128 0.05 0.1 20.5 18/80 6.48

5 128 0.1 0.3 20.1 34/80 3.72

6 128 0.3 0.05 20.3 5/80 12.04

7 32 0.05 0.3 20.3 35/80 3.59

8 32 0.1 0.05 20.5 43/80 2.70

9 32 0.3 0.1 20.1 33/80 3.85
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a�ected by di�erent initial designs. Therefore, repli-
cated training is necessary for the following S=N
analysis.

The last column in Table 2 is the signal-to-noise
ratio �S=N). The equation for calculating the S=N for

the smaller-the-better quality characteristic is Eq. (A1).
In this example, there is only one replicate, therefore,
the physical meaning of S=N is similar to the grouping
errors in Table 2. The grouping errors are used here
instead of S=N for easier understanding.

The next step in the Taguchi method is Level
Average Analysis. The goal is to identify the strongest
e�ects and to determine the combination of factors
and levels that can produce the most desired results.

Table 3 is the response table, which shows the average
experiment result for each factor level. The total e�ect
of the 256 input units is 16. This is the average group-
ing error of the ®rst three rows in Table 2
��1� 14� 80�=3 � 16). Other response values can be
calculated by using a similar method. For the number
of input units, 256 units can get a smaller grouping
error than other levels. The same principle can be used
to make Z� and Zÿ equal to 0.05, and the weight initi-
alization range to be between +0.3 and ÿ0.3. Fig. 8
shows the response curves for the four factors. It
shows that the four factors do have a strong e�ect on

the grouping errors. Therefore, the recommended fac-
tor levels are: 256 input units, Z� � 0:05, Zÿ � 0:05
and a weight initialization range of 20:3:

4. The LVQ example: part 2

From the Taguchi method, an improved design of
the LVQ network is obtained. Fig. 2 shows the next
step of the optimization process Ð the DOE method-
ology. The main purpose of this step is to further ana-
lyse the results of the Taguchi method, and to get
more accurate settings for the factors. The DOE the-
ories and principles (Montgomery, 1991) will not be
described here; only the key points and results are
shown below.

4.1. Choosing an experimental design

For the number of input units, it is obvious that a
larger number will cause smaller grouping errors in
Fig. 5, and that 256 units is the maximum. Therefore,
the number of input units will remain at 256 in this
step. For the weight initialization range 20:3 is not
located at the variable boundaries and seems to be a
local minimum in Fig. 8. Therefore, this parameter
will also remain constant here. For Z� and Zÿ, the
minimum response is located at the lower bound of
the variables; therefore, an expansion of the bound-
aries is required in further analysis. In summary, only
the two continuous parameters, Z� and Zÿ, are treated
as design variables in the DOE methodology, and the
other two parameters are kept constant.

The new parameter sets are shown in Table 4. The
upper and lower bounds of Z� and Zÿ are changed
from 0.05 and 0.3 to 0.01 and 0.1. Therefore, three
levels (0.1, 0.05 and 0.01) are designed for training,
while the other two parameters are kept constant.
Nine training cases have to be simulated in this
example.

4.2. Conducting the experiment

The same 80 items of training data used in the
Taguchi method are also applied here. The results of
grouping errors are also shown in Table 4. Upon com-
pletion of the training experiments, DOE analysis tech-
niques can be executed.

Table 3

Response table

Factor Level Error Factor Level Error

Input units 256 16 0.05 16

128 19 Zÿ 0.1 22

32 37 0.3 34

Z� 0.05 18 20.1 23

0.1 30 Weight initial range 20.3 18

0.3 34 20.5 32

Fig. 8. Response curves.

Table 4

DOE array and training results

Z�

0.1 0.05 0.01

0.1 14/80 (4.0) 26/80 (7.0) 28/80 (8.0)

Zÿ 0.05 23/80 (6.0) 1/80 (1.5) 10/80 (3.0)

0.01 29/80 (9.0) 19/80 (5.0) 1/80 (1.5)
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4.3. The statistical model

This is a two-factor factorial design. The statistical
model of this example is

yijk � m� ti � bj � �tb�ij�eijk,
8<: i � 1, 2, . . . , a
j � 1, 2, . . . , b
k � 1, 2, . . . , n

: �9�

where

yijk is the ijkth observation (grouping error),
m is the overall mean,
ti is the ith Z� e�ect (®xed e�ect),
bj is the jth Zÿ e�ect (®xed e�ect),
�tb�ij is the interaction between Z� and Zÿ,
eijk is the random error component. eijk0NID �0,
s2�:

There are three levels in each factor and only one
replicate is done; therefore, a � 3, b � 3 and k � 1:
With only one replicate, there are no error estimations.
One approach applied to the following analysis is to
assume a negligible higher order interaction between
Z� and Zÿ combined with an error degree of freedom.

4.4. Analysis of variance (ANOVA)

Using the statistical model and the training results,
the ANOVA technique can be executed. Table 5 is the
ANOVA table from the SAS software, and the error
estimation is taken from the interaction between Z�

and Zÿ: If a 95 percent con®dence interval is assumed
(i.e., a � 0:05, the normal setting for applications),
Fa; n1; n2 � F0:05; 2; 2 � 19:0: For the null hypotheses of
ti � 0 and bj � 0,

F0, Z� � 0:42 < F0:05, 2, 2 � 19:0 and

F0, Zÿ � 0:61 < F0:05, 2, 2 � 19:0:

Therefore, the null hypotheses are accepted. The con-
clusion is that there is no signi®cant di�erence between
the three levels of Z� and Zÿ: The results can also be
observed from the Pr value in the ANOVA table.
Pr � 0:68 and Pr � 0:59 mean that the probability of
rejecting null hypotheses is very high (compared to
0.05). The sensitivity of Z� and Zÿ to grouping errors

is not very high. In some cases, the conclusion may be
drawn that there are signi®cant di�erences between the
levels. This means that the factor is very sensitive to
the output response.

4.5. Model adequacy checking

In the statistical model of this problem, three
assumptions are made: normality, independence and
equal variance. Some tests have to be executed to ver-
ify these assumptions. For checking the normality, the
Kruskal±Wallis Test (Montgomery, 1991) is used. In
Table 4, the values in the brackets are the data ranks,
Rijk, for the experiment.

S2 � 1

Nÿ 1

24Xa
i�1

Xb
j�1

Xn
k�1

R2
ijk ÿ

N�N� 1�2
4

35
� 1

8

�
284:5ÿ 9� 102

4

�
� 7:4375 �10�

H � 1

S2

"Xa
i�1

R2
ijk

n
ÿ N�N� 1�2

4

#

� 1

55:32

�
284:5ÿ 9� 102

4

�
� 1:0756: �11�

Since H < w20:05, 8 � 15:51, one would accept the null
hypothesis of ti � 0 and bj � 0: There is no signi®cant
di�erence between the three levels of Z� and Zÿ: The
conclusion here is the same as that given by the usual
analysis of the variance F test. Therefore, the normal-
ity assumption is justi®ed.

On the other hand, because this example is a single
replicated factorial, a regression method is applied
(Montgomery, 1991) for a residual plot. The linear re-
gression model is

ŷ � 7:276867� 101:366120Z� � 76:775956Zÿ: �12�

Fig. 9. Plot of residuals vs. predicted grouping error.

Table 5

The ANOVA table

Source Sum square Degree of freedom Mean square F0 Pr > F

Z� 141.56 2 70.78 0.42 0.6827

Zÿ 205.56 2 102.78 0.61 0.5868

Error 673.11 4 168.27

Total 1020.23 8
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Fig. 9 plots the residuals vs. the predicted values, ŷ,
for the grouping errors. There is no obvious pattern
apparent, therefore, the independence and equal var-
iance assumptions are justi®ed.

4.6. Forecasting

In Table 4, the training results show that two cases
of Z� and Zÿ using the combination ((0.01, 0.01) and
(0.05, 0.05)) will get a better grouping error. Only one
grouping error occurs among 80 training data. In
order to get more precise results, the regression
method is used. Using the General Regression Model
in the SAS software (Montgomery, 1991), the highest
order Fitting Response Surface is

z � ÿ13:89� 1284:54Z� � 800:09Zÿ

ÿ 8422:84Z�
2 ÿ 3867:28Zÿ

2 ÿ 68236Z�Zÿ

� 561574Z�Zÿ
2 � 589352Z�

2

Zÿ

ÿ 5262346Z�
2

Zÿ
2

: �13�

The surface is shown in Fig. 10. Using the partial
di�erential method, the minimum z value and the cor-
respondence Z� and Zÿ can be obtained: Z� � 0:046
and Zÿ � 0:05:

4.7. Con®rmation experiment

Using the recommended factor levels:

number of input units: 256,
Z�:0:046,
Zÿ:0:05,
weight initialization range: 20:3:

the grouping error after training becomes zero, i.e., all
the training data are classi®ed successfully.

5. Conclusion

Optimization techniques have been widely used in
many applications. In this paper, two major categories,
the Taguchi method and the DOE methodology, are
applied to improve upon the original designs of
ANNs. The users have to recognize the design problem
and choose a suitable ANN model. Then, the optimiz-
ation problems can be de®ned according to the model.
The Taguchi method is ®rst applied to ®nd the more
important factors, and to simplify the design problems.
DOE methodologies are then used to ®nd the sensi-
tivity and a more precise combination of design par-
ameters. The ®nal results of the examples introduced
in this study indeed improve the initial designs and get
a better performance.

Although only one ANN model, LVQ, is demon-
strated in this paper, other models, such as ADALINE,
MADALINE, Hop®eld Networks, MLFF, Boltzmann
Machines, Recurrent Neural Networks, Neocognitrons,
etc., are also suitable. Many bene®ts can be mentioned.
First, this is a systematic method to use for a neural net-
work design. It means that the engineer, whether or not
he or she is experienced in ANN, the Taguchi method
and DOE, can follow this process easily. Many commer-
cial software packages can be applied, such as SNNS in
ANN and SAS in the DOE. Second, it will not take too
much computational e�ort and time. The results of the
demonstrated examples can be obtained within 5 min
with a Pentium-150 PC. This detail was not emphasized
in this paper because it is not the major concern here.
Finally, in engineering applications, it is not necessary to
get a global optimization of the problems, because that
takes too much time or the algorithms may be very com-
plicated. The improvement of the original designs to an
acceptable region is helpful for engineers.
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Appendix A. The Taguchi method and DOE
methodology

Dr. Genichi Taguchi's methods were developed after
World War II in Japan, while the DOE methodology
was ®rst introduced by R. A. Fisher in the 1920s. The
Taguchi method is a kind of fractional factorial DOE;
therefore, the simulation or experiment times can be
reduced to a smaller number compared to DOE. The
most notable contributions of the methodology are in
quality improvement, but in recent years, the basicFig. 10. Fitting response surface.
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concepts of the Taguchi method and DOE have been
widely applied to the solution of optimization pro-
blems, especially in zero order problems. In this sec-
tion, some of the basic concepts used in the Taguchi
method and DOE are described.

A.1. Problem recognition

A clear recognition of the problem often contributes
substantially to a better understanding of the phenom-
ena involved, and the ®nal solution of the design pro-
blem. Usually, it is necessary to convert physical
statements or customer requirements to measurable
quantities. Therefore, an optimization problem which
consists of design variables, objective (cost) functions,
and constraints can be de®ned.

A.2. Choice of factors and levels

In the problem recognition stage, the experimenter
must choose the design variables to be varied. These
variables are named as ``factors'' in the experiment.
Some factors are treated as ``noise'' factors that are
uncontrollable, unimportant, or not of concern during
the experiment. The factors other than these are of
major concern in the Taguchi method or DOE meth-
odology. In every factor, the experimenter also has to
choose some speci®c values, choose which runs will be
made and the range over which these factors will be
varied. These values are called the ``levels'' of every
factor. For instance, the Multilayer Feedforward
(MLFF) neural network shown in Fig. A1 has to be
optimized. The factors can be the number of input
units, the number of hidden layers, the number of hid-
den units for each hidden layer, the learning rate, the
training methods, etc. In the training methods, the
levels can be the steepest descent, conjugate gradient,
BFGS or DFP methods (Arora, 1989).

A.3. Choice of an experimental design

Designing the experiment means the construction of

the experiment at layout, which includes proper assign-
ment of the selected factors, levels and interactions, to
provide meaningful results containing all the information
required. If there are m levels in factor A and n levels in
factor B, the experimental matrix of the DOE method-
ology is shown in Table A1 which contains m � n treat-
ment combinations. Other high order factorial designs
can be constructed using a similar method.

On the other hand, the foundation for designing the
experiment using the Taguchi method is the orthog-
onal array. Each array can be identi®ed by the form
LC�BA�: L means the ``Latin Square''. The subscript of
L, designated by C, represents the number of exper-
imental runs or combinations of factors which must be
conducted in the experiment. B is the number of levels
within each factor. The letter A, which is the exponent
of the base letter B, denotes the number of factors(col-
umns) in the experiment. Some suggested orthogonal
arrays can be found in Taguchi (1986). In Table A2,
the orthogonal array L9�34� contains 9 experimental
runs. Within the L9�34�, each factor (column) contains
3 levels, and up to 11 factors can be incorporated into
the experiment. For instance, the second experimental
run consists of level 1 of factor 1, level 2 of factor 2,
level 2 of factor 3, and level 2 of factor 4.

A.4. Performing the experiment

Conducting the experiment includes the execution
and simulation of the experiment as developed in pre-
vious stages. Before the actual running of the exper-

Table A1

General arrangement for a two-factor design

Factor B

1 2 . . . n

1 y11 y12 . . . y1n
Factor A 2 y21 y22 . . . y2n

. . . . . .

m ym1 ym2 . . . ymn

Table A2

L9�34� orthogonal array

Experiment no. Factor 1 Factor 2 Factor 3 Factor 4

1 Level 1 Level 1 Level 1 Level 1

2 Level 1 Level 2 Level 2 Level 2

3 Level 1 Level 3 Level 3 Level 3

4 Level 2 Level 1 Level 2 Level 3

5 Level 2 Level 2 Level 3 Level 1

6 Level 2 Level 3 Level 1 Level 2

7 Level 3 Level 1 Level 3 Level 2

8 Level 3 Level 2 Level 1 Level 3

9 Level 3 Level 3 Level 2 Level 1
Fig. A1. An MLFF neural network.
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iment, the test plans (including the experimental order,
repetition, randomization, preparation and coordi-
nation) have to be developed. These preliminary e�orts
are essential and are important for smooth and e�-
cient execution of the experiment.

A.5. Analysis for DOE

The analysis phase of the experiment is employed to
convert a row of data into meaningful information
and to interpret the results. The ®rst step of an analy-
sis for DOE is to assume a statistical model for the ex-
periment. The model contains the e�ects of the factors,
their interactions, and error estimations. Three
assumptions (normality, independence and equal var-
iance) are applied in the model. According to the stat-
istical model, the Analysis of Variance (ANOVA) can
be accomplished using the SAS software. The ANOVA
is the sensitivity analysis for the levels in each factor.
Therefore, the e�ects of di�erent factors, levels, and
interactions between factors can be realized. Finally,
the model adequacy checking has to be performed to
prove the three assumptions in the model. For check-
ing the normality, the Kruskal±Wallis Test
(Montgomery, 1991) is always used. For the indepen-
dence and equal variance assumptions, residual plots
(Montgomery, 1991) can be used. If the model is ade-
quate, the General Regression Model in the SAS soft-
ware (Montgomery, 1991) can be used to forecast the
optimum combination of the experiment. The demon-
stration example and the detailed descriptions of data
analysis for DOE are shown in Section 4 of this paper.

A.6. Analysis for the Taguchi method

Dr. Taguchi recommends analyzing the mean response
for each experiment in the orthogonal array, and analyz-
ing the variation using the signal-to-noise �S=N� ratio.
The S=N ratio for three di�erent objective functions are:

S

N
� ÿ10 logjy

2
1 � y22 � . . .� y2n

n
j,

for a smaller-the-better characteristic

�A1�

S

N
� ÿ10 logj

1

y21
� 1

y22
� . . .� 1

y2n
n

j,

for a larger-the-better characteristic,

�A2�

where n is the number of replicates and yn is the exper-
imental response. Larger S=N values mean that strong
signals and little noise (interference) exist during the ex-
periment. Therefore, larger S=N values are desired in the
Taguchi Method. After the S=N calculations, the level
average analysis can be performed to obtain the opti-
mum solution. The demonstration example and the
detailed descriptions of data analysis for the Taguchi
method are shown in Section 3 of this paper.

A.7. Con®rmatory experiment

After the analysis phase, the optimum combination
of the levels in each factor can be obtained. A con®r-
matory experiment at these settings is vital for check-
ing the reproducibility of the optimum combinations,
and for con®rming the assumptions used in planning
and designing the experiment.
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