
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 2, FEBRUARY 2000 465

MINLAB: Minimum Noise Structure for
Ladder-Based Biorthogonal Filter Banks

See-May Phoong, Member, IEEE,and Yuan-Pei Lin, Member, IEEE

Abstract—In this paper, we introduce a minimum noise structure
for ladder-based biorthogonal (MINLAB) filter bank. The min-
imum noise structure ensures that the quantization error has a
unity noise gain, even though the filter bank is biorthogonal. The
coder has a very low design and implementation cost. Perfect re-
construction property is structurally preserved. Optimal bit alloca-
tion and coding gain formulas are derived. We show that the coding
gain of the optimal MINLAB coder is always greater than or equal
to unity. For both AR(1) process and MA(1) process, the MINLAB
coder with two taps has a higher coding gain than the optimal or-
thonormal coder with an infinite number of taps. In addition to its
superior decorrelation ability, it has many other desired features
that make it a potentially valuable and attractive alternative to the
orthonormal coder, especially for the high-fidelity compression.

Index Terms—Biorthogonal, compression, filter bank, minimum
noise, subband coding, wavelet coding.

I. INTRODUCTION

RECENTLY, there has been considerably interest in ap-
plying the ladder structure to data compression [1]–[17].

Fig. 1 shows a simple two-channel filter bank (FB) that uses
only one ladder. Such a structure is also known as the lifting
scheme in wavelet coding [6], [7], [16]. In the absence of the
quantizers, such a biorthogonal system always has the perfect
reconstruction (PR) [18], that is, for all possible

, regardless of the choice of . In other words, the FB is
structurally PR. The analysis filters and synthesis filters

are, respectively

(1)

The implementation and design of the biorthogonal system in-
volves only , and hence, the design and computational cost
is very low. Even though the filters in (1) are simple, their coding
performance is comparable with that of orthonormal coders.
Note that such a FB can never be orthonormal unless is
zero.

The ladder structure is first applied to progressive coding in
[1]. It is shown in [2] how roundoff noise of the ladder structure
at the encoder is cancelled by that at the decoder. A special

Manuscript received September 16, 1998; revised May 30, 1999. This
work was supported by the NSC under Grants 88-2213-E-002-080 and NSC
88-2218-E-009-016, Taiwan, R.O.C. The associate editor coordinating the
review of this paper and approving it for publication was Dr. Xiang-Gen Xia.

S.-M. Phoong is with the Department of Electrical Engineering, Institute
of Communication Engineering, National Taiwan University, Taipei, Taiwan,
R.O.C. (e-mail: smp@cc.ee.ntu.edu.tw).

Y.-P. Lin is with the Department of Electrical and Control Engineering, Na-
tional Chiao Tung University, Hsinchu, Taiwan, R.O.C.

Publisher Item Identifier S 1053-587X(00)01009-6.

useful class of ladder structure is used as a framework for the
construction of causal stable PR IIR FB [3], [4]. The same
framework can be generalized to the quincunx (two-dimen-
sional) 2-D FB by using a simple one-dimensional (1-D)-to-2-D
mapping [4], [5]. In [6] and [7], the ladder structure or so-called
lifting scheme is employed to construct biorthogonal wavelets
and wavelets defined on irregular sampling grid. It was shown
in [8] that both orthogonal and biothogonal FB can be factorized
into lifting steps. The nonlinear operator is used in the ladder
structure to generate nonlinear FB with PR property [9], [10].
A low-cost and useful nonlinear operation is introduced in [10],
and it is shown that the nonlinear FB coders have the ability to
preserve edges and remove the blocking and ringing effects of
compressed images. The ladder structure has also been applied
to lossless and lossy coding of images, and satisfactory coding
results can be obtained. In [11] and [12], the authors apply the
ladder structure for the high-quality lossy compression and
lossless coding of medical images. The proposed hierarchical
interpolation (HINT) compression enables progressive resolu-
tion transmission. In [13] and [15], the authors introduce a new
transform called the S+P transform. The S+P transform is a
combination of the Haar transform and the predictive transform
(which is in the form of a ladder). The compression algorithm
proposed in [15] can support both progressive fidelity and
progressive resolution transmission. It was demonstrated [15]
that in the application of both lossy and lossless image coding,
the S+P transform produces excellent compression results. In
[14], the optimal predictor with certain zero constraint is used
as , and the filter is obtained through the optimization of
Bernstein polynomial. In [16], the authors proposed a ladder
structure with integer-to-integer transform for the lossless
coding of images. The 2-D four-channel ladder structure was
studied in [17]. However, none of the ladder-based coders
considered above have the unity noise gain property. Therefore,
in the case of lossy compression, like most biorthogonal coder,
the coding gain of the ladder structure FB is not guaranteed
to be greater than unity.

On the other hand, the class of orthonormal FB is known
to have coding gain [18]. There has been a lot of in-
terest in finding the optimal orthonormal FB that yields a max-
imum coding gain for a given input statistics [21]–[24]. The
theory of optimal orthonormal coder is closely related to the
principle component FB [21], [22]. The principle component
FB problem is solved in [21], whereas the solution of the op-
timal orthonormal coder is given in [22]. It is shown in [22] that
the analysis and synthesis filters of an optimal orthonormal FB
are the ideal filters that satisfy the majorization and decorrela-
tion properties. The optimal FIR case is solved in [23] and [24].

1053–587X/00$10.00 © 2000 IEEE
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In this paper, we introduce a minimum noise structure for
the ladder-based biorthogonal FB shown in Fig. 1. We will call
such a coder the minimum noise ladder-based biorthogonal
(MINLAB) coder. The MINLAB coder has the unity noise
gain property. Optimal bit allocation and coding formulas are
derived. The coding gain of the optimal MINLAB coder is
equal to the square root of the prediction gain, and hence, it
is guaranteed to be greater than or equal to unity. The optimal
biorthogonal coder can be solved using Levinson recursion. For
both autoregressive (AR) process and moving average (MA)
process of order one, the proposed biorthogonal coder with two
taps has a higher coding gain thanany optimal orthonormal
FB (with any number of taps). Preliminary results of this work
have been presented in [19] and [20].

Outline of the Paper:Our presentation will go as follows: In
Section II, we briefly discuss the coding performance of the tra-
ditional ladder-based coder. The MINLAB coder is introduced
in Section III. The optimal bit allocation and coding gain for-
mulas will be derived. We will show that the optimal MINLAB
coder can be obtained from linear prediction theory. In Sec-
tion IV, we will derive the MMSE predictor for the minimum
noise structure. The merits of the MINLAB coders will be dis-
cussed in Section V. In Section VI, we provide examples such as
AR(1) and MA(1) inputs to demonstrate the performance of the
MINLAB coder. In Section VII, we will derive the results for
tree structure MINLAB coder. The case of biorthogonal coder
using more than one ladder will be studied in Section VIII.

Notations and Signal Model:Boldfaced characters represent
vectors and matrices. The symbols and denote, respec-
tively, the identity matrix and the reversal matrix of dimension

. For example

In this paper, we assume that the input signal is a real-
valued zero-mean wide sense stationary (WSS) process with
autocorrelation coefficients . Therefore, its variance is the
same as . The statistical expectation of a random process

is expressed as .

II. THE TRADITIONAL LADDER-BASED SUBBAND CODER

In a traditional subband coder, quantizersare placed di-
rectly after the subband signals , as shown in Fig. 1. In
this paper, we make some commonly used assumptions on the
quantizers.

Noise Model:Assume that the quantizers are scalar uniform
quantizers and can be modeled as an additive noise source.
Therefore, (as indicated by the dashed line
in Fig. 1), where and are, respectively, the input and
output of the quantizer. We assume that for a-bit quantizer,
the variance of quantization noise satisfies

(2)

where is the variance of the input , and is some con-
stant depending only on the statistics of .

Fig. 1. Conventional subband coder using ladder.

Bit Rate:Let and be the number of bits assigned to
and , respectively. The average bit rate in this case is

(3)

AverageOutput Noise Variance:Consider the synthesis bank
of Fig. 1. The output noise is defined as .
It contains contribution from both and . Due to the
upsampler, the output noise is not a WSS process. To quantify
the error, we use the average noise variance

It is clear that . Assume
that is white and uncorrelated with . Then,
we have , where

is the energy of the filter .
Substituting these results into the above equation, we get

The noise gain for is unity, whereas is amplified by
. Due to this noise amplification, it is not guaranteed that

the coding gain . In the next section, we will show how
to eliminate the noise amplification by judiciously placing the
quantizer .

III. M INIMUM NOISE STRUCTURE FORLADDER-BASED

BIORTHOGONAL (MINLAB) C ODERS

Consider Fig. 1. Note that the input to at the analysis
end is , whereas the input to at the synthesis end
is its quantized version . This means that in the recon-
struction process, is added to the top branch through the
filter . To avoid this, we can move the quantizer to the
left, as shown in Fig. 2. This has the dramatic effect of making
the noise gain unity. We will refer to Fig. 2 as the MINLAB
coder. To explain the unity noise gain property of this structure,
note that from Fig. 2, we have
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From the above equations and Fig. 2, we can conclude that the
errors on the top and bottom branches are, respectively

Therefore, the average variance of output error in the MINLAB
coder is given by

The above equation is valid for any additive noise source. We
do not make any assumptionson and . That means,
the noise gain isalwaysone, even though the FB is never or-
thonormal. If the quantizers used are scalar quantizers that sat-
isfy (2), then the above expression for can be rewritten as

(4)

where we have used the fact that . Applying the arith-
metic mean (AM) geometric mean (GM) inequality to the above
equation and using (3), we get

with equality if and only if the bits are allocated as

(5)

Equal Stepsize Rule:From the above derivation, we see that
the average output noise variance is minimized when the
two quantizers have the same noise variance. The noise vari-
ances and the quantization stepsize are related as

. Therefore, we conclude that the MINLAB coder
continues to be optimal if the stepsizes of the quantizers are
equal.

Coding Gain:If we define the coding gain of the coder as the
ratio of the error variance in direct quantization [as in (2)] over
that of the coder , then under the optimal bit allocation (5),
the coding gain can be written as

(6)

A. Optimal Biorthogonal Coders

In this subsection, we will find such that the coding gain
in (6) is maximized. We will first consider the FIR case and then
the IIR case.

1) Optimal FIR MINLAB Coder:From (6), the coding gain
is maximized if is minimized. The optimal solution of
, such that is minimized, can be obtained from linear

prediction theory [25]. To see this, let be an FIR filter of
the form

(7)

Then, the optimal solution is precisely the optimal predictor of
based on the observations of

. The noncausal predictor can

Fig. 2. MINLAB encoder and decoder.

be used here since we are predicting the even samples from the
odd samples. A causal implementation of such a system is al-
ways possible by inserting enough delays at appropriate places
in Fig. 2. Let be a real-valued WSS process with autocorre-
lation coefficients . Then, using the orthogonality principle
[18], [25], the optimal that minimizes is the solution
of

(8)

where the matrix and the vectors are as shown by
at the top of the next page. Note that the matrixabove is the
autocorrelation matrix of the signal , and hence, it is
positive definite (except for the special case when is
a line spectral process). Therefore, the above normal equation
can be solved in by using the Levinson fast algorithm.
The optimal predictor is given by

(9)

In addition, the minimum achievable variance is given
by

(10)

and the prediction gain is

(11)

The above inequality follows from the linear prediction theory
[25]. The prediction gain is unity if and only if all the observa-
tions are uncorrelated to the target of prediction . In this
case, the optimal bit allocation formula in (5) reduces to

Therefore, the better the prediction is, the more bits are assigned
to , and the fewer bits are assigned to. The coding gain
in (6) then becomes . Note that in the derivation
of (8), we have assumed that the autocorrelation matrix of the
quantized observations is very close to that of the
original observation. This assumption is valid only when the bit
rate is high so that the quantization noise variance is small. In
the case of low bit rate coding, the autocorrelation matrix of

can differ significantly from that of . This
can result in a substantial loss in coding performance. In next
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section, we will show how to obtain the minimum mean-square-
error (MMSE) predictor.

Linear-Phase Property:The optimal predictor obtained
from solving (8) has linear phase, i.e., . To see
this, note that the matrix on the left-hand side of (8) satisfies

where is the reversal matrix of size , as defined in Sec-
tion I. Since the vector is symmetric, we have .
Using these properties and the fact that , we
can rewrite (8) as

Comparing the above equation and (8), we conclude that
. The vector is symmetric and hence has

linear phase. Summarizing all the results, we have
Theorem 1: Consider the MINLAB coder in Fig. 2, where

is as in (7). The coding gain of the coder is maximized
when is chosen as the optimal prediction filter in (9). The
optimal prediction filter has linear phase, and the maximum
coding gain is given by

where is the prediction gain in (11). The coding gain is al-
ways greater than or equal to unity with equality if and only if
the autocorrelation coefficients of satisfy
for .

2) Optimal IIR Biorthogonal Coders:The pre-
dictor can be taken as the more general IIR
filter. The predictor can be optimized such that

is minimized. The
special case when is an allpass filter is studied in [24]. It
was shown that for a wide class of random process, a first-order
IIR prediction filter provides satisfactory coding results. To be
more specific, the prediction filter is taken as a first-order
allpass function

The analysis filter in (1) becomes
. IIR filters of this form are studied in detail in

[4], and it was shown that they have many good features. For

example, they always have at least one zero at . In this
case, the variance of has the form [26]

To get the optimal IIR predictor, we can find such that the
above quantity is minimized. If the input is a MA(1) precess,
then . If the input is an AR(1) process, then

[26].

B. Connections and Comparisons with Other Coding Systems

Comparison with DPCM:The differential pulse coding mu-
dolation (DPCM) is also a prediction-based coding technique.
The coding gain of a DPCM system is the prediction gain. The
proposed biorthogonal coder differs from DPCM in a number
of ways.

1) In DPCM (either open-loop or closed-loop), the decoding
process always involves a feedback path. In the MINLAB
coder, the reconstruction process uses only FIR filter if

is FIR.
2) In DPCM, the predictor can only make use of the past data

for prediction. In the MINLAB coder, the predictor can
use past and future data for prediction. Hence, in
(11) can be larger than the prediction gain in DPCM. That
means, for certain inputs, the coding gain of the biorthog-
onal coder can be larger than that of a DPCM of the same
complexity, as we will demonstrate in Section VI-B.

3) The optimal predictor in a DPCM system has minimum
phase and, hence, cannot be linear phase. On the other
hand, the optimal filter in the MINLAB coder always has
linear phase for real-valued WSS processes. Moreover,
the predictor is working at half of the input data rate.
Therefore, the complexity of the MINLAB coder is about
one fourth that of DPCM with the same prediction filter
length.

4) Unlike DPCM, the MINLAB coder has a hierarchical
structure. Therefore, progressive resolution transmission
can be done, and coding schemes like the zerotree algo-
rithms [15] and [27] can be used to further exploit the
correlation among different scales.

A Very Low Delay Coder:In many applications such as
speech coding, we need coders with low delay. To obtain a low
delay coder, we can take the filter as a causal FIR filter
of the form . Then, a causal implementation of
Fig. 2 can be obtained by replacing the advanced chain by a
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delay chain. In such a causal implementation of Fig. 2, regard-
less of the filter length , the coder has a delay of only one
sample (i.e., ). The optimal solution of is
the given by the optimal causal predictor of based on the
observations .

Connection to the Optimal Orthonormal Coder:It was shown
in [23] and [24] that the optimal FIR orthonormal coder (with
order ) has a unity coding gain if and only if the au-
tocorrelation coefficients of the input satisfy
for . Comparing this result with Theorem 1,
we conclude that the optimal biorthogonal coder has a unity
coding gain if and only if the optimal orthonormal coder of the
same order has a unity coding gain. In fact, for most inputs, the
biorthogonal coder outperforms the orthonormal coder, as we
will see in Section VI.

Connection to the KLT:It is known that the Karhunen-Loeve
transform (KLT) for the two-channel case has the form

and the coding gain of the KLT is given by

For the proposed biorthogonal coder, if we take the filter
, then we call the coder a biorthogonal transform. The op-

timal predictor will be , and the coding gain
for the biorthogonal transform is identical to .

IV. MMSE PREDICTION FILTER FORQUANTIZED OBSERVATION

SAMPLES

With high bit rate assumption, . The
optimal predictor in Section III is designed based on unquan-
tized observations . In this section, we will derive
the MMSE predictor by taking into account that the observation
samples are quantized data . We will assume that
the quantization noise is uncorrelated with the quantizer input.
Let be the autocorrelation matrix of the quantization noise

. Following steps similar to those in Section III, we can
derive the optimal MMSE predictor

(12)

where and are defined in (8). The matrix con-
tinues to be positive definite and Toeplitz, and the optimal so-
lution in (12) can be obtained by the Levinson fast algorithm.
Moreover, . Therefore, the MMSE
prediction filter also has linear phase. To carry on the
derivation, we will assume that the quantization noises
and are uncorrelated, and their variances are equal (this
is a reasonable assumption as the stepsizes of the quantizers are
equal)

To further simplify (12), we need the matrix inversion formula

where and are nonsingular matrices of the same dimension.
Applying the above identity to (12), we have

(13)

where is the optimal predictor in (9). Recall that
is the optimal predictor when the observation samples used

are unquantized original data . In the case of
quantized observation samples, the optimal predictor has
a correction term proportional to . In the case of high bit rate
coding, this term will be insignificant, and . From (13),
we can verify that the MMSE is given by

(14)

where is the prediction error variance for the case of unquan-
tized observation in (10). Since the matrix is
a positive definite matrix, we have for all .
Therefore, the prediction error variance increases if the obser-
vation samples are the quantized data. This increase is propor-
tional to the quantization error variance. This explains why
the coding gain of MINLAB decreases as the bit rate decreases.

1) Comparison of Performances of the Predictors in(8) and
in (12) for Coarse Quantization:Consider the case when the
predictor used is but the observation samples are in
fact the quantized data. Therefore, there is a mismatch between
the predictor and its observation samples. In this case, we can
show that the error variance is

Note that the amount of increase due to the mismatch is pro-
portional to the quantization error variance and the prediction
filter's energy. When the data are quantized coarsely, can
become the dominant term, and the prediction error
can even be larger than the orignal signal (a prediction
loss). The performance of the predictor can degrade
significantly at low bit rate coding.

Comparing the above equation with (14), we have

Since the matrix is positive definite, the
difference for any nonzero predictor. In fact, we can
verify that this difference is bounded by

where and are, respectively, the maximum and min-
imum eigenvalues of . We see that when the quantization
error is large, the increase of prediction error caused by the mis-
match of the predictor and the observation data can become
very significant. Therefore, it is important to design a predictor
that matches the observation samples, especially at low bit rate
coding.
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V. MERITS OF THEMINLAB C ODER

The MINLAB coder in Fig. 2 enjoys many advantages. It
has many other good features that make it attractive in various
applications. In the following, we list some of its advantages.

1) Structurally PR:Similar to the orthonormal FB, the pro-
posed biorthogonal FB has a structurally PR implemen-
tation, as in Fig. 2.

2) Equal stepsize rule:Like the orthonormal coder, the
equal stepsize rule is an optimal quantization procedure,
as discussed in the last section. Entropy coding can be
applied to further compress the quantizer output.

3) Unity noise gain:The synthesis bank does not amplify
the quantization noise. Hence, the optimal MINLAB
coder has a coding gain . Moreover, we will
show later that for two important classes of inputs [that
is, the AR(1) process and MA(1) process], the optimal
MINLAB coder with two taps outperforms the optimal
orthonormal coder of any order.

4) Low design cost:The design of the optimal MINLAB
coder is simple. Unlike the optimal orthonormal coder,
neither constrained optimization nor spectral factoriza-
tion is needed. Optimal MINLAB coder can be obtained
by using Levinson algorithm.

5) Low complexity:To implement the analysis or synthesis
bank, we need only one filter . Moreover, the op-
timal haslinear phase. Therefore, the complexity
of the biorthogonal coder is roughly one fourth that of
an orthonormal coder of the same order.

6) Coding gain increases with : It is well-known that
the prediction gain is a nondecreasing function of.
Hence , the coding gain increases when the filter order
increases.

7) Low delay:It is known that the delay of an orthonormal
coder is proportional to the filter order [18]. The longer
the filters are, the larger the system delay is. In the
MINLAB coder, if is a causal filter (either IIR or
FIR), then the system delay is only one sample, regard-
less of the filter order. As the prediction gain increases
with filter order, so does the coding gain. Therefore, we
can improve the performance of such a biorthogonal
coder without introducing extra system delay.

8) Lossy/lossless compression:Let the input be a dis-
crete amplitude signal with stepsize . For many ap-
plications, the inputs are integers, and . Suppose
the output of is quantized using a quantizer .
Then, the MINLAB coder can be modified for lossless
compression as follows.

a) Set the stepsize of . Any type of
quantizer (round off or truncation or ceiling) can
be used as .

b) Set the stepsizes of the subband quantizers as
. Use entropy coding to encode

the outputs of and .

When , we have a lossy MINLAB
coder. It becomes lossless when .

9) Coding of finite length signal:In a conventional sub-
band coder, when the input has finite length, the total

number of samples in the subband increases due to linear
convolution with the analysis filters, unless these filters
have length 2. Therefore, periodic extension is used to
solve this problem. In the MINLAB coder in Fig. 2,
to reconstruct the output signal, we need only to re-
tain samples in the subbands [ samples
of and samples of where de-
notes the largest integer ]. No periodic extension
is needed. To see this, let us ignore the quantizers in
Fig. 2. It is clear that has nonzero
samples, and has nonzero samples.
Note that . Therefore, to reconstruct

, we need to retain only samples of
. Moreover, since

for , we need to retain only the first
samples of for the reconstruction of

.
10) Incorporation of EZW and SPIHT algorithm:As we

will see in Section VII, the MINLAB coder in Fig. 2 can
be generalized to obtain a tree structure MINLAB coder.
Such a system continues to enjoy all of the properties
listed above. Using this wavelet-type MINLAB coder,
zerotree algorithms such as EZW and SPIHT [15], [27]
can be applied.

VI. PERFORMANCEANALYSIS

In this section, we will provide several examples to demon-
strate the coding performance of the proposed biorthogonal
coder. The results will be compared with the optimal or-
thonormal coder.

A. AR(1) Inputs

Let the input be an AR(1) process with for
. For this AR(1) process, we compare the performance of

the following various coders:

1) Let . From the normal equation (8),
we get the optimal predictor as .
In this case, the optimal coding gain has the closed-form
expression

where the index 2 indicates that the predictor has two taps.
In this case, however, only one multiplier is needed. We can
verify that there is no need to use a longer predictor because
the coding gain cannot be increased by using a longer filter.
Therefore, the gain given in the above equation is the max-
imum coding gain that can be attained by MINLAB coder
with any prediction filter order.

2) Take . The optimal predictor is simply
, and the coding gain is
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3) Consider the coding gain for optimal orthonormal coders
with infinite taps and four taps. It was shown in [22]–[24]
that the coding gains are, respectively

4) The DPCM of order one is optimal in this case as the input
is an AR(1) process. Its coding gain is given by

5) Suppose that we use the traditional biorthogonal coder in
Fig. 1. Then, it can be shown that the maximum achievable
coding gain for a two-tap filter is given by

where

These gains are shown in Fig. 3. It is clear from the
figure that

for all possible . Therefore, we
see that for AR(1) process, the optimal MINLAB coder with
two taps (one multiplier) outperforms the optimal orthonormal
coder with infinite number of taps. From Fig. 3, we also note
that for the traditional biorthogonal coder in Fig. 1, its coding
gain for .

We also compare the performance of the MINLAB coder with
the widely used filters. Fig. 4 shows that the coding gain of
MINLAB coder has a higher coding gain for AR(1) process with
all . In other words, the MINLAB coder has a better decorre-
lation ability than the filters. The MINLAB coder has only
two taps (one multiplication), whereas the filters have 16
taps (eight multiplications). However, the filters are signal
independent, whereas the MINLAB coder is signal dependent.

B. MA(1) Inputs

Let the input be an MA(1) process with ,
for , and for all the other . Then, the op-
timal prediction filters of two taps and one tap are, respectively,

and . The coding gain for these two
biorthogonal coder are, respectively

Note that in this case, there is no need to use a predictor longer
than two taps. The coding gain cannot be increased by using
a longer filter [this can be seen from the normal equation (8)].
Therefore, above is the maximum coding gain
that can be attained by MINLAB coder with any prediction filter
order. For optimal orthonormal coder, it was shown [23], [24]
that the coding gain is

Fig. 3. Coding gain comparison for AR(1) process.

Fig. 4. Comparison of MINLAB coder and the9=7 filters for AR(1) process.

For the DPCM with one multiplier, its coding gain is

The coding gain for the traditional coder in Fig. 1 is

From these coding gain expressions, it is not difficult to prove
that
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Fig. 5. Coding gain comparison for MA(1) process.

Fig. 6. Example of piecewise constant spectrum.

for all . The optimal MINLAB coder with two taps
again outperforms than the optimal orthonormal coder. More-
over the optimal MINLAB coder with two taps (one multiplica-
tion) is superior to the DPCM with one multiplication. All these
gains are shown in Fig. 5.

C. Inputs With

For orthonormal coders, the coding gain is independent of the
even autocorrelation coefficients [22]. In this subsection,
we consider the case when the input is a WSS process with
its autocorrelation coefficients satisfying . One
example that satisfies this condition is shown in Fig. 6. Since

, we have , and we have .
Therefore, the optimal predictor in (9) has the closed form

(15)
It is shown in Appendix A that the variance of can be
expressed as

(16)

Using Theorem 1, the coding gain of the MINLAB coder is

(17)

Fig. 7. Traditional tree structure subband coder using ladder.

where the argument indicates that there are infinite number of
taps. If is a Gaussian process, then the rate distortion theo-
retic bound [28] on the coding gain of any compression system
is given by (see Appendix B)

(18)

This rate distortion theoretic bound can be achieved
by DPCM of infinite order [25]. Using the fact that

for any
non-negative function (with equality if and only is
a constant), we can conclude from (17) and (18) that

and can be achieved by the MINLAB coder if and
only if the product is a constant. For the
optimal orthonormal coder with an infinite order, it is shown
[22] that achieves in (18) if and only
if and is a constant. There-
fore, both the and achieve the
rate distortion theorectic bound for the same class of spec-
trum. For the example shown in Fig. 6, we can verify that

.

VII. T REE STRUCTUREMINLAB C ODERS

In the MINLAB FB shown in Fig. 2, the energy is mostly
in the lower branch. Therefore, we decompose the lower sub-
band signal to obtain a biorthogonal wavelet decompo-
sition, as shown in Fig. 7. In a traditional wavelet coding, the
quantizers are placed directly after the subband signals as in
Fig. 7. There will be a mismatch between the encoder and de-
coder. At the encoder, the inputs to and are the orig-
inal data, whereas at the decoder, the inputs to and
are the quantized data. It can be verified that this mismatch will
cause the amplification of quantization noise in the reconstruc-
tion process. In the following, we will introduce a minimum
noise structure with unity noise gain for the ladder-based tree
structure biorthogonal coder. We will first derive the results for
the two-level decomposition in Fig. 7, and then the results of
the more general -level decomposition will be stated without
proof.

A. Two-Level Tree Structure MINLAB Coder

To avoid mismatch, we can use the quantized data as the input
to and at the encoder. This can be done by modi-
fying the encoder as in Fig. 8. Using an analysis similar to the
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two-channel case, it can be shown that the following relations
continue to hold:

Therefore, the average output noise variance is given by

(19)

where we have used (2) and the fact that . The average
bit rate in this case is

Using the above equation and applying the AM-GM inequality
to (19), we have

where
(20)

with equality if and only if the bits are allocated as

Note that there is no feedback loop in the minimum noise struc-
ture shown in Fig. 8. Therefore, stability is always guaranteed.

Optimizing the Filters and : Let and
be FIR filters of the form

From (20), the lower bound is minimized if and
are designed to minimize and , respectively. To mini-
mize the variance of , the filter is chosen as the op-
timal predictor obtained in Section III. To minimize the variance
of , the filter is designed as the optimal predictor of

based on the observations of
. The optimal solution of

can be obtained from a normal equation similar to (8). We can
show that both and have linear phase. The predic-
tion gains of these filters are

The inequalities follow from linear prediction theory. The gain
if and only if the autocorrelation coefficients

for . The gain if and only
if for . Under the optimal bit
allocation, the coding gain is given by

Fig. 8. Tree structure MINLAB encoder. Its decoder is the same as that in
Fig. 7.

Therefore, the maximum coding gain of the two-level MINLAB
coder in Fig. 8 is never less than that of the one-level MINLAB
coder in Fig. 2.

B. -Level Tree Structure MINLAB Coder

The same idea can be extended to the more general-level
tree structure FB. If the inputs to all the prediction filters
at the encoder are quantized data, the noise gain will be unity,
and such a -level tree structure will have the minimum noise
property. Since all the derivations are very similar to the two-
level decomposition, we will simply state the results below.

Let be the prediction gain of the predictor at the th
level. Then, the optimal bit allocation formula becomes

In addition, under the optimal bit allocation, the coding gain is

(21)

Since all , we conclude that the coding gain is unity if
and only if all of the prediction gains are unity. Moreover, the
coding gain satisfies the recursive formula

where is the coding gain of a-level tree structure FB.
Therefore, the coding gain always improves when we increase
the number of levels. However, the coding gain saturates as
increases, as we will see in the example at the end of this section.

Comments on the Complexity:If the predictor is chosen
as , then the optimal predictors will have
linear phase. To implement one level of the MINLAB encoder,
we need to implement one linear phase predictor and two adders
(except for the th level, which needs only one adder). There-
fore, the complexity of an th-level MINLAB encoder is that of

and additions. Comparing the non-MINLAB en-
coder with traditional structure in Fig. 7, the MINLAB encoder
needs more additions. The complexity of decoder for
both cases is the same.

Asymptotic Results as Approaches Infinity:Let
. We will study the asymptotic results of

this ideal case as the number of levelapproaches infinity.
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Fig. 9. Coding gain of tree structure MINLAB coder.

From Theorem 1, we know that if and only if the
autocorrelation coefficients satisfy for all

. By using

it is not difficult to see that the coding gain of a-level ideal
MINLAB coder satisfies if and only if
the input signal is white.

Example:Let the input be an AR(1) process with .
Using the normal equation (8), we can get the prediction gain
of the predictor as

Substituting this result into (21), the coding gain of an-level
is

This coding gain is plotted in Fig. 9 for three different values
of . Compared with the case of the one-level MINLAB in
Fig. 2, the coding gain of the two-level or three-level MINLAB
coder is much larger. In addition, note that the coding gain sat-
urates as the number of levelsincreases. The saturation point

depends on the correlation of the data. For AR(1) process,
for , respectively.

VIII. A M ORE GENERAL MINLAB C ODER

The biorthogonal coder in Fig. 2 uses only one ladder. Such
a system is a special case of the more general biorthogonal FB
shown in Fig. 10. The FB in Fig. 10 is studied in detailed in [4].
In the simple coder of Fig. 2, only the variance of the even sam-
ples is reduced by prediction from odd samples, but the variance

Fig. 10. More general ladder-based biorthogonal coder.

Fig. 11. MINLAB encoder for the system in Fig. 10. Its decoder is the same
as that in Fig. 10.

of the odd samples is unchanged. Hence, its performance is lim-
ited by the lower branch of Fig. 2. In the following, we will show
how to apply the more general structure of Fig. 10 to reduce the
variance of .

In this section, we assume that the filters and are
causal filters of the form

The choice of and will be discussed later in the
design. Note that the filter on the second ladder is
instead of . This delay is inserted so that there will be
no delay-free loop in the MINLAB structure. For the coder in
Fig. 10, its minimum noise structure is shown in Fig. 11. In the
minimum noise structure, the quantization noise is added
to the first ladder so that the input to is the quantized data

. Since depends only on the past values of ,
we do not have a delay-free loop. To see why the noise gain is
unity for the MINLAB coder, we can carry out the following
analysis. From Fig. 11, we have

From the above equations, we get
and . The noise gains for
the upper and lower branch are both unity. By carrying out the
similar derivation as in Section III, we can verify that the coding
gain is maximized if the product is minimized, and the
maximized coding gain can be expressed as

(22)
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Designing the Predictors to Maximize the Coding Gain in
(22): From Fig. 11, it is clear that depends only on ,
whereas depends on both and . To find the
global optimality, we need nonlinear optimization. Therefore,
we consider a suboptimal solution. Since depends only
on , we can design to be the optimal predictor of

. After designing , the subband signal
is known. Its autocorrelation coefficients and its cross
correlation coefficients with can be calculated. Using
this information, the optimal predictor can be derived
from the normal equation. Note that we are using the residue
of the even samples for prediction of . In general, the
choice of and will affect the coding gain. One way
to decide these parameters is the following.

1) Choice of : Note that we are using the odd samples
on the two sides of for the prediction of

. To get a linear-phase filter , we can
choose .

2) Choice of : When increases, the prediction gain of
increases. However, the correlation between the

observation and the target typically be-
comes weaker as grows. The prediction gain of
decreases as increases. Therefore, there is a tradeoff
between the gains of the two predictors and .

3) Choice of : As increases, the prediction gain of
increases, but the complexity also grows. Note that

in general, is not linear phase.
A Note on the Stability Issue:Note that there is no feedback

loop in the minimum noise structure in Fig. 11. The system is
stable if both and are stable filters. We can verify
that the noise transfer matrix from the quantizers to the subbands
has the form

The noise tranfer matrix is FIR. Moreover, its determinant is
unity. Hence, it is a unimodular matrix, and its inverse is also
FIR.

IX. CONCLUDING REMARKS

In this paper, we have proposed a minimum noise structure
(Fig. 2) for the class of ladder-based FB. The coding perfor-
mance of the proposed biorthogonal coder is analyzed in de-
tail. For both AR(1) process and MA(1) process, the optimal
biorthogonal coder with two taps (with a complexity of only one
multiplication) outperformsanyoptimal orthonormal coders. In
addition to its excellent coding performance, the coder has many
other desired features (see Section V). These features make the
biorthogonal coder a potentially valuable and attractive alter-
native to the orthonormal coder. We have also generalized the
minimum noise structure to the following two cases: 1) Tree
structure biorthogonal FB and 2) more general biorthogonal FB
with more than one ladder. In [29], we introduce a novel pre-
diction-based lower triangular transform (PLT). The new trans-
form is biorthogonal and has a minimum noise structure with
unity noise gain. The PLT has an identical coding gain as the
KLT, but it has a much lower design and implementation cost.

Given the input statistics, the PLT can be obtained by using the
Levinson fast algorithm. In the special case of AR(1) process,
the optimal biorthogonal transform coder has a closed-form ex-
pression, and no optimization is required.

APPENDIX A
PROOF OF(16) IN EXAMPLE 1

Since is given in (15), the analysis filter in (1)
becomes

where we have used the fact that . Com-
paring the above equation with the power spectrum

, we have .
Since the downsampler does not change the variance, the
minimum variance of can be expressed as

(23)

Since , we have for all
. Using this relation and the fact that is periodic, we can

further simplify (23) as

APPENDIX B
THE RATE DISTORTION THEORETICBOUND

For a Gaussian WSS process with power spectrum , the
minimum distortion that can be achieved by any-bit coding
system is given by [28]

To obtain the coding gain of the form in (18), we carry
out the derivation
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