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Abstract — We propose a practical Ethernet access 

architecture to support high availability and service 

continuity for IPTV. To reduce the per-line cost, our 

approach is interconnecting switches, most of which are 

low-cost, in a hierarchical fashion to provide broadband 

and cost-effective IPTV multicasting. The remaining key 

issue is to endow the IPTV services with high availability. 

To this end, we base on the redundant pair method and 

propose an architecture which achieves short failover 

process to seamlessly continue the IPTV services. In 

realization, our effort is restricted in extending the IGMP 

proxy running on the switch controller, and we describe 

our realization by presenting the basic design principle. 

To demonstrate its viability, we test our proposed 

architecture on ACTA which is a commercially available 

platform. Experiment results show that in general the 

failover process can be carried out within 50 ms. 
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1 INTRODUCTION

Ethernet in the first mile (EFM) [1] is envisioned as a key 

technology to carry the IP Television (IPTV) services. This 

vision is made realistic by observing the success of Ethernet in 

the local area network which features in the merits of high 

bandwidth provisioning but very inexpensive and easy 

deployment. Moreover, newer Ethernet standard [2, 3] is now 

proposed to meet the quality of service (QoS) requirement via 

the classes of services and VLAN technologies.  With the cost-

efficient EFM in place, the triple-play services could be made 

affordable for the most of the end users. 

Though it is promising by using EFM to bridge the high-

speed LAN and WAN, the concern is raised because Ethernet 

lacks the carrier-grade feature of high availability. As such, the 

IPTV services could be constantly interrupted or temporarily 

ceased due to the failure of network components. We believe 

that IPTV service through EFM can reach its full potential only 

if by doing so the IPTV service is made at least as highly 

available as the cable TV service. 

To provide high availability, a widely applicable method 

is the redundant pair. That is, a redundant system is prepared 

in advance and performs a failover procedure to recover the 

ongoing services in the faulty system. In applying such 

technique to EFM for providing highly available IPTV (HA 

IPTV) services, it is desirable to recover the IPTV services 

within a very short period so as not to let the end users 

perceive the interruption. When resolving the issue, the 

following points are also needed to be addressed: 

To reduce the per-line/per-customer cost, interconnecting 

small switches with limited capability to form the whole 

access system is preferred. The VLAN stack and VLAN 

translation are assumed not supported in these switches. 

Only the technologies such as port isolation and fast VLAN 

reconfiguration are implemented. On a fault occurrence, 

only the IPTV service is selected to be recovered promptly. 

To further reduce the deployment cost, the high bandwidth 

utilization in the access system and access link is another 

pivot design consideration. Unlike the analog cable TV, 

channels of IPTV are sent separately and each consumes 

bandwidth ranging from 1Mbps to 13 Mbps. Typically 300 

channels are estimated to be available from a provider. 

Besides, each broadcast television channel is an IP 

multicast group. To save the bandwidth, the subscriber 

changes the channel by leaving one group and joining a 

different group. In viewing that the bandwidth in the access 

system could be mostly consumed by IPTV services, 

tailoring to the broadband IP multicasting becomes a major 

factor in forming the switch interconnect.  

Making no assumption about the response time of upstream 

router outside the access system is more practical. 

Therefore, when a fault occurs, it is less viable to request 

the upstream router to redirect IPTV services over an 

alternative path on demand during the failover process. 

Relying on the spanning tree protocols to find another path 

for the service continuation is not viable, either. They 

usually take seconds or at least hundreds of milliseconds to 

complete the path recovery process [3]. Most importantly, 

they are designated to recover all the flows in the broadcast 

manner, and thus may cause a temporary broadcast storm. 

Knowing this, we propose a practical Ethernet access 

architecture to achieve the low expense access system for HA 

IPTV. In the realization of the architecture, our effort is on 

coordinating the IGMP proxies in the redundant pair. To this 

end, we construct a software design pattern which maintains a 

consistent view of multicast membership information for the 

redundant pair and performs the necessary failover operation. 

The core of the software design pattern is finally identified as 

a core protocol to support fast health check, high-bandwidth 

transmission, and mutual exclusion.  

The remainder of the paper is organized as follows: 

Sections 2, 3, and 4 describe the interconnect patterns, the 

software design pattern, and the core protocol, respectively. 
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We present the implementation and experiment results in 

Section 5. At last, we draw the conclusion in Section 6. 

2 INTERCONNECT PATTERNS FOR HA IPTV 

Fig. 1 exemplifies a hierarchical switch interconnect for 

EFM. Each set-top box (STB) is connected to an access switch. 

The technique “port isolation” is applied to each switch so that 

the frames from a STB are forwarded upward all the way to the 

IPTV network and vise versa. With such a hierarchy, a clear 

merit is that the number of ports in a switch is limited even 

when the population of IPTV subscribers scales up. Moreover, 

by using IGMP snooping in each switch, only the channels in 

need by a downstream STB are necessary to be passed through 

the switch. Therefore, the number of channels passing through 

a switch in the lower level is smaller and thus lower switching 

capacity in such a switch is sufficient. Besides, similar to 

Internet Diffserv QoS architecture, the QoS requirement of 

downloading streams, including IPTV services, can be 

satisfied by only regulating them at the switch in the 

uppermost level and thus the other switches forwards the frame 

at their best effort. By reducing the switching capacity in the 

lower-level switches and placing the intelligence only in the 

switch at the uppermost level, the low-expense and high-

quality IPTV service can be achieved. 

Faults could occur in both links and switches. Consider 

the path from the upstream router in IPTV network to a STB in 

the hierarchical switch interconnect. We can identify two types 

of faults, namely “fault in middle part” and “fault in end part,” 

as shown in Fig. 1. The fault in end part considers the fault 

occurring in the access link, the lowest level switch, and the 

link between lowest level and second lowest level switches. 

The fault in the middle part considers that in a switch (other 

than the lowest one) and its uplink. Apparently these two kinds 

of faults cover faults in all the components lying in the middle 

of the path from the upstream router to the STB. 

To overcome the fault in the end part, Fig. 2 lists a dual-

home scenario. Each STB now connects to two switches. To 

save the bandwidth of access links, an IPTV channel is 

delivered through only one access link to STB. A naïve 

approach to overcome such fault is to let STB detect the fault 

of the upstream hop and initiate the failover process to shift its 

load to the other link upon an occurrence of a fault. In addition, 

the switch inside the STB is so configured via VLAN that two 

uplinks are not in the same broadcast domain to increase the 

uplink bandwidth utilization. Besides, the IPTV service is 

downloaded only to one of the access switches, say sw1, and 

thus IPTV channels are conveyed through the access link 

from sw1. However, after detecting fault, the failover process 

between switches will be not performed until the receipt of 

corresponding message from STB. In addition, the redirection 

of IPTV service to sw2 by issuing an IGMP join message to 

upstream switches needs extra latency. To avoid both 

latencies, we apply the redundant pair to both access switches. 

Besides, two switches receive the same channels from the 

upstream. We allow the IGMP messages from STB to be 

broadcasted to these two switches. As soon as sw2 detects a 

fault in sw1, sw2 simply bypasses each ongoing IPTV channel 

to the downstream STB in need of it. It is noteworthy that in 

doing so, sw2 needs to backup how the IPTV channel 

currently being distributed by sw1.  

To provide the availability with respect to the fault in the 

middle part, we arrange the dual-hop pattern, as shown in Fig. 

3. The switch in the lower level connects to sw3 and sw4, and 

the IGMP messages are broadcasted to them. Besides, the 

same channels are downloaded to both sw3 and sw4. The sw3 

and sw4 then perform the same operations as sw1 and sw2 

when a fault occurs.  

To improve the robustness, we let half of channels being 

bypassed by one switch and the other half being the duty of 

the other switch. Consequently, half of IPTV service is still 

available if an undetected fault occurs. The concept of duty 

channel of a switch is then defined as the channel assigned to 

the switch. Doing so also accelerates the channel selection if 

the extra access link can be used to carry some neighboring 
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Fig. 2.  Dual-home interconnect pattern to overcome fault in 

end part. 
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Fig. 3.  Dual-hop interconnect pattern to overcome fault in 

middle part. 
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Fig. 1.  A sample hierarchical switch interconnect for EFM.
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channels of the one currently being watched. In this paper, we 

group the even channels and odd channels according to the 

channel index, and assign them as the duty channels for both 

switches in the redundant pair, respectively. 

The dual-hop interconnect pattern can co-exist with the 

dual-home interconnect pattern. For example, suppose a switch 

below the redundant pair in Fig. 3 connects to the STBs. If we 

apply the dual-homed interconnect pattern to it, we can simply 

let the uplink of sw1 and sw2 ending up with sw3 and sw4, 

respectively. In this way, switches sw3 and sw4 treat the sw1 

and sw2 as a single switch. Besides, sw3 and sw4 bypass the 

same those channels, which are needed by the downstream 

STBs, to each sw1 and sw2. Similarly, the dual-hop 

interconnect patterns could be repeatedly applied to hops along 

the path to the IPTV network. 

3 SOFTWARE DESIGN PATTERN FOR HA IPTV 

We extend IGMP proxy (RFC 4605) to realize the 

redundant pair under the dual-hop interconnect pattern. The 

redundant pair under dual-home interconnect pattern can be 

implemented in a similar way.  

Suppose that two processes are running atop the 

controllers of two switches, respectively. To learn how the 

IPTV channels being distributed by the other switch, these two 

processes maintain the consistent view of membership 

information, which is stored in the table object. Each table 

entry consists of fields of multicast address of the channel, 

status, and a list of downstream switches which need the 

channel at present. Besides, a dirty tag is associated with each 

table entry. As in the most of cache coherence protocol, the 

dirty tag is set until the other process confirms the update. The 

dirty tag is reset when the other process updates the status of 

the same membership to the same downstream switch. It can 

be easily proved that the order of update messages for the same 

channel to the same downstream switch is preserved in this 

way if two processes receive them orderly and correctly. 

Besides, the IPTV services function normally even when there 

are undetected failures in receiving IGMP messages at a single 

switch. If the existence of the other process has not been 

detected for a certain period, say 100 ms, the dirty tags will be 

all set to hypothesize that the fault is not transient so that the 

table content could be completely out of synchronization in the 

other process. Initially, the table is empty. Besides, the table 

also caches the update for membership removal to a 

downstream switch but will be flushed out after one second or 

after being confirmed by the other process. 

The software design pattern in Fig. 4 depicts our basic 

design principle. Basically the reconfigure object behaves like 

an IGMP proxy except that it needs to inquire the guard object 

before updating its membership database. To do so, it 

forwards each update of membership (e.g., IGMP report, join, 

or leave) to the guard object. It is the duty of guard object to 

update any information in the table and peer with the other 

process. Upon a status change of the other process or the 

change of table content, the guard object notifies the 

reconfigure object. The reconfigure will do the operation, 

such as modifying the forwarding database in the switch or 

VLAN configuration, and induce the specified channels from 

the upstream through IGMP messages. 

With the above basic principle, our major design effort is 

then imposed on the guard object. The instructions given by 

the guard object to the reconfigure object is “delete a member 

in a port”, “insert a member in a port”, “unblock the non-duty 

channels”, “unblock the duty channels”, “block non-duty 

channels”, and “block all channels.”  The IGMP join or leave 

will be also sent by the reconfigure to the upstream 

accordingly, e.g., if it is a new member found in the IGMP 

proxy, an IGMP join message will be issued. There are four 

states associated with the guard object eventually, i.e., startup,

normal, resuming, and alone. We describe the behaviors of 

states in the followings: In startup state, the delivery of all 

channels is blocked. When the existence of the other process 

is detected within one second, then the guard object enters 

into the resuming state. Otherwise it transits to the alone state.  

In resuming state, if there is any dirty table entry, then 

the guard object updates the table content in the other process. 

The guard object stays in the resuming state for one second to 

ensure that all the needed channels are already transferred 

from the upstream. After that, it enters into the normal state. 

On transiting into the normal state, the guard object request 

the reconfigure to block the non-duty channels and distribute 

the duty channels. In normal state, the table content is also 

needed to be synchronized. 

When a failure for the other process is reported, the 

guard object transits into the alone state. When guard object 

stays in the alone state, it instructs the reconfigure to do the 

operation as a stand-alone switch, i.e, the duty and non-duty 

channels are allowed to pass to downstream. After the other 

process is detected again, the guard object enters into the 

resuming state.  

4 PROTOCOL FOR GUARD OBJECT PEERING

When examining the “guard” object more closely, we 

find that it requires the functions of fast health check, mutual 

exclusion for table consistency, and high-throughput/orderly-

transmission. Because these operations depend on each other, 

e.g., the delivery and mutual exclusion relies on the result of 

health check, it is nature to integrate all the functions into one 

protocol. Based on such a protocol to form the peer relation 

between guard objects in two respective processes, the 

remaining task of the “guard” object includes straightforward 

jobs only, i.e., to handshake with the reconfigure, scan the 

table, and update the table in local or remote process. 

It is noteworthy that the conventional communication 

protocol for fault tolerance is designed for more than two 

components participating in the protected group [5]. As a 

r e c o n fi g u r e

1 1

g u a r d

1

t a b le

Fig. 4.  The software design pattern for handling the high 

availability. 
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consequence, they emphasize on the reliable broadcast, atomic 

broadcast, and casual broadcast to ensure the ordering of the 

messages delivered and received. In our targeted environment, 

our communication is only one-to-one. Some issues are thus 

resolved easily. Besides, some other features can be designed 

more efficiently, such as concurrency control. Most important 

of all, our protocol should report the condition of the other 

process in a very short period, which is not addressed in the 

previous proposals. 

The protocol basically combines the sliding window, fast 

hello, and a simplified token passing algorithm [6]. The sliding 

window protocol is to orderly deliver the data between the 

redundant pair in a high-throughput fashion. The fast hello is 

dedicated to fast health check. The token passing algorithm is 

to enforce the mutual exclusion, i.e., whichever wants to enter 

into the critical section needs to grab the token in advance. As 

a consequence, our protocol needs to create the token, pass the 

token, and report failure condition if the token status is weird, 

i.e., lost token or duplicated token.  

The typical communication environment we are 

encountered is two switches connected via a short-delay and 

highly reliable network where the packet error rate is very 

small. The exchanged message format is listed as follows: 

n-bit sequence number; 

n-bit expected sequence number; 

1-bit sync field; 

2-bit token status; 

payload. 

The sequence number field is for realizing the sliding 

window ARQ. To simplify our discussion, we demonstrate our 

protocol by using 1-bit sequence number, i.e., the ARQ is stop-

and-wait. The expected sequence number field identifies the 

sequence number of the message that the sender expects to 

receive next. If the sync field is set, the sender indicates its 

intent to set the sequence number to zero in both sides. The 

two bits of token status tells us whether the sender is holding a 

token (TH), requesting a token (TR), or otherwise (send). 

In the followings, we list three major scenarios for the 

protocol, namely connection setup scenario, timeout scenario, 

and token loss scenario. The scenario for the duplicated token 

is similar to the token loss scenario 

The first scenario, as shown in Fig. 5, considers the 

connection setup between two processes. Here we use the term 

“process” to indicate that it is the application rather than the 

switch to be protected. The connection setup procedure 

consists of synchronization where each process needs to 

generate numbers and the larger one grabs the token first. The 

process with larger number then sends the message with TH 

indicated until the token is passed to the other process. If the 

process with smaller number does not need the token for the 

time being, it simply sends the message whereas 

piggybacking the data is allowed. On the other hand, if it 

needs the token, it sends the message with TR set. Upon the 

receipt of a send message without the TH set, the process then 

grabs the token. 

After connection setup, the situation where the token 

possessed by one process and messages arrive in time is 

regarded as the normal condition. Otherwise, a failure will be 

reported. As shown in Fig. 6, the process which sends the 

message without TH or TR set receives the message where the 

TH is neither set. The situation claims that the token is lost 

and a failure must be reported and then the connection setup 

scenario is entered immediately. Fig. 7 shows the timeout 

scenario where the message is not received in time. In such a 

case, a fault is also reported and then the connection setup 

scenario is re-entered promptly. 

p r o c 1

s y n c ( 0 , 0 , R 1 )

p r o c 2

s y n c ( 0 , 0 , R 2 )

T H ( 1 , 0 , d a t a )

s e n d ( 0 , 0 , d a t a )

C a n T m ( 2 0 )

Fig. 5. Connection setup scenario. 

p r o c 1

s e n d ( 0 , 1 , d a t a )

p r o c 2

s e n d ( 1 , 0 , d a t a )

s y n c ( 0 , 0 , R 1 )

s y n c ( 0 , 1 , R 2 )

Fig. 6.  Token-loss scenario. 

p ro c 1

T m ( 2 0 )

s e n d (0 , 1 , d a t a )

p r o c 2

T H ( 1 , 1 , d a t a )

s e n d (1 , 0 , d a t a )

s y n c (0 , 0 , d a t a )

Fig. 7.  Timeout scenario. 
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It is noteworthy that the starvation of token is possible 

since the process who grabs the token may ignore the request 

by the other process. Therefore, the “guard” object reports a 

failure if the token request is not responded for a certain period. 

The deadlock of waiting for token is not possible because in 

such a case a failure is reported due to token loss and both 

processes start all the way from the connection setup. 

To enable fast health check during the period when there 

is no data to be transferred, the sender is allowed to send the 

null-data message without sync being set. The receiver simply 

ignores the sequence number field and regards the message as 

the one for reporting the health condition only.  

In our implementation, the message is encapsulated in 

UDP and the sender sends out at least one message within ten 

milliseconds. 

5 IMPLEMENTATION AND EXPERIMENT RESULTS

To show that our architecture is viable, we implement the 

dual-hop interconnect pattern in Advanced 

Telecommunications Computing Architecture, known as 

ATCA, which is a new system form factor defined by the PCI 

Industrial Computers Manufacturers Group (PICMG). The 

ATCA provides an industry standard platform that enables 

building telecommunication grade products in a multi-vendor 

compatible environment. ATCA is the first standardized 

platform for high availability system with redundant power, 

cooling, and high-speed interconnections for data and control 

plane.  

Fig. 8 shows the system architecture to test our 

implementation. We generate two identical testing flows with 

the same content, speed (1.5Mbps), frame length, and with 

simultaneous start and stop operations by smartbit. These two 

flows are treated as “odd-channel” and “even-channel” 

respectively and served by Switch blade A and B respectively 

in normal case. In our VLAN configuration, two different 

VLAN tags are dedicated for the odd and even channels, 

respectively. In the case without any failures, Switch blade A 

and B can serve the same amount of traffic within a period. If 

a failure occurs on Switch blade B, the “even-channel” service 

will be out of service for a short period, then the service is 

resumed after Switch blade A taking it over. However, the 

“odd-channel” is still running without any interruptions at that 

moment. It is clear that the difference of the amount of packet 

between “odd-channel” and “even-channel” can be easily 

transformed into failover time via dividing the difference of 

bytes received by the data rate of the individual flow. 

We incorporate the software design pattern into the 

IGMP proxy running atop Linux operating system on the 

switch controller. The results of twenty experiments are 

shown in Fig. 9. The average failover time is about 45ms. As 

shown, the performance is always better than 50ms. 

6 CONCLUSION 

We consider how to equip EFM to support HA IPTV by 

the technique redundant pair. The key challenge is that we 

have to cut down our deployment cost while keeping the short 

failover time. By observing that an IPTV broadcast channel is 

indeed a multicast group, we propose a practical Ethernet 

access architecture which is basically dedicated to support 

highly-available IP multicasting. We implement our idea in 

ACTA and the results show that our proposed architecture is a 

viable approach. 

In this paper, we confine the operations of failover 

process in the redundant pair. Our future work is to explore 

the potential of more cooperative activities between switches 

in access system to reduce cost whereas improving the 

availability of IPTV services. 
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