
An Ethernet Access Architecture for Highly Available IPTV

Wei-Kuo Liao

Department of Communications Engineering

NCTU, Hsin-Chu, Taiwan

Ping-Hai Hsu Shu-Kang Tseng Kang-Chiao Ling

Information and Communications Research Laboratories

ITRI, Hsin-Chu, Taiwan

Abstract — We propose a practical Ethernet access

architecture to support high availability and service

continuity for IPTV. To reduce the per-line cost, our

approach is interconnecting switches, most of which are

low-cost, in a hierarchical fashion to provide broadband

and cost-effective IPTV multicasting. The remaining key

issue is to endow the IPTV services with high availability.

To this end, we base on the redundant pair method and

propose an architecture which achieves short failover

process to seamlessly continue the IPTV services. In

realization, our effort is restricted in extending the IGMP

proxy running on the switch controller, and we describe

our realization by presenting the basic design principle.

To demonstrate its viability, we test our proposed

architecture on ACTA which is a commercially available

platform. Experiment results show that in general the

failover process can be carried out within 50 ms.

Keywords—Carrier grade, IPTV, first-mile Ethernet.

1 INTRODUCTION

Ethernet in the first mile (EFM) [1] is envisioned as a key

technology to carry the IP Television (IPTV) services. This

vision is made realistic by observing the success of Ethernet in

the local area network which features in the merits of high

bandwidth provisioning but very inexpensive and easy

deployment. Moreover, newer Ethernet standard [2, 3] is now

proposed to meet the quality of service (QoS) requirement via

the classes of services and VLAN technologies. With the cost-

efficient EFM in place, the triple-play services could be made

affordable for the most of the end users.

Though it is promising by using EFM to bridge the high-

speed LAN and WAN, the concern is raised because Ethernet

lacks the carrier-grade feature of high availability. As such, the

IPTV services could be constantly interrupted or temporarily

ceased due to the failure of network components. We believe

that IPTV service through EFM can reach its full potential only

if by doing so the IPTV service is made at least as highly

available as the cable TV service.

To provide high availability, a widely applicable method

is the redundant pair. That is, a redundant system is prepared

in advance and performs a failover procedure to recover the

ongoing services in the faulty system. In applying such

technique to EFM for providing highly available IPTV (HA

IPTV) services, it is desirable to recover the IPTV services

within a very short period so as not to let the end users

perceive the interruption. When resolving the issue, the

following points are also needed to be addressed:

To reduce the per-line/per-customer cost, interconnecting

small switches with limited capability to form the whole

access system is preferred. The VLAN stack and VLAN

translation are assumed not supported in these switches.

Only the technologies such as port isolation and fast VLAN

reconfiguration are implemented. On a fault occurrence,

only the IPTV service is selected to be recovered promptly.

To further reduce the deployment cost, the high bandwidth

utilization in the access system and access link is another

pivot design consideration. Unlike the analog cable TV,

channels of IPTV are sent separately and each consumes

bandwidth ranging from 1Mbps to 13 Mbps. Typically 300

channels are estimated to be available from a provider.

Besides, each broadcast television channel is an IP

multicast group. To save the bandwidth, the subscriber

changes the channel by leaving one group and joining a

different group. In viewing that the bandwidth in the access

system could be mostly consumed by IPTV services,

tailoring to the broadband IP multicasting becomes a major

factor in forming the switch interconnect.

Making no assumption about the response time of upstream

router outside the access system is more practical.

Therefore, when a fault occurs, it is less viable to request

the upstream router to redirect IPTV services over an

alternative path on demand during the failover process.

Relying on the spanning tree protocols to find another path

for the service continuation is not viable, either. They

usually take seconds or at least hundreds of milliseconds to

complete the path recovery process [3]. Most importantly,

they are designated to recover all the flows in the broadcast

manner, and thus may cause a temporary broadcast storm.

Knowing this, we propose a practical Ethernet access

architecture to achieve the low expense access system for HA

IPTV. In the realization of the architecture, our effort is on

coordinating the IGMP proxies in the redundant pair. To this

end, we construct a software design pattern which maintains a

consistent view of multicast membership information for the

redundant pair and performs the necessary failover operation.

The core of the software design pattern is finally identified as

a core protocol to support fast health check, high-bandwidth

transmission, and mutual exclusion.

The remainder of the paper is organized as follows:

Sections 2, 3, and 4 describe the interconnect patterns, the

software design pattern, and the core protocol, respectively.

This work was supported by National Science Council, Taiwan, under
Grants NSC 96-2219-E-009.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 1

We present the implementation and experiment results in

Section 5. At last, we draw the conclusion in Section 6.

2 INTERCONNECT PATTERNS FOR HA IPTV

Fig. 1 exemplifies a hierarchical switch interconnect for

EFM. Each set-top box (STB) is connected to an access switch.

The technique “port isolation” is applied to each switch so that

the frames from a STB are forwarded upward all the way to the

IPTV network and vise versa. With such a hierarchy, a clear

merit is that the number of ports in a switch is limited even

when the population of IPTV subscribers scales up. Moreover,

by using IGMP snooping in each switch, only the channels in

need by a downstream STB are necessary to be passed through

the switch. Therefore, the number of channels passing through

a switch in the lower level is smaller and thus lower switching

capacity in such a switch is sufficient. Besides, similar to

Internet Diffserv QoS architecture, the QoS requirement of

downloading streams, including IPTV services, can be

satisfied by only regulating them at the switch in the

uppermost level and thus the other switches forwards the frame

at their best effort. By reducing the switching capacity in the

lower-level switches and placing the intelligence only in the

switch at the uppermost level, the low-expense and high-

quality IPTV service can be achieved.

Faults could occur in both links and switches. Consider

the path from the upstream router in IPTV network to a STB in

the hierarchical switch interconnect. We can identify two types

of faults, namely “fault in middle part” and “fault in end part,”

as shown in Fig. 1. The fault in end part considers the fault

occurring in the access link, the lowest level switch, and the

link between lowest level and second lowest level switches.

The fault in the middle part considers that in a switch (other

than the lowest one) and its uplink. Apparently these two kinds

of faults cover faults in all the components lying in the middle

of the path from the upstream router to the STB.

To overcome the fault in the end part, Fig. 2 lists a dual-

home scenario. Each STB now connects to two switches. To

save the bandwidth of access links, an IPTV channel is

delivered through only one access link to STB. A naïve

approach to overcome such fault is to let STB detect the fault

of the upstream hop and initiate the failover process to shift its

load to the other link upon an occurrence of a fault. In addition,

the switch inside the STB is so configured via VLAN that two

uplinks are not in the same broadcast domain to increase the

uplink bandwidth utilization. Besides, the IPTV service is

downloaded only to one of the access switches, say sw1, and

thus IPTV channels are conveyed through the access link

from sw1. However, after detecting fault, the failover process

between switches will be not performed until the receipt of

corresponding message from STB. In addition, the redirection

of IPTV service to sw2 by issuing an IGMP join message to

upstream switches needs extra latency. To avoid both

latencies, we apply the redundant pair to both access switches.

Besides, two switches receive the same channels from the

upstream. We allow the IGMP messages from STB to be

broadcasted to these two switches. As soon as sw2 detects a

fault in sw1, sw2 simply bypasses each ongoing IPTV channel

to the downstream STB in need of it. It is noteworthy that in

doing so, sw2 needs to backup how the IPTV channel

currently being distributed by sw1.

To provide the availability with respect to the fault in the

middle part, we arrange the dual-hop pattern, as shown in Fig.

3. The switch in the lower level connects to sw3 and sw4, and

the IGMP messages are broadcasted to them. Besides, the

same channels are downloaded to both sw3 and sw4. The sw3

and sw4 then perform the same operations as sw1 and sw2

when a fault occurs.

To improve the robustness, we let half of channels being

bypassed by one switch and the other half being the duty of

the other switch. Consequently, half of IPTV service is still

available if an undetected fault occurs. The concept of duty

channel of a switch is then defined as the channel assigned to

the switch. Doing so also accelerates the channel selection if

the extra access link can be used to carry some neighboring

sw1

STB

sw2

redundant

pair

Fig. 2. Dual-home interconnect pattern to overcome fault in

end part.

sw3
sw4

redundant

pair

Fig. 3. Dual-hop interconnect pattern to overcome fault in

middle part.

STB

Fault in

middle part

Fault in end
part

IPTV

Networks

Fig. 1. A sample hierarchical switch interconnect for EFM.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 2

channels of the one currently being watched. In this paper, we

group the even channels and odd channels according to the

channel index, and assign them as the duty channels for both

switches in the redundant pair, respectively.

The dual-hop interconnect pattern can co-exist with the

dual-home interconnect pattern. For example, suppose a switch

below the redundant pair in Fig. 3 connects to the STBs. If we

apply the dual-homed interconnect pattern to it, we can simply

let the uplink of sw1 and sw2 ending up with sw3 and sw4,

respectively. In this way, switches sw3 and sw4 treat the sw1

and sw2 as a single switch. Besides, sw3 and sw4 bypass the

same those channels, which are needed by the downstream

STBs, to each sw1 and sw2. Similarly, the dual-hop

interconnect patterns could be repeatedly applied to hops along

the path to the IPTV network.

3 SOFTWARE DESIGN PATTERN FOR HA IPTV

We extend IGMP proxy (RFC 4605) to realize the

redundant pair under the dual-hop interconnect pattern. The

redundant pair under dual-home interconnect pattern can be

implemented in a similar way.

Suppose that two processes are running atop the

controllers of two switches, respectively. To learn how the

IPTV channels being distributed by the other switch, these two

processes maintain the consistent view of membership

information, which is stored in the table object. Each table

entry consists of fields of multicast address of the channel,

status, and a list of downstream switches which need the

channel at present. Besides, a dirty tag is associated with each

table entry. As in the most of cache coherence protocol, the

dirty tag is set until the other process confirms the update. The

dirty tag is reset when the other process updates the status of

the same membership to the same downstream switch. It can

be easily proved that the order of update messages for the same

channel to the same downstream switch is preserved in this

way if two processes receive them orderly and correctly.

Besides, the IPTV services function normally even when there

are undetected failures in receiving IGMP messages at a single

switch. If the existence of the other process has not been

detected for a certain period, say 100 ms, the dirty tags will be

all set to hypothesize that the fault is not transient so that the

table content could be completely out of synchronization in the

other process. Initially, the table is empty. Besides, the table

also caches the update for membership removal to a

downstream switch but will be flushed out after one second or

after being confirmed by the other process.

The software design pattern in Fig. 4 depicts our basic

design principle. Basically the reconfigure object behaves like

an IGMP proxy except that it needs to inquire the guard object

before updating its membership database. To do so, it

forwards each update of membership (e.g., IGMP report, join,

or leave) to the guard object. It is the duty of guard object to

update any information in the table and peer with the other

process. Upon a status change of the other process or the

change of table content, the guard object notifies the

reconfigure object. The reconfigure will do the operation,

such as modifying the forwarding database in the switch or

VLAN configuration, and induce the specified channels from

the upstream through IGMP messages.

With the above basic principle, our major design effort is

then imposed on the guard object. The instructions given by

the guard object to the reconfigure object is “delete a member

in a port”, “insert a member in a port”, “unblock the non-duty

channels”, “unblock the duty channels”, “block non-duty

channels”, and “block all channels.” The IGMP join or leave

will be also sent by the reconfigure to the upstream

accordingly, e.g., if it is a new member found in the IGMP

proxy, an IGMP join message will be issued. There are four

states associated with the guard object eventually, i.e., startup,

normal, resuming, and alone. We describe the behaviors of

states in the followings: In startup state, the delivery of all

channels is blocked. When the existence of the other process

is detected within one second, then the guard object enters

into the resuming state. Otherwise it transits to the alone state.

In resuming state, if there is any dirty table entry, then

the guard object updates the table content in the other process.

The guard object stays in the resuming state for one second to

ensure that all the needed channels are already transferred

from the upstream. After that, it enters into the normal state.

On transiting into the normal state, the guard object request

the reconfigure to block the non-duty channels and distribute

the duty channels. In normal state, the table content is also

needed to be synchronized.

When a failure for the other process is reported, the

guard object transits into the alone state. When guard object

stays in the alone state, it instructs the reconfigure to do the

operation as a stand-alone switch, i.e, the duty and non-duty

channels are allowed to pass to downstream. After the other

process is detected again, the guard object enters into the

resuming state.

4 PROTOCOL FOR GUARD OBJECT PEERING

When examining the “guard” object more closely, we

find that it requires the functions of fast health check, mutual

exclusion for table consistency, and high-throughput/orderly-

transmission. Because these operations depend on each other,

e.g., the delivery and mutual exclusion relies on the result of

health check, it is nature to integrate all the functions into one

protocol. Based on such a protocol to form the peer relation

between guard objects in two respective processes, the

remaining task of the “guard” object includes straightforward

jobs only, i.e., to handshake with the reconfigure, scan the

table, and update the table in local or remote process.

It is noteworthy that the conventional communication

protocol for fault tolerance is designed for more than two

components participating in the protected group [5]. As a

r e c o n fi g u r e

1 1

g u a r d

1

t a b le

Fig. 4. The software design pattern for handling the high

availability.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 3

consequence, they emphasize on the reliable broadcast, atomic

broadcast, and casual broadcast to ensure the ordering of the

messages delivered and received. In our targeted environment,

our communication is only one-to-one. Some issues are thus

resolved easily. Besides, some other features can be designed

more efficiently, such as concurrency control. Most important

of all, our protocol should report the condition of the other

process in a very short period, which is not addressed in the

previous proposals.

The protocol basically combines the sliding window, fast

hello, and a simplified token passing algorithm [6]. The sliding

window protocol is to orderly deliver the data between the

redundant pair in a high-throughput fashion. The fast hello is

dedicated to fast health check. The token passing algorithm is

to enforce the mutual exclusion, i.e., whichever wants to enter

into the critical section needs to grab the token in advance. As

a consequence, our protocol needs to create the token, pass the

token, and report failure condition if the token status is weird,

i.e., lost token or duplicated token.

The typical communication environment we are

encountered is two switches connected via a short-delay and

highly reliable network where the packet error rate is very

small. The exchanged message format is listed as follows:

n-bit sequence number;

n-bit expected sequence number;

1-bit sync field;

2-bit token status;

payload.

The sequence number field is for realizing the sliding

window ARQ. To simplify our discussion, we demonstrate our

protocol by using 1-bit sequence number, i.e., the ARQ is stop-

and-wait. The expected sequence number field identifies the

sequence number of the message that the sender expects to

receive next. If the sync field is set, the sender indicates its

intent to set the sequence number to zero in both sides. The

two bits of token status tells us whether the sender is holding a

token (TH), requesting a token (TR), or otherwise (send).

In the followings, we list three major scenarios for the

protocol, namely connection setup scenario, timeout scenario,

and token loss scenario. The scenario for the duplicated token

is similar to the token loss scenario

The first scenario, as shown in Fig. 5, considers the

connection setup between two processes. Here we use the term

“process” to indicate that it is the application rather than the

switch to be protected. The connection setup procedure

consists of synchronization where each process needs to

generate numbers and the larger one grabs the token first. The

process with larger number then sends the message with TH

indicated until the token is passed to the other process. If the

process with smaller number does not need the token for the

time being, it simply sends the message whereas

piggybacking the data is allowed. On the other hand, if it

needs the token, it sends the message with TR set. Upon the

receipt of a send message without the TH set, the process then

grabs the token.

After connection setup, the situation where the token

possessed by one process and messages arrive in time is

regarded as the normal condition. Otherwise, a failure will be

reported. As shown in Fig. 6, the process which sends the

message without TH or TR set receives the message where the

TH is neither set. The situation claims that the token is lost

and a failure must be reported and then the connection setup

scenario is entered immediately. Fig. 7 shows the timeout

scenario where the message is not received in time. In such a

case, a fault is also reported and then the connection setup

scenario is re-entered promptly.

p r o c 1

s y n c (0 , 0 , R 1)

p r o c 2

s y n c (0 , 0 , R 2)

T H (1 , 0 , d a t a)

s e n d (0 , 0 , d a t a)

C a n T m (2 0)

Fig. 5. Connection setup scenario.

p r o c 1

s e n d (0 , 1 , d a t a)

p r o c 2

s e n d (1 , 0 , d a t a)

s y n c (0 , 0 , R 1)

s y n c (0 , 1 , R 2)

Fig. 6. Token-loss scenario.

p ro c 1

T m (2 0)

s e n d (0 , 1 , d a t a)

p r o c 2

T H (1 , 1 , d a t a)

s e n d (1 , 0 , d a t a)

s y n c (0 , 0 , d a t a)

Fig. 7. Timeout scenario.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 4

It is noteworthy that the starvation of token is possible

since the process who grabs the token may ignore the request

by the other process. Therefore, the “guard” object reports a

failure if the token request is not responded for a certain period.

The deadlock of waiting for token is not possible because in

such a case a failure is reported due to token loss and both

processes start all the way from the connection setup.

To enable fast health check during the period when there

is no data to be transferred, the sender is allowed to send the

null-data message without sync being set. The receiver simply

ignores the sequence number field and regards the message as

the one for reporting the health condition only.

In our implementation, the message is encapsulated in

UDP and the sender sends out at least one message within ten

milliseconds.

5 IMPLEMENTATION AND EXPERIMENT RESULTS

To show that our architecture is viable, we implement the

dual-hop interconnect pattern in Advanced

Telecommunications Computing Architecture, known as

ATCA, which is a new system form factor defined by the PCI

Industrial Computers Manufacturers Group (PICMG). The

ATCA provides an industry standard platform that enables

building telecommunication grade products in a multi-vendor

compatible environment. ATCA is the first standardized

platform for high availability system with redundant power,

cooling, and high-speed interconnections for data and control

plane.

Fig. 8 shows the system architecture to test our

implementation. We generate two identical testing flows with

the same content, speed (1.5Mbps), frame length, and with

simultaneous start and stop operations by smartbit. These two

flows are treated as “odd-channel” and “even-channel”

respectively and served by Switch blade A and B respectively

in normal case. In our VLAN configuration, two different

VLAN tags are dedicated for the odd and even channels,

respectively. In the case without any failures, Switch blade A

and B can serve the same amount of traffic within a period. If

a failure occurs on Switch blade B, the “even-channel” service

will be out of service for a short period, then the service is

resumed after Switch blade A taking it over. However, the

“odd-channel” is still running without any interruptions at that

moment. It is clear that the difference of the amount of packet

between “odd-channel” and “even-channel” can be easily

transformed into failover time via dividing the difference of

bytes received by the data rate of the individual flow.

We incorporate the software design pattern into the

IGMP proxy running atop Linux operating system on the

switch controller. The results of twenty experiments are

shown in Fig. 9. The average failover time is about 45ms. As

shown, the performance is always better than 50ms.

6 CONCLUSION

We consider how to equip EFM to support HA IPTV by

the technique redundant pair. The key challenge is that we

have to cut down our deployment cost while keeping the short

failover time. By observing that an IPTV broadcast channel is

indeed a multicast group, we propose a practical Ethernet

access architecture which is basically dedicated to support

highly-available IP multicasting. We implement our idea in

ACTA and the results show that our proposed architecture is a

viable approach.

In this paper, we confine the operations of failover

process in the redundant pair. Our future work is to explore

the potential of more cooperative activities between switches

in access system to reduce cost whereas improving the

availability of IPTV services.

REFERENCES

[1] Ashwin Gumaste, Tony Antony, First Mile Access

Networks and Enabling Technologies, Cisco press, Feb.

2004.

[2] Girish Chiruvolu, et al., “Issues and Approaches on

Extending Ethernet Beyond LANs,” IEEE

Communication Magazine, pp. 80-86, March 2004.

[3] S. Khandekar et al., “Metro Ethernet Network QoS

Framework,” work in progress, MEF, Nov. 2003.

[4] Elie Sfeir, Saiidrine Pasquahi, Thomas Schwabe, Andreas

Iselt, “Performance Evaluation of Ethernet Resilience

Mechanisms”, IEEE, 2005

[5] Pankaj Jalote, Fault Tolerance in Distributed Systems,

Prentice Hall, 1994.

[6] M. Ben-Ari, Principles of Concurrent and Distributed

Programming, 2
nd

 ed., Addison-Wesley, 2006.

Fig. 9. The results of failover time.

IGMP Proxy

for odd

channels

IGMP Proxy

for even

channels

Set-top box

(IGMP Host)

Redundant

pair

IGMP

Snooping

Fig. 8. ATCA-based EPON OLT system architecture for IPTV

service.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 5

