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Abstract

In this paper, we consider the expansion processes of competence sets which have asymmetric cost functions, in-

termediate skills, and compound skills; among the skills, cyclic connections are possible. We introduce the concept of

the stage expansion process (SEP) of the competence set, and provide mathematical programming methods to ®nd a

minimal cost SEP and the ordering of expansion. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

To be a medical doctor, teacher, certi®ed accountant, stock broker, electrician, computer programmer,
etc., one must go through a sequence of training and/or examinations in order to gain the basic skills to do a
good job.

Indeed, for each signi®cant decision problem, there is a competence set consisting of ideas, knowledge,
information, and skills for its satisfactory solution. When the decision maker (DM) thinks that he/she has
acquired the needed competence set as perceived, he/she will be con®dent in making the decision. Other-
wise, the DM may want to expand the competence set. In order to attain adequate competence sets, billions
of dollars have been spent by corporations and individuals in job training, and many successful people
spend many hours a week in active learning. Society, in order to certify the quality of work, issues cer-
ti®cates, diplomas and licenses to the people who have acquired certain competence sets.

Competence set analysis was ®rst introduced by Yu [1] as an application part of habitual domains [1,2].
Its mathematical foundation was reported in Yu and Zhang [3]. Mathematical methods to attain more
e�cient ways to acquire the needed competence sets under various assumptions have been subsequently
reported in [3±8].
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More speci®cally, when the cost function c(x, y), acquiring y from x, is symmetric (i.e., c(x, y)�
c(y, x)), Yu and Zhang [3,7,8] use the next-best method to acquire the optimal expansion process. When
the cost function is asymmetric and the digraph (directed graph), which describes the interconnections of
expansion among the skills, contains cycles, Shi and Yu [6] introduce a concept of tree expansion process
and an integer programming method to get an optimal expansion process. Note, in the expansion process,
there are collections of individual skills known as compound skills (see De®nition 2.1 of this paper) which
can facilitate the acquisition of other skills; and there are some skills which are not really needed for
solving the problem but can facilitate the acquisition of the needed skills. The latter are known as in-
termediate skills. Li and Yu [5] use the concept of deduction graph and develop an integer programming
method to solve the problem of competence set expansion in which compound skills and intermediate
skills exist in the digraph which contains no cycles. Recently, Li [4] uses the concept of the deduction
graph and proposes an integer programming method to solve the problem of competence set expansion in
which compound skills, intermediate skills, and cycles exist in the digraph, but he does not give the proof
to his method.

In this paper, we focus on how most e�ciently to help the DM acquire the needed competence set under
very general conditions. We introduce a new concept of the stage expansion process (SEP) to study
competence set expansion problems that have compound skills, intermediate skills and cycles in the di-
graph. A major signi®cance of using this concept of the SEP is that we can apply a forward method to
derive the fundamental theorem (Theorem 3.1). This forward method is intuitively clear, and much easier to
understand than that of the backward method of [6]. In addition, the forward method allows us to study the
expansion process for digraphs which contain compound and intermediate nodes, which was not included
in [6]. We show that the cost of the minimal cost expansion process is equal to that of the minimal cost SEP.
Thus to ®nd an optimal expansion process, we only need to ®nd an optimal SEP. An integer programming
method is developed to acquire the minimal cost SEP, which can simultaneously determine the ordering of
stages for the skills to be acquired in the expansion process. This makes it easier for us to depict graphically
the expansion process of the competence set.

The paper is organized as follows. In Section 2, we describe some preliminary concepts of expansion
processes when there are compound skills, intermediate skills and cycles. In Section 3, we introduce the
new concept of the SEP and provide three important theorems. In Section 4, we ®rst prove that the total
cost of the minimal cost expansion process is equal to that of the minimal cost SEP, then we develop
integer programming methods to ®nd a minimal cost SEP. Finally, we give an example to illustrate the
methods.

2. Expansion process

As we know, if we have already acquired the skills of geometry and algebra, then it is easier for us to
learn calculus than if we learned geometry or algebra alone. Geometry and algebra together are called a
compound skill, while geometry or algebra alone is called a (precedent) singleton skill. Each skill may be
represented by a node in a directed graph. The directed arcs in the graph indicate the sequence for the skills
to be obtained.

Let HD � Sk [ I [ C [ Tr, where HD (habitual domains) is the set of skills related to solving a particular
problem, Sk is the already acquired competence set (Skill), Tr is the true competence set needed for solving
the problem, I is the set of all intermediate skills, and C is the set of all compound skills.

Let G be the digraph formed by all nodes or skills in HD and their directed arcs including the arcs among
the compound nodes and their singleton nodes. Denote by G the digraph formed by all nodes or skills in
HD and their directed arcs excluding the arcs among the compound nodes and their precedent nodes.

Let U and U be the collections of arcs in G and G, respectively. That is:
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U � f�x; y�j�x; y� is an arc of Gg;

U � f�x; y�j�x; y� is an arc of Gg:

Let B(x) and A(x) be the nodes immediately before and after x, respectively, with respect to U; while A�x�
is that after x with respect to U . That is:

B�x� � fyj�y; x� 2 Ug;

A�x� � fy 2 HDnSkj�x; y� 2 Ug;

A�x� � fy 2 HDnSkj�x; y� 2 Ug:

Note, a compound skill is obtained only when all of its precedent singleton skills have been obtained. In
order to make compound skills or nodes precise, following De®nition 2.1 of [5], we have

De®nition 2.1. A node xc in G is a compound node if xc can be decomposed into a set of singleton nodes
fxc1; . . . ; xckg and B�xc� � fxc1; . . . ; xckg. Denote xc � xc1 ^ xc2 ^ . . . ^ xck.

Remark 2.1. There is no cost to acquire a compound node xc from xci 2 B�xc�; however, if we want to get xc,
we must have acquired all xci ®rst. Also by De®nition 2.1, for every compound node xc, except for xci

(i � 1; 2; . . . ; k), there is no other node connecting to xc . In the following, by connection between xci and xc

(as a directed arc), we mean that the connection is from xci to xc.

Let c(x, y) be the cost of acquiring y from x.

De®nition 2.2. We call sequence w � �xk1; xk2; . . . ; xkn�, with fwg � fxk1; xk2; . . . ; xkng � HDnSk an expansion
process from Sk to Tr, if

(a) TrnSk � fwg,
(b) for xki 2 C;B�xki� � Skiÿ1; for xki 62 C;B�xki� \ Skiÿ1 6� ;; where Sk0�w� � Sk; Ski�w� � Skiÿ1�w� [
fxkig; i � 1; . . . ; n:
We call Ski(w) the ith step of the expansion process w, Ci(w)�min{c(x, xki) | x 2 Skiÿ1(w)} the ith step

expansion cost, 16 i6 n; and C�w� � C1�w� � � � � � Cn�w� the total cost of the expansion process w.
We call w� a minimal cost expansion process if C(w�)�min{C(w) | w is an expansion process}. In order to

simplify notation, when the context is clear we will write {w} simply by w. The following example is
modi®ed from Example 2.1 of [5].

Example 2.1. Let HD� {a, b, c, a ^ b, D, e, f, e ^ f, g, h}, Sk� {a, b, c, a ^ b}, Tr� {d, f, g, h},
I� {e}, C� {a ^ b, e ^ f }. The cost of acquiring one skill (in the ®rst row) from another skill (in the ®rst
column) is given in Table 1, the empty cells indicate that it is practically impossible to acquire one skill (in
the ®rst row) from its corresponding skill in the table. How do we e�ciently get the Tr?

Note, w� (f, d, e, e ^ f, g, h) is an expansion process. Here, Sk0� { a, b, c, a ^ b }, Sk1� {a, b, c, a ^ b,
f}, Sk2� {a, b, c, a ^ b, f, d}, Sk3� {a, b, c, a ^ b, f, d, e}, Sk4� {a, b, c, a ^ b, f, d, e, e ^ f}, Sk5� {a, b, c,
a ^ b, f, d, e, e ^ f, g}, Sk6� {a, b, c, a ^ b, f, d, e, e ^ f, g, h}, C�w� � 2:5� 1� 1� 1:5� 1:5 � 7:5.

It will be seen that w is not a minimal cost expansion process. Our problem is to get a minimal cost
expansion process e�ciently.
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3. Stage expansion process

When Sk contains only one skill and there is no compound skill and intermediate skill in G, Shi and Yu
[6] introduced the concepts of the tree construction sequence and the tree expansion process to acquire the
minimal tree expansion process, which is also a minimal cost expansion process. But with compound skills
in G, it is impossible for us to use the concepts of the tree construction sequence and the tree expansion
process again. How can we ®nd a minimal expansion process in this situation? In order to solve this
problem, we introduce the concept of the SEP.

Let V (V Ì U) be a set of arcs. De®ne:

Bm�x� � fy 2 HDj�y; x� 2 V g;
Am�x� � fy 2 HDnSkj�x; y� 2 V g;
Am�x� � fy 2 HDnSkj�x; y� 2 V \ Ug:

In the following, given Mj � �xj
1; . . . ; xj

nj�, in order to simplify the notation, the set fMjg � fxj
1; . . . ; xj

njg,
without confusion, will be written simply as Mj.

De®nition 3.1. Let V Ì U, Mj � �xj
1; . . . ; xj

nj� � HDnSk, j � 1; 2; . . . ; r. We call the sequence w �
�M1;M2; . . . ;Mr� with respect to V SEP, if it satis®es:

(i) TrnSk � fwg � [fMjjj � 1; . . . ; rg;
(ii) when x1

i 2 M1\C, $ x 2 Sk, such that Bv(x
1
i )� {x}; when x1

i 2 M1 \ C, B�x1
i � \M1 6� ;;

B�x1
i � � Sk [ fx1

1; . . . ; x1
iÿ1g;

(iii) for j � 2; . . . ; r, when x
j
i 2 Mj\C, 9 y 2 Mjÿ1, such that Bv(x

j
i )� {y}; when x

j
i 2 Mj \ C,

B�xj
i� \Mj 6� ;, B(xj

i ) Ì Sk [ M1 [ � � � [Mjÿ1 [ fxj
1; . . . ; xj

iÿ1g.

Remark 3.1. If w � �M1;M2; . . . ;Mr� with respect to V is an SEP, then we call Mj the jth stage expansion set,
j is the ordering number of stage Mj, and there is no connection between any two singleton nodes or skills
of Mj. If xc is a compound node or skill of Mj, then it has no successor node in Mj. For each compound
node xc � xc1 ^ xc2 ^ � � � ^ xck, if t�max{jjxci 2 Mj; i � 1; . . . ; k}, then xc 2 Mt. This arrangement is based
on the idea that if we get all the xci�i � 1; . . . ; k�, then we automatically get xc. In other words, if xct is the
last skill we get among all the skills of {xc1; xc2; . . . ; xck}, when we get xct, we automatically get xc. Thus xct

and xc are acquired in the same stage. Stage expansion depicts the ordering of the skills acquired.

Example 3.1. From Example 2.1, w� (f, d, e, e ^ f, g, h) with respect to V� {(a ^ b, f), (a ^ b, d), (d, e),
(e ^ f, g), (e ^ f, h)} is a SEP (Fig. 1). Note, M1� {f, d}, M2� {e, e ^ f}, M3� {g, h}. Let V1� {(a ^ b, f),

(a ^ b, d), (f, e), (e ^ f, g), (e ^ f, h)}. We see that w with respect to V1 is also an SEP (Fig. 2), with M1�

Table 1

Costs required for new skills

d e f g h

a 1 3 4

b 2 4

c 2 3

a ^ b 1 2.5 3.5

d 1 1.8

e 4 4

f 2 2 2 2

e ^ f 2 1.5 1.5
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{f, d}, M2� {e, e ^ f}, M3� {g, h}. Although these two SEPs have the same expansion stages, they are
di�erent SEPs.

Assumption 3.1. Let X be a set of skills (X Ì HD\Sk), V a set of arcs (V Ì U). In the following, by ``some set
of skills X and some set of arcs V'', we implicitly assume that V is the set of arcs consisting of some directed
connections among the skills in X � � X [ fx 2 SkjAm�x� \ X 6� ;g. When compound node xc 2 X and
xci 2 B�xc� \ X �, for simplicity, we assume �xci; xc� 2 V :

Theorem 3.1. Let X be a set of skills (X Ì HD\Sk), V a set of arcs (V Ì U), X � � X[
fx 2 SkjAm�x� \ X 6� ;g; X and V form an SEP if and only if:

(i) Tr\Sk Ì X;
(ii) for each x 2 XnC;Bm�x� is a singleton and Bm�x� � X �;
(iii) for each x 2 X \ C, B(x) Ì X�;
(iv) there is no sequence (xp1; xp2; . . . ; xpk� � X satisfying

xp1 2 Bv�xp2�; . . . ; xpkÿ1 2 Bv�xpk�; xpk 2 Bv�xp1�: �1�

Proof. For necessity. If X and V form an SEP, by De®nition 3.1, (i)±(iii) hold obviously. If there is a
sequence �xp1; xp2; . . . ; xpk� � X satisfying (1), then from xpk 2 Bv(xp1), xpk is before xp1 in the SEP, but from

Fig. 1. The ®rst SEP.

Fig. 2. The second SEP.
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xp1 2 Bv�xp2�; . . . ; xpkÿ1 2 Bv�xpk�, we know that xp1 is before xpk in the SEP, which leads to a contradiction.
Thus (iv) holds also.

For su�ciency. Write:

X0 � X ;

Ms
1 � fx 2 X0jBm�x� � Sk; if x 62 Cg;

Mc
1 � fx 2 X0jB�x� � Sk [Ms

1 and B�x� \Ms
1 6� ;; if x 2 Cg;

M1 � Ms
1 [Mc

1 ;

X1 � X0nM1;

:::::::::::::::::::::::::

Ms
i � fx 2 Xiÿ1jBv�x� � Miÿ1; x 62 Cg;

Mc
i � fx 2 Xiÿ1jB�x� � Sk [M1 [ . . . [Miÿ1 [Ms

i and B�x� \Ms
i 6� ;; x 2 Cg;

Mi � Ms
i [Mc

i ;

Xi � Xiÿ1nMi; i � 1; 2; . . . ; n:

From the above de®nition, we see:

Xi � X0

[
1�j�i

Mj;

-
Mi \Mj � ;; with i 6� j; X �

[
1�j�n

Mj:

Note that if Xiÿ1 6� ;, then Mi 6� ;. Otherwise, for every x 2 Xiÿ1, let us consider two possible cases: Case
(a) x62C, since Mi � ;, we have Ms

i � ;. From condition (ii), Bv�x� 6� ;. From the above construction
procedure, 9 x1 2 Xiÿ1 such that x1 2 Bv(x). Case (b) x 2 C, since Mi � ;, we have Mc

i � ;. From the above
construction procedure, 9 x� 2 Xiÿ1 such that x� 2 B�x�. By Assumption 3.1, we have x� 2 Bv�x�. By cases (a)
and (b), we get that for each x 2 Xiÿ1, there is a y 2 Xiÿ1, such that y 2 Bv�x�. Because of the ®niteness of
Xiÿ1, we may get a sequence satisfying Eq. (1), which contradicts condition (iv).

Now, consider X1. If X1 � X0nM1 � ;, then Xi � ;;Mi�1 � ;; 16 i6 nÿ 1: If X1 6� ;, then M2 6� ;. Re-
peating the above consideration on X2 and so on, we can get a sequence �M1;M2; . . . ;Mr� such that Mi 6� ;,
16 i6 r, and Mj � ;; r � 16 j6 n; 16 r6 n. Let

M1 � �x1
1; . . . ; x1

n1�; . . . ;Mr � �xr
1; . . . ; xr

nr�
in which we arrange the nodes in such a way that 8x 2 C \Mi; y 2 B�x� \Mi is before x in
Mi�i � 1; 2; . . . ; r�. Then from the above construction procedure, we know that �M1;M2; . . . ;Mr� �
�x1

1; . . . ; x1
n1; . . . ; xr

1; . . . ; xr
nr� with respect to V is an SEP. h

Remark 3.2. The constructive proof for su�ciency above is di�erent from that of Theorem 3.1 in [6]. The
proof here is a forward method, not a backward method of [6]. The proof is much easier to understand than
that of [6]. Above all, the SEP gives us a clear ordering of expansion process; we will further discuss this
later.

Remark 3.3. The assumption (iv) in Theorem 3.1 is that to avoid cycling in an SEP, we will use the system of
inequalities similar to the method of Miller et al. [9] as its equivalent statement (assumption (iv) in the
forthcoming Theorem 3.2, or assumptions (iv) and (iv)� in the forthcoming Theorem 3.3).

De®nition 3.2. Let X, X Ì HD\Sk, be a set of skills, V (V Ì U) a set of arcs, X � � X [ fx 2 SkjAv�x� \ X 6�
;g; define
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wi �
1 if xi 2 X �;

0 otherwise:

�

y�i; j� �
1 if �xi; xj� 2 V ;

0 otherwise:

(

Theorem 3.2. Let X be a set of skills (X Ì HD\Sk), and V, a set of arcs (V Ì U). Then X and V form an SEP
if and only if wi and y(i, j) (as in De®nition 3.2) satisfy:

(i) wi � 1; 8xi 2 TrnSk;
(ii)

P
xi2B�xj� y�i; j� � wj; 8xj 2 HDn�C [ Sk�;

(ii)� �A�xi��wi P
P

xj2A�xi� y�i; j�; 8xi 2 HD;
(iii) �B�xc��wc6

P
xci2B�xc�wci; 8xc 2 CnSk

(where [A(xi)] and [B(xc)] are the numbers of nodes in A(xi) and B(xc), respectively),
(iv) there exists a ui � u�xi� for each xi 2 HD\Sk, and ui 2 f0; 1; 2; . . . ; ng such that

ui ÿ uj � �n� 1�y�i; j�6 n; xi; xj 2 HDnSk, n is the number of nodes in HD\Sk.

Proof. We will prove that conditions (i)±(iv) of Theorem 3.1 are equivalent to the conditions (i)±(iv) of
Theorem 3.2. From De®nition 3.2, it is easy to check that condition (i) of Theorem 3.2 is equivalent to
Tr\Sk Ì X which is the condition (i) of Theorem 3.1.

Now, let us prove the equivalence of conditions (ii)±(ii)� of Theorem 3.2 and condition (ii) of Theorem
3.1. For each xj 2 XnC, from De®nition 3.2, wj� 1. By condition (ii) of Theorem 3.2, we have that there is
only one skill xi 2 B�xj� such that y(i, j)� 1. That is, (xi; xj� 2 V ; or fxig � Bv�xj�. By (ii)� of Theorem 3.2, we
have wi� 1, i.e., xi 2 X �. Thus condition (ii) of Theorem 3.1 holds.

For each xj 2 HD\(C [ Sk), considering two possible cases: Case (a) xj 2 X, i.e., wj� 1, by (ii) of
Theorem 3.1, we know Bv(xj) is a singleton. If we let fxig � Bm�xj�, then �xi; xj� 2 V is the unique arc such
that y(i, j)� 1. Thus condition (ii) of Theorem 3.2 holds. Case (b) xj 62 X , i.e., wj� 0, for every xi 2 Bv�xj�,
by Assumption 3.1, we have �xi; xj� 62 V , or y(i, j)� 0. Thus condition (ii) of Theorem 3.2 holds also.
Similarly, it is easy to check that condition (ii)� of Theorem 3.2 holds.

Next, let us prove the equivalence of condition (iii) of Theorem 3.2 and condition (iii) of Theorem 3.1.
For each xc 2 X \ C, from De®nition 3.2, wc� 1. By (iii) of Theorem 3.2, we have "xci 2 B(xc), wci� 1.
That is, B(xc) Ì X�. Thus condition (iii) of Theorem 3.1 holds.

For each xc 2 C \Sk, consider two possible cases: Case (a) xc 2 X, i.e., wc� 1, by condition (iii) of
Theorem 3.1, we have B(xc) Ì X�. That is, 8xci 2 B�xc�;wci � 1. Thus condition (iii) of Theorem 3.2 holds.
Case (b) xc 62 X, by X Ì HD\Sk, we have xc 62 X �, or wc� 0. In this case, condition (iii) of Theorem 3.2
holds clearly.

Finally, we will prove the equivalence of condition (iv) of Theorem 3.2 and condition (iv) of Theorem 3.1
under the assumption that conditions (i)±(iii) of Theorem 3.1 or conditions (i)±(iii) of Theorem 3.2 hold.

If there is a sequence (xp1; xp2; . . . ; xpk) Ì X satisfying

xp1 2 Bv�xp2�; . . . ; xpkÿ1 2 Bv�xpk�; xpk 2 Bv�xp1�:

Then

y�p1; p2� � y�p2; p3� � � � � � y�pkÿ1; pk� � y�pk; p1� � 1:

From (iv) of Theorem 3.2, we have
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up1 ÿ up2 � n� 16 n;
up2 ÿ up3 � n� 16 n;
::::::::::::::::::::::::::

upk ÿ up1 � n� 16 n:

Summing up the above inequalities, we obtain n� 16 n, which is a contradiction. Thus the condition
(iv) of Theorem 3.1 holds.

If conditions (i)±(iv) of Theorem 3.1 hold, then X and V form an SEP with a sequence w de®ned as
follows:

w � �M1;M2; . . . ;Mr� � �x1
1; . . . ; x1

n1; . . . ; xr
1; . . . ; xr

nr�:
Let uj

i � u�xj
i��i � 1; 2; . . . ; nj; j � 1; 2; . . . ; r� be the ordering number of the position of x

j
i in w; i.e.,

(u1
1; . . . ; u1

n1; . . . ; ur
1; . . . ; ur

nr� � �1; . . . ; n1; n1 � 1; . . . ; n1 � n2; . . . ; n1 � � � � � nrÿ1 � 1; . . . ; n1 � � � � � nr�.
For xi, xj 2 HD\Sk, consider two possible cases: Case (a) xi, xj 2 X, i.e., xi, xj 2 {w}. Then either

y(i, j)� 1 or y(i, j)� 0. From the above de®nition of uj
i , condition (iv) of Theorem 3.2 holds. Case (b) xi or

xj 62 X, i.e., y(i, j)� 0. Then condition (iv) of Theorem 3.2 holds too. Summing up all of the above, we
complete the proof. h

Remark 3.4. Conditions (ii) and (ii)� of Theorem 3.2 show close relationships among wi, wj and y(i, j). That
is, if y(i, j)� 1, or (xi, xj) 2 V, then from (ii), we have wj� 1, or xj 2 X�; and from condition (ii)�, we have
wi� 1, or xi 2 X�. Similar to the proof of Lemma 3.1 of [5], "xj 2 X\(C [ Sk), we can ®nd a path from
some nodes (which may have more than one since there are compound nodes in HD) in Sk to xj in SEP.
Indeed, if wj� 1, then condition (ii) implies: 9 xi 2 B(xj) such that y(i, j)� 1. Then condition (ii)� assumes
that wi� 1, or xi 2 X �. If xi 2 Sk, then we get the path. Otherwise, continue the same procedure. Because of
the ®niteness of HD, we either get a sequence of nodes satisfying

xp1 2 Bv�xp2�; . . . ; xpkÿ1 2 Bv�xpk�; xpk 2 Bv�xp1�;
which is impossible because of condition (iv) (or condition (iv) of Theorem 3.1); or get a path from Sk to xj.
Conditions (ii) and (ii)� seem to be simpler than that of (iii) and (iv) of Theorem 3.1 in [5].

To avoid cycling, we introduce another system of inequalities and get the following theorem.

Theorem 3.3. Let X be a set of skills (X Ì HD\Sk), and V, a set of arcs (V Ì U). Then X and V form an SEP
if and only if wi and y(i, j) (as in De®nition 3.2) satisfy:

(i) wi � 1; 8xi 2 TrnSk;
(ii)

P
xi2B�xj�y�i; j� � wj; 8xj 2 HDn�C [ Sk�;

(ii)� �A�xi��wi P
P

xj2A�xi�y�i; j�; 8xi 2 HD,
(iii) �B�xc��wc �

P
xci2B�xc�wci; 8xc 2 CnSk;

(where [A(xi)] and [B(xc)] are the numbers of nodes in A(xi) and B(xc), respectively),
(iv) for each xi 2 HDnSk, there exists an integer ui � u�xi� such that the following holds:

ui ÿ uj � ny�i; j�6 nÿ 1; wi6 ui6 nwi, where xi 2 HDnSk; xj 2 HDn�C [ Sk�, and n is the num-
ber of nodes in HD\(C [ Sk),

(iv)� for every xc � xc1 ^ xc2 ^ � � � ^ xck 2 CnSk, if xci 62 Sk, then uc � n�k ÿPk
j�1wcj�P uci (k is the num-

ber of singleton skills compounded for xc).

Proof. Comparing Theorems 3.3 with 3.2, we need only to prove the equivalence of conditions (iv) and (iv)�

of Theorem 3.3 and condition (iv) of Theorem 3.1 under the assumption that conditions (i)±(iii) of Theorem
3.1 or conditions (i)±(iii) of Theorem 3.3 hold.
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Suppose there is a sequence �xp1; xp2; . . . ; xpk� � X satisfying

xp1 2 Bv�xp2�; . . . ; xpkÿ1 2 Bv�xpk�; xpk 2 Bv�xp1�:
Consider two possible cases: Case (a) xpi 62 C; �xpiÿ1; xpi� 2 V �i:e:; y�piÿ1; pi� � 1�. By (iv) of Theorem 3.3, we
have upi > upiÿ1. Case (b) xpi 2 C; �xpiÿ1; xpi� 2 V �i:e:; y�piÿ1; pi� � 1�. By De®nition 2.1, we have xpiÿ1 62 C,
from case (a), we have upiÿ1 > upiÿ2. By (iv)� of Theorem 3.3, we have upi P upiÿ1. Considering all
xpi in �xp1; xp2; . . . ; xpk�; we can get either

upi > upiÿ1 P upiÿ2 P � � � P upi; or upi P upiÿ1 > upiÿ2 P � � � P upi:

Each of these leads to a contradiction. Therefore, condition (iv) of Theorem 3.1 holds.
If conditions (i)±(iv) of Theorem 3.1 hold, then X and V form an SEP with a sequence w de®ned by

w � �M1;M2; . . . ;Mr� � �x1
1; . . . ; x1

n1; . . . ; xr
1; . . . ; xr

nr�:
Let uj

i � u�xj
i��i � 1; 2; . . . ; nj; j � 1; 2; . . . ; r� be the ordering number of the position of xj

i in w. De®ne the
sequence �fu1

1; . . . ; u1
n1; . . . ; ur

1; . . . ; ur
nrgnfuj

i � u�xj
i�jxj

i 2 Cg� � �1; 2; . . . ;m�, where m is the number of sin-
gleton nodes in w. We see that by setting

uc � maxfuci � u�xci�jxci 2 B�xc�nSkg; if xc 2 X \ C; and

ui � u�xi� � 0; if xi 62 X :

Then conditions (iv) and (iv)� are satis®ed. h

Remark 3.5. In addition to condition (iv), condition (iv)� in Theorem 3.3 is also necessary to avoid cycles.
Let us consider the ®gure (Fig. 3), where x5 � x3 ^ x4; xi 62 Sk; i � 1; 2; 3; 4; 5. Let u1 � u�x1� � 2; u2 �
u�x2� � 2; u3 � u�x3� � 3; u4 � u�x4� � 3; u5 � u�x5� � 1: If Fig. 3 represents a part of the expansion
process, it is easy to check that condition (iv) in Theorem 3.3 is satis®ed, but condition (iv)� is not satis®ed.
Obviously, the digraph in Fig. 3 has a cycle.

4. Minimal cost stage expansion process

In this section, we ®rst introduce the concept of the minimal cost SEP; then we will prove that the total
cost of a minimal cost SEP is equal to that of the minimal cost expansion process (see De®nition 2.2).
Therefore, the introduction of SEP concept is useful. We then provide a method to ®nd a minimal cost SEP
by using integer programming. Finally, an example is provided to illustrate the method.

Remark 4.1. Let w � �xk1; xk2; . . . ; xkn� be an expansion process with

Cj�w� � minfc�x; xkj�jx 2 Skjÿ1�w�g � c�xki; xkj�; i < j:

Fig. 3. A cyclic connection.
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De®ne

Vw � f�xki; xkj�jc�xki; xkj� � Cj�w�; xkj 62 C; 16 j6 ng [ f�xki; xkj�jxki 2 B�xkj�; xkj 2 C; 16 j6 ng:
Rearranging the w with Vw according to the construction procedure in the proof for su�ciency of Theo-
rem 3.1, we get that w� � �x1

1; . . . ; x1
n1; . . . ; xr

1; . . . ; xr
nr� with respect to Vw is an SEP.

Observe that

C�w� � C1�w� � � � � � Cn�w� �
X

�xki;xkj�2Vw

c�xki; xkj�: �2�

De®nition 4.1. Let w � �M1;M2; :::;Mr� � �x1
1; . . . ; x1

n1; . . . ; xr
1; . . . ; xr

nr� with respect to V be an SEP. We call
Cs

j;i�w; V � � c�Bv�xj
i�; xj

i��16 i6 nj; 16 j6 r� the ith step expansion cost in jth stage Mj of the SEP (here
xj

i 62 C, if xj
i 2 C, then CS

j;i(w, V)� 0);

Cs
j�w; V � �

Xnj

i�1

CS
j;i�w; V � the jth stage-expansion cost of the SEP;

CS�w; V � �
Xr

j�1

CS
j �w; V � �

X
�x;y�2V

c�x; y� the total cost of the SEP:

(When there is no confusion, we simplify the notations Cs
j;i�w; V �;Cs

j�w; V �; and Cs�w; V � into Cs
j;i�w�;Cs

j�w�;
and CS�w�.)

We call w� with respect to V� a minimal cost SEP, if CS�w�� � minfCS�w�jw with respect to V is an SEP}.

Remark 4.2. Let w with respect to V be an SEP. In general

CS
j;i�w� 6� minfc�x; xj

i�jx 2 Sk [M1 [ � � � [Mjÿ1 [ fxj
1; . . . ; xj

niÿ1gg:
For a counter example, please refer to Remark 4.1 of [6]. Now, let us give the following result.

Proposition 4.1. Let w � �M1;M2; . . . ;Mr� � �x1
1; . . . ; x1

n1; . . . ; xr
1; . . . ; xr

nr� with respect to V be a minimal cost
SEP. Then

Cs
j;i�w� � minfc�x; xj

i�jx 2 Sk [M1 [ � � � [Mjÿ1 [ fxj
1; . . . ; xj

niÿ1gg; for 16 i6 nj; 16 j6 r:

Proof. If xj
i 2 C, then Cs

j;i�w� � 0 because c�B�xj
i�; xj

i� � 0 (see Remark 2.1). Suppose there is a xj
i 62 C, such

that

Cs
j;i�w� 6� minfc�x; xj

i�jx 2 Sk [M1 [ � � � [Mjÿ1 [ fxj
1; . . . ; xj

niÿ1gg:
Let Cs

j;i�w� � c�xjÿ1
k ; xj

i�. Then 9 z 2 Sk [ fx1
1; . . . ; x1

n1; . . . ; xj
1; . . . ; xj

iÿ1g; z 6� xjÿ1
k such that c�z; xj

i� <
c�xjÿ1

k ; xj
i�:

Let V � � �V f�xjÿ1
k ; xj

i�g� [ f�z; xj
i�g. Then, by rearranging w with V� according to the construction

procedure in the proof for su�ciency of Theorem 3.1, we get a new sequence w� such that w� with respect to
V� is also an SEP. This implies that

CS�w�� �
X
�x;y�2V

c�x; y� ÿ c�xjÿ1
k ; xj

i� � c�z; xj
i� <

X
�x;y�2V

c�x; y� � CS�w�

which contradicts the assumption. h
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Combining Remark 4.1, Eq. (2) and De®nition 4.1 with Proposition 4.1, we get Theorem 4.1.

Theorem 4.1. min CS(w)�min C(w).

From Theorem 3.2, Theorem 3.3 and De®nition 4.1, we get the following theorem by which we can ®nd
a minimal SEP.

Theorem 4.2. Let X be a set of skills (X Ì HD\Sk), and V, a set of arcs (V Ì U). Then X and V form a
minimal cost SEP if and only if the corresponding {wi} and {y(i, j)} (as in De®nition 3.2) solve the following
integer programming problem:

min z �
X

c�xi; xj�y�i; j�; subject to

Conditions�i�±�iv�of Theorem 3:2;

or

Conditions�i�±�vi��of Theorem 3:3:

Remark 4.3. From Theorem 4.2, we can ®nd a minimal SEP; but we cannot acquire the ordering number of
stage simultaneously. Following from Theorem 3.3, we will give an integer program to ®nd a minimal SEP
and at the same time get the ordering number of the stage for each node.

Theorem 4.3. Let X be a set of skills (X Ì HD\Sk), and V, a set of arcs (V Ì U). Then X and V form a
minimal cost SEP if and only if the corresponding {wi}, {y(i, j)} (as in De®nition 3.2), together with some
integers {ui} solve the following integer programming Problem A.

Problem A. min z �P c�xi; xj�y�i; j� � el, where e �e > 0� is a su�ciently small constant,
subject to:
(i) wi � 1; 8xi 2 TrnSk;
(ii)

P
xi2B�xj�y�i; j� � wj; 8xj 2 HDn�C [ Sk�;

(ii)� �A�xi��wi P
P

xj2A�xi�y�i; j�; 8xi 2 HD,
(iii) �B�xc��wc6

P
xci2B�xc�wci; 8xc 2 CnSk,

(where [A(xi)] and [B(xc)] are the numbers of nodes in A(xi) and B(xc), respectively),
(iv) for each xi 2 HD\Sk, there exists an integer ui� u(xi) such that the following holds: ui ÿ uj �

ny�i; j�6 nÿ 1; wi6 ui6 nwi ,
where xi 2 HD\Sk, xj 2 HD\(C [ Sk), and n is the number of nodes in HD\(C [ Sk);

(iv)� for every xc � xc1 ^ xc2 ^ . . . ^ xck 2 CnSk; if xci 62 Sk, then uc � n�k ÿPk
j�1wcj�P uci (k is the num-

ber of singleton skills compounded for xc);
(v) l �Pxi 62Skui;

where {wi} and {y(i, j)} are 0ÿ1 variables, while {ui} and l are integer variables.
The solution ui represents the stage ordering number of xi in the minimal cost SEP. If z0�min z, and the

corresponding l� l0, then z0 ÿ el0 is the total cost of the SEP.

Proof. By comparing Theorem 4.2 with Theorem 3.3, it su�ces to show that we can get a minimal cost SEP
and at the same time determine the ordering number of the stage of each node by solving Problem A.

Let t �P c�xi; xj�y�i; j�; z0 � t0 � el0 � min z. Suppose there is a solution of Problem A with z1 � t1 �
el1 such that t1 < t0. Consider

z1 ÿ z0 � t1 ÿ t0 � e�l1 ÿ l0�:
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From (iv)±(v), we know that l1ÿl0 is a ®nite number. By choosing e to be a su�ciently small positive
number such that z1ÿz0<0, we will get a contradiction. Therefore if we minimize z, we will get a minimal
cost SEP.

From (iv), wi6 ui6 nwi, we have if xi 2 (HD\Sk)\X, then wi� 0. Therefore, ui� 0. From
ui ÿ uj � �n� 1�y�i; j�6 n, we have if xi 2 HD\Sk, xj 2 HD\(C [ Sk), (xi, xj) 2 V (i.e., y(i, j)� 1), then
ui ÿ uj � n� 16 n. That is, ui � 16 uj. From (iv)�, we have if xc � xc1^ xc2 ^ . . . ^ xck 2
C \ XnSk and xci 62 Sk, then uc P uci. Note that by minimizing z, we also minimize l. If {wi}, {y(i, j)} and
{ui} is a solution to Problem A, then from (v), uc � maxfucijxci 62 Skg (refer to Remark 3.1). Thus ui

represents the ordering number of the stage of xi. Note that if we get z� z0 and l� l0 by solving Problem
A, then z0 ÿ el0is the total cost of the minimal cost SEP. h

Remark 4.4. In Theorem 4.3, we let e be small enough so that in minimizing
P

c�xi; xj�y�i; j� � el, we will
minimize

P
c�xi; xj�y�i; j� ®rst (to get a minimal cost SEP) and then minimize l to get the solution ui which

represents the stage ordering number of xi in the minimal cost SEP. Note: in previous papers [4,6], ui does
not have such a meaning as the stage ordering number of xi. In addition, ``e is su�ciently small'' is relative
to each cost function c(xi, xj). Notice that l �Pxi 62Skui is independent of the cost functions between the
skills. If each cost function is relatively large, the problem can be solved by setting e to be a small integer. If
there is a small cost function, then we can solve the problem by ®rst multiplying each cost function by a
bigger positive integer, such as 10, or 100 etc., and choosing e to be a small integer.

Example 4.1. Now we will use the method in Theorem 4.3 to solve Example 2.1.
For convenience, let x1� a, x2� b, x3� c, x4� a ^ b, x5� d, x6� e, x7� f, x8� e ^ f, x9� g, x10� h;

y1� y(1, 5), y2� y(1, 7), y3� y(1, 9), y4 � y�2; 5�; . . . ; y20 � y�8; 9�, y21� y(8, 10). ui� ui(xi), i � 5; 6; . . . ; 10.

min z � y1 � 3y2 � 4y3 � 2y4 � 4y5 � 2y6 � 3y7 � y8 � 2:5y9 � 3:5y10 � y11 � 1:8y12 � 4y13 � 4y14 � 2y15

� 2y16 � 2y17 � 2y18 � 2y19 � 1:5y20 � 1:5y21 � el

subject to

w5 � w7 � w9 � w10 � 1;

y1 � y4 � y6 � y8 � y15 � y19 � w5;

y7 � y11 � y16 � w6;

y2 � y9 � y12 � w7;

y3 � y5 � y10 � y13 � y17 � y20 � w9;

y14 � y18 � y21 � w10;

3w1 P y1 � y2 � y3;

2w2 P y4 � y5;

2w3 P y6 � y7;

3w4 P y8 � y9 � y10;

2w5 P y11 � y12;

2w6 P y13 � y14;

4w7 P y15 � y16 � y17 � y18;

3w8 P y19 � y20 � y21;
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2w86w6 � w7;

u5 ÿ u6 � 5y116 4;

u5 ÿ u7 � 5y126 4;

u6 ÿ u9 � 5y136 4;

u6 ÿ u10 � 5y146 4;

u7 ÿ u5 � 5y156 4;

u7 ÿ u6 � 5y166 4;

u7 ÿ u9 � 5y176 4;

u7 ÿ u10 � 5y186 4;

u8 ÿ u5 � 5y196 4;

u8 ÿ u9 � 5y206 4;

u8 ÿ u10 � 5y216 4;

wi6 ui6 5wi; i � 5 � 10;

u8 � 5�2ÿ w6 ÿ w7�P u6;

u8 � 5�2ÿ w6 ÿ w7�P u7;

l � u5 � u6 � u7 � u8 � u9 � u10:

Here yi�i � 1 � 21� and wi�i � 1 � 10� are 0ÿ1 variables, ui�i � 5 � 10� are integer variables, and e is a
su�ciently small constant. In this example, we set e� 0.1.

Using integer programming package [10], we obtain the solution as

w4 � w5 � w7 � w9 � w10 � 1; y8 � y12 � y17 � y18 � 1;
u5 � 1; u7 � 2; u9 � 3; u10 � 3; l � 9; z � 7:7:

zÿ 0:1l � 7:7ÿ 0:9 � 6:8 is the minimal total cost. Fig. 4 depicts the minimal cost SEP.
Suppose we change the cost from d to e. For example, let c(d, e)� 0.5, while the other conditions remain

the same. This is equivalent to changing the coe�cient of y11 in the objective function from 1 to 0.5. By
solving the problem, we get

w1 � w5 � w6 � w7 � w8 � w9 � w10 � 1; y1 � y11 � y12 � y20 � y21 � 1;
u5 � 1; u6 � u7 � u8 � 2; u9 � u10 � 3; l � 13; z � 7:6:

Fig. 4. The ®rst minimal cost SEP.
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zÿ 0:1l � 7:6ÿ 1:3 � 6:3 is the minimal total cost. The corresponding minimal cost SEP is depicted in
Fig. 5.

5. Conclusion

We have discussed a new method of ®nding the optimal expansion process by introducing the concept of
the SEP. This method makes it possible to solve those competence set expansion problems which have
compound skills, intermediate skills and cyclic connections among skills. This method can determine the
stage ordering of each skill as well as ®nd an optimal expansion process. The SEP gives us a clear ordering
of the expansion process. The SEP method can be used to design optimal competence sets, similar to those
of [6]; we leave it to the readers to explore.
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