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MINLAB: Minimum Noise Structure for
Ladder-Based Biorthogonal Filter Banks
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Abstract—in this paper, we introduce a minimum noise structure  useful class of ladder structure is used as a framework for the
for ladder-based biorthogonal (MINLAB) filter bank. The min-  construction of causal stable PR IR FB [3], [4]. The same
imum noise structure ensures that the quantization error has & famework can be generalized to the quincunx (two-dimen-

unity noise gain, even though the filter bank is biorthogonal. The . h . . :
coder has a very low design and implementation cost. Perfect re- sional) 2-D FB by using a simple one-dimensional (1-D)-to-2-D

construction property is structurally preserved. Optimal bitalloca- ~ Mapping [4], [5]. In [6] and [7], the ladder structure or so-called
tion and coding gain formulas are derived. We show that the coding lifting scheme is employed to construct biorthogonal wavelets

gain of the optimal MINLAB coder is always greater than or equal  and wavelets defined on irregular sampling grid. It was shown
to unity. For both AR(1) process and MA(1) process, the MINLAB 1, 1g1 that hoth orthogonal and biothogonal FB can be factorized

coder with two taps has a higher coding gain than the optimal or- . . . . .
thonormal coder with an infinite number of taps. In addition to its into lifting steps. The nonlinear operator is used in the ladder

superior decorrelation ability, it has many other desired features —Structure to generate nonlinear FB with PR property [9], [10].
that make it a potentially valuable and attractive alternative tothe A low-cost and useful nonlinear operation is introduced in [10],

orthonormal coder, especially for the high-fidelity compression.  and it is shown that the nonlinear FB coders have the ability to
Index Terms—Biorthogonal, compression, filter bank, minimum  preserve edges and remove the blocking and ringing effects of

noise, subband coding, wavelet coding. compressed images. The ladder structure has also been applied
to lossless and lossy coding of images, and satisfactory coding
|. INTRODUCTION results can be obtained. In [11] and [12], the authors apply the

) ) ~ladder structure for the high-quality lossy compression and
R ECENTLY, there has been considerably interest in apsssiess coding of medical images. The proposed hierarchical
~\ plying the ladder structure to data compression [1]-{17hterpolation (HINT) compression enables progressive resolu-
Fig. 1 shows a simple two-channel filter bank (FB) that usegn transmission. In [13] and [15], the authors introduce a new
only one ladder. Such a structure is also known as the liftijgansform called the S+P transform. The S+P transform is a
scheme in wavelet coding [6], [7], [16]. In the absence of thesmpination of the Haar transform and the predictive transform
quantizers, such a biorthogonal system always has the perig@ich is in the form of a ladder). The compression algorithm
reconstruction (PR) [18], that ig(n) = x(n) for all possible proposed in [15] can support both progressive fidelity and
z(n), regardless of the choice #f(z). In other words, the FBis progressive resolution transmission. It was demonstrated [15]
structurally PR. The analysis filteds;(z) and synthesis filters tnat in the application of both lossy and lossless image coding,
Fi(=) are, respectively the S+P transform produces excellent compression results. In
o —1pr.2 -1 [14], the optimal predictor with certain zero constraint is used
Holz) =1 —2""P(z), Hl(z) = asP(z), and the filter is obtained through the optimization of
Fo(z) =1, I(z)=z+P(z) (1) Bernstein polynomial. In [16], the authors proposed a ladder

The implementation and design of the biorthogonal system iﬁt_ru_cture yvith integer-to-integer transform for the lossless

volves onlyP(z), and hence, the design and computational cd&pding of images. The 2-D four-channel ladder structure was
is very low. Even though the filters in (1) are simple, their codingtudied in [17]. However, none of the ladder-based coders
performance is comparable with that of orthonormal Code&pn&dered above have the unity noise gain property. Therefore,

Note that such a FB can never be orthonormal unless is in the case of lossy compression, like most biorthogonal coder,
zero. the coding gair€G of the ladder structure FB is not guaranteed

The ladder structure is first applied to progressive coding [ P& greater than unity. ,
[1]. It is shown in [2] how roundoff noise of the ladder structure O the other hand, the class of orthonormal FB is known

at the encoder is cancelled by that at the decoder. A spedfyfidve coding gaicG > 1 [18]. There has been a lot of in-
terest in finding the optimal orthonormal FB that yields a max-

imum coding gain for a given input statistics [21]-[24]. The
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In this paper, we introduce a minimum noise structure fc %®)
the ladder-based biorthogonal FB shown in Fig. 1. We will cax® X@n) + X0
such a coder the minimum noise ladder-based biorthogor
(MINLAB) coder. The MINLAB coder has the unity noise
gain property. Optimal bit allocation and coding formulas ar
derived. The coding gain of the optimal MINLAB coder is ;iv
equal to the square root of the prediction gain, and hence,
is guaranteed to be greater than or equal to unity. The optirr
biorthogonal coder can be solved using Levinson recursion. F
both autoregressive (AR) process and moving average (Mn)
process of order one, the proposed biorthogonal coder with two Fig. 1. Conventional subband coder using ladder.
taps has a higher coding gain thany optimal orthonormal
FB (with any number of taps). Preliminary results of this work
have been presented in [19] and [20].

Outline of the PaperOur presentation will go as follows: In
Section II, we briefly discuss the coding performance of the tra- 1
ditional ladder-based coder. The MINLAB coder is introduced b= =(bo+b1). (3)
in Section Ill. The optimal bit allocation and coding gain for- 2

coder can be obtained from linear prediction theory. In Segt Fig. 1. The output noise is defined@s(n) = y(n) —z(n).
tion IV, we will derive the MMSE predictor for the minimum | contains contribution from bothy(n) andgy (n). Due to the

noise structure. The merits of the MINLAB coders will be disypsampler, the output noise is not a WSS process. To quantify

AR(1) and MA(1) inputs to demonstrate the performance of the
MINLAB coder. In Section VII, we will derive the results for y 1 y y
tree structure MINLAB coder. The case of biorthogonal cod@iz.. = 5 (E1(wo(n) =z (2n))"} + E{(y.(n) —z(2n—1))7}).
using more than one ladder will be studied in Section VIII.

Notations and Signal ModeBoldfaced characters representt is clear thatE{(y:(n) — z(2n — 1))*} = o2 . Assume

q
vectors and matrices. The symbdlg andJ 5 denote, respec- that ¢;(n) is white and uncorrelated withy(n). Then,

X () pALY

2 > Q1 ] 2

Bit Rate:Let by andb; be the number of bits assigneddp
and@, respectively. The average bit rate in this case is

tively, the identity matrix and the reversal matrix of dimensiowe have E{(yo(n) — ¢(2n))?} = o2 + o2 E,, where
N. For example E, = [T7|P(e/*)? dw/27 is the energy of the filte(z).
0 0 1 Substituting these results into the above equation, we get
J3=]10 1 0 1 1
100 s = 3%+ 5%0 1+ Ep).

In this paper, we assume that the input sign@t) is a real- The noise gain fogy(n) is unity, whereag; (n) is amplified by
valued zero-mean wide sense stationary (WSS) process with £,,. Due to this noise amplification, it is not guaranteed that
autocorrelation coefficients(k). Therefore, its variance is thethe coding gair€G > 1. In the next section, we will show how
same ag+(0). The statistical expectation of a random process eliminate the noise amplification by judiciously placing the

z(n) is expressed a&{z(n)}. quantizerQ; .
[I. THE TRADITIONAL LADDER-BASED SUBBAND CODER . MINIMUM NOISE STRUCTURE FORLADDER-BASED
In a traditional subband coder, quantizé)sare placed di- BIORTHOGONAL (MINLAB) C ODERS

rectly after the subband signais(n), as shown in Fig. 1. In - Consider Fig. 1. Note that the input #(z) at the analysis
this paper, we make some commonly used assumptions on &hg is;:(2n, — 1), whereas the input t&(z) at the synthesis end
quantizers. is its quantized versiofi((2n — 1). This means that in the recon-
Noise Model:Assume that the quantizers are scalar uniforigyction processy, (n) is added to the top branch through the
quantizers and can be modeled as an additive noise SOUf§@r P(z). To avoid this, we can move the quantizgy to the
Therefore(n) = z(n)+q(n) (as indicated by the dashed lingeft, as shown in Fig. 2. This has the dramatic effect of making
in Fig. 1), wherer(n) andi(n) are, respectively, the input andthe noise gain unity. We will refer to Fig. 2 as the MINLAB

output of the quantizer. We assume that for-hit quantizer, coder. To explain the unity noise gain property of this structure,
the variance of quantization noigén) satisfies note that from Fig. 2, we have

02 = 02_21’032C 2)

X
whereo? is the variance of the input(n), andc is some con- Zo(n) = zo(n) + qo(n)
stant depending only on the statisticsugh). yo(n) = &g
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From the above equations and Fig. 2, we can conclude that" %(“)A
errors on the top and bottom branches are, respectively "ﬂ_@ *Aw ’, 5 Rm  ¥®
yo(TL) - 37(271) = (]0(71) (@)
yi(n) —z(2n — 1) = g1(n). 1y
Therefore, the average variance of output error in the MINLAI ql(n) i
coder is given by x(20-1) %(2n- 1)‘ X(2n- Y
2 2 2 v 2] @) '|j01 > 2
O o = 0.5 (aqo + aql) . 1
The above equation is valid for any additive noise source. We Fig. 2. MINLAB encoder and decoder.

do not make any assumptioos go(n) andg; (n). That means, _ o
the noise gain islwaysone, even though the FB is never orbe used here since we are predlctmg the even samples fro_m the
thonormal. If the quantizers used are scalar quantizers that €8td samples. A causal implementation of such a system is al-

isfy (2), then the above expression fgf  can be rewritten as Ways possible by inserting enough delays at appropriate places
inFig. 2. Letz(n) be areal-valued WSS process with autocorre-

o2 =0.5c¢ (2_2"0%0 + 2_2“%) (4) lation coefficients (k). Then, using the orthogonality principle

Gout
. P 9" .
where we have used the fact thd{ — o2. Applying the arith- [18], [25], the optimalp(n) that minimizessZ_ is the solution

metic mean (AM) geometric mean (GM) inequality to the above

equation and using (3), we get R.p=r (8)
1/2
03 L2 2 [ Ozo T] / where the matri® ., and the vectorp, r are as shown bR,

at the top of the next page. Note that the maRixabove is the
autocorrelation matrix of the signa(2n — 1), and hence, it is
positive definite (except for the special case whén — 1) is

a line spectral process). Therefore, the above normal equation

Equal Stepsize Rul&rom the above derivation, we see thafa" be solved ilO(N?) by using the Levinson fast algorithm.
the average output noise variangg , is minimized when the The optimal predictop is given by
two quantizers have the same noise variance. The noise vari- —R-lr

2 2 _ p=R; )

ancesr;; and the quantization stepsiZg are related as;
const * AQ Therefore, we conclude that the MlNLAB COdeI]n addition, the minimum achievable Vananﬁ;%
continues to be optimal if the stepsizes of the quantizers ajg
equal.

Coding Gain:If we define the coding gain of the coder as the B
ratio of the error variance in direct quantization [as in (2)] over €=r(0) —r"R;'r =7(0) - Z p(k)r(2k +1)  (10)

with equality if and only if the bits are allocated as

bi =b+ = loga ——1og[ 022 (5)

acgac

is given

,min

N—-1

that of the codefﬁ2 , then under the optimal bit allocation (5), h==N
the coding gain can be written as and the prediction gain is
o2 o2 o2 o?
CG=—F— =,/ —=. (6) G, = =2 >1. (11)
[02,02] " T, Tromin €

The above inequality follows from the linear prediction theory

A. Optimal Biorthogonal Coders [25]. The prediction gain is unity if and only if all the observa-

In this subsection, we will find( ) such that the coding gain tions are uncorrelated to the target of predictign). In this
in (6) is maximized. We will first consider the FIR case and thefSe: the opt|mal bit allocation formula in (5) reduces to
the IIR case.

1) Optimal FIR MINLAB Coder:From (6), the coding gain bo=b—2 log VGp, =0+ 10%‘ VGp.
CG is maximized ifo2  is minimized. The optimal solution of
P(z), such thav? is m|n|m|zed can be obtained from Ilnear
prediction theory [25]. To see this, I&(z) be an FIR filter of
the form

Therefore, the better the prediction is, the more bits are assigned

to @1, and the fewer bits are assignedi®g. The coding gain

in (6) then become€G = /G,,. Note that in the derivation

of (8), we have assumed that the autocorrelation matrix of the

n quantized observation&2n — 1) is very close to that of the
P(z) = Z p(n)z"". ™ original observation. This assumption is valid only when the bit

n=-N rate is high so that the quantization noise variance is small. In

Then, the optimal solution is precisely the optimal predictor ahe case of low bit rate coding, the autocorrelation matrix of

x(2n) based on the observationsef2n — 2N + 1),x(2n —  &(2n — 1) can differ significantly from that of(2n — 1). This

2N 4+ 3),...,z(2n + 2N — 1). The noncausal predictor cancan result in a substantial loss in coding performance. In next

N—-1
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r(2N — 1)
7(0) (2) r(4) r(4N — 2) p(=N) (2N —3)
r(2) 7(0) r(2) r(4N — 4) p(—N +1)
Ro| @ 0 wav=6) | oo |ev | oo L
: : ; : : (1)
r(4dN —2) r(4N —4) r(4dN —6) 7(0) p(N —1)
r(2N - 1)

section, we will show how to obtain the minimum mean-squarexample, they always have at least one zero at 1. In this
error (MMSE) predictor. case, the variance af(n) has the form [26]
Linear-Phase PropertyThe optimal predictoP’(~) obtained

from solving (8) has linear phase, i.p(n) = p(—n—1).Tosee 2 _o5 [ 0y (1+a+a?)r(l)—(a—a? S (9043
this, note that the matriR.,. on the left-hand side of (8) satisfiesa’”0 r(0)+( atatr(l)=(a-a )Za r(2n+3)

n=0

To get the optimal IIR predictor, we can fing,,; such that the
above quantity is minimized. If the input is a MA(1) precess,

. . . . . thena,,: = —0.5. If the inputis an AR(1) process, theg,,; =
whereJ, v is the reversal matrix of siz&V, as defined in Sec- Dt 1
o (1 =1+ p2)/p” [26].

tion I. Since the vector is symmetric, we havdsnr = r.

Using these properties and the fact thakyJoy = Ly, We B Connections and Comparisons with Other Coding Systems
can rewrite (8) as

JonRoJon = Ry

Comparison with DPCMThe differential pulse coding mu-
R, (Joyp) =r dolation (DPCM) is also a prediction-based coding technique.
“ ' The coding gain of a DPCM system is the prediction gain. The

Comparing the above equation and (8), we conclude th%{pposed biorthogonal coder differs from DPCM in a number

Jonp = p. The vectorp is symmetric and henc#(z) has ©f Ways. _ _
linear phase. Summarizing all the results, we have 1) In DPCM (either open-loop or closed-loop), the decoding

Theorem 1: Consider the MINLAB coder in Fig. 2, where
p(n) is as in (7). The coding gain of the coder is maximized
whenp(n) is chosen as the optimal prediction filter in (9). The
optimal prediction filter has linear phase, and the maximum
coding gainCG ... is given by

Cgma.x =\ Gp Z 1

where(), is the prediction gain in (11). The coding gain is al-
ways greater than or equal to unity with equality if and only if
the autocorrelation coefficients a{rn) satisfy»(2k + 1) = 0
for0 < k< N-1.

2) Optimal 1IR  Biorthogonal CodersThe pre-
dictor P(z) can be taken as the more general IIR
filter. The predictor P(z) can be optimized such that
o = jg” S, (e7)|Ho(e?*)|* dw /27 is minimized. The
special case wheR(z) is an allpass filter is studied in [24]. It
was shown that for a wide class of random process, a first-order
IIR prediction filter provides satisfactory coding results. To be
more specific, the prediction filteP(z) is taken as a first-order
allpass function
2l —a

P(z) =

T 1—

process always involves a feedback path. In the MINLAB
coder, the reconstruction process uses only FIR filter if
P(z)is FIR.

2) InDPCM, the predictor can only make use of the past data

for prediction. In the MINLAB coder, the predictor can
use past and future data for prediction. Hengé7,, in

(11) can be larger than the prediction gain in DPCM. That
means, for certain inputs, the coding gain of the biorthog-
onal coder can be larger than that of a DPCM of the same
complexity, as we will demonstrate in Section VI-B.

) The optimal predictor in a DPCM system has minimum

phase and, hence, cannot be linear phase. On the other
hand, the optimal filter in the MINLAB coder always has
linear phase for real-valued WSS processes. Moreover,
the predictor is working at half of the input data rate.
Therefore, the complexity of the MINLAB coder is about
one fourth that of DPCM with the same prediction filter
length.

) Unlike DPCM, the MINLAB coder has a hierarchical

structure. Therefore, progressive resolution transmission
can be done, and coding schemes like the zerotree algo-
rithms [15] and [27] can be used to further exploit the
correlation among different scales.

1 A Very Low Delay Coderin many applications such as

speech coding, we need coders with low delay. To obtain a low

The analysis filter in (1) becomégy(z) = 272 — 27 1(»72 —

delay coder, we can take the filtét(z) as a causal FIR filter

a)/(1 — az~2). IIR filters of this form are studied in detail in of the formzﬁ:olp(n)z*". Then, a causal implementation of
[4], and it was shown that they have many good features. Heig. 2 can be obtained by replacing the advanced chain by a
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delay chain. In such a causal implementation of Fig. 2, reganthereA andB are nonsingular matrices of the same dimension.
less of the filter lengthV, the coder has a delay of only oneApplying the above identity to (12), we have
sample (i.e.y(n) = z(n — 1)). The optimal solution of(z) is

the given by the optimal causal predictorg®n) based on the Pomse = Ry — 2R [02R; +1] -1 R:'r
observations:(2n — 2N +1), (20— 2N +3),..., z(2n— 1). 1t 21 1=l
Connection to the Optimal Orthonormal Codénwas shown =p-o R, [oyR;+1] "p (13)

in [23] and [24] that the optimal FIR orthonormal coder (with L ) . .
order N — 1) has a unity coding gain if and only if the ayWwherep = R 'r is the optimal predictor in (9). Recall that

tocorrelation coefficients of the input satisiy2k + 1) = 0 P is the opti_mal pre_d_ictor when the observation samples used
for0 < k < N — 1. Comparing this result with Theorem 1,8 Unquantized original datg(2n — 2k — 1). In the case of
we conclude that the optimal biorthogonal coder has a unfiy!@ntized observation samples, the optimal predisigr.. has
coding gain if and only if the optimal orthonormal coder of th& COrrection term proportional tq? In the case of high bit rate
same order has a unity coding gain. In fact, for most inputs, tReding; this term will be insignificant, ana,, ~ p. From (13),
biorthogonal coder outperforms the orthonormal coder, as W can verify that the MMSE is given by
will see in Section VI. L
Connection to the KLTt is known that the Karhunen-Loeve Emmse = E+oyp’ [7R;V+1] T p (14)
transform (KLT) for the two-channel case has the form
where€ is the prediction error variance for the case of unquan-
T— L <1 1 ) tized observation in (10). Since the matfo¢R,;* + I]7! is
v2\1 -1 a positive definite matrix, we ha@,mse > € for all p # 0.
and the coding gain of the KLT is given by Therefore, the prediction error variance increases if the obser-
vation samples are the quantized data. This increase is propor-

COxrr = 1 tional to the quantization error varianeg. This explains why
1 —72(1)/72(0) ’ the coding gain of MINLAB decreases as the bit rate decreases.
1) Comparison of Performances of the Predictor¢8hand
For the proposed biorthogonal coder, if we take the fiitér) = iy (12) for Coarse Quantization:Consider the case when the

p(0), then we call the coder a biorthogonal transform. The opredictor used ip = R~!r but the observation samples are in
timal predictor will beP(z) = r(1)/r(0), and the coding gain fact the quantized data. Therefore, there is a mismatch between
for the biorthogonal transform is identical €@k r.r- the predictor and its observation samples. In this case, we can
show that the error variance is
IV. MMSE PREDICTION FILTER FOR QUANTIZED OBSERVATION
SAMPLES

With high bit rate assumptior,(2n — 1) = x(2n — 1). The
optimal predictor in Section Il is designed based on unquahote that the amount of increase due to the mismatch is pro-
tized observationg:(2n — 1). In this section, we will derive portional to the quantization error variance and the prediction
the MMSE predictor by taking into account that the observatiditer's energy. When the data are quantized coarsgly! p can
samples are quantized dat@n — 2k — 1). We will assume that become the dominant term, and the prediction effQtmatcn
the quantization noise is uncorrelated with the quantizer inpG&n even be larger than the orignal signé2n) (a prediction
Let R, be the autocorrelation matrix of the quantization noidess). The performance of the predicipe= R *r can degrade
q1(n). Following steps similar to those in Section Ill, we cassignificantly at low bit rate coding.
derive the optimal MMSE predictor Comparing the above equation with (14), we have

2_.T
gmismatch =&+ o.P P

-1
Pmmse = [Rl‘ + R(I] r (12) AE = gmismatch - gmmse = O—ng (I - [@?R;l + I]_l) P-

whereR,, andr are defined in (8). The matri., + R,] con- Since the matrid — [02R; " + I|~! is positive definite, the

tinues to be positive definite and Toeplitz, and the optimal Qs .
S . ! . ifferenceAE > 0 for any nonzero predictor. In fact, we can
lution in (12) can be obtained by the Levinson fast algorithm - y b

MoreoverJ[R, + R,]J = [R. + R,]. Therefore, the MMSE verify that this difference is bounded by

prediction filter p.,mse a@lso has linear phase. To carry on the 1 1
derivation, we will assume that the quantization noiggs:) UprPm SAEL O'prler)\—./O_2
andg; (n) are uncorrelated, and their variances are equal (this manl Ty mmiTe
is a reasonable assumption as the stepsizes of the quantizer%@e)\

equal) max andAyi, are, respectively, the maximum and min-

imum eigenvalues oR ;. We see that when the quantization
error is large, the increase of prediction error caused by the mis-
match of the predictor and the observation data can become
To further simplify (12), we need the matrix inversion formulavery significant. Therefore, it is important to design a predictor
that matches the observation samples, especially at low bit rate
A+B] '=A"1-AMAT 4+ BTTTAT! coding.

R, = 031.
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V. MERITS OF THEMINLAB C ODER

The MINLAB coder in Fig. 2 enjoys many advantages. It
has many other good features that make it attractive in various

applications. In the following, we list some of its advantages.

1) Structurally PR: Similar to the orthonormal FB, the pro-
posed biorthogonal FB has a structurally PR implemen-
tation, as in Fig. 2.

Equal stepsize ruleLike the orthonormal coder, the
equal stepsize rule is an optimal quantization procedure,
as discussed in the last section. Entropy coding can be
applied to further compress the quantizer output.

Unity noise gain: The synthesis bank does not amplify
the quantization noise. Hence, the optimal MINLAB
coder has a coding gaii¢ > 1. Moreover, we will
show later that for two important classes of inputs [that
is, the AR(1) process and MA(1) process], the optimal
MINLAB coder with two taps outperforms the optimal
orthonormal coder of any order.

Low design costThe design of the optimal MINLAB
coder is simple. Unlike the optimal orthonormal coder,
neither constrained optimization nor spectral factoriza-
tion is needed. Optimal MINLAB coder can be obtained
by using Levinson algorithm.

Low complexity:To implement the analysis or synthesis
bank, we need only one filteP(z). Moreover, the op-
timal P(z) haslinear phase Therefore, the complexity

2)

3)

4)

5)

10)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 2, FEBRUARY 2000

number of samples in the subband increases due to linear
convolution with the analysis filters, unless these filters
have length 2. Therefore, periodic extension is used to
solve this problem. In the MINLAB coder in Fig. 2,
to reconstruct the output signal, we need only to re-
tain L samples in the subbandsL + 1)/2| samples

of zo(n) and | L/2] samples ofr;(n) where|a| de-
notes the largest integef «]. No periodic extension

is needed. To see this, let us ignore the quantizers in
Fig. 2. It is clear that:(2n) has|(L + 1)/2| nonzero
samples, and:(2n — 1) has|L/2| nonzero samples.
Note thatzy(n) = z(2n — 1). Therefore, to reconstruct
z(2n — 1), we need to retain onlyL/2| samples of
x1(n). Moreover, sincgo(n) = zo(n) +v(n) = z(2n)
for0 < n < |(L+1)/2], we need to retain only the first
(L + 1)/2] samples ofcq(n) for the reconstruction of
z(2n).

Incorporation of EZW and SPIHT algorithm: As we

will see in Section VII, the MINLAB coder in Fig. 2 can
be generalized to obtain a tree structure MINLAB coder.
Such a system continues to enjoy all of the properties
listed above. Using this wavelet-type MINLAB coder,
zerotree algorithms such as EZW and SPIHT [15], [27]
can be applied.

VI. PERFORMANCEANALYSIS

of the biorthogonal coder is roughly one fourth that of |, this section, we will provide several examples to demon-

an orthonormal coder of the same order.

6)
the prediction gairts,, is a nondecreasing function Hf.
Hence , the coding gain increases when the filter order
increases.

7) Low delay:ltis known that the delay of an orthonorma

: T Lo oo strate the coding performance of the proposed biorthogonal
Coding gain increases withV: It is well-known that co4er. The results will be compared with the optimal or-
thonormal coder.

r’-\. AR(1) Inputs

coder is proportional to the filter order [18]. The longer Let the input be an AR(1) process withk) = pl*l for 0 <
the filters are, the larger the system delay is. In the < 1. For this AR(1) process, we compare the performance of
MINLAB coder, if P(z) is a causal filter (either IIR or the following various coders:

FIR), then the system delay is only one sample, regard)
less of the filter order. As the prediction gain increases
with filter order, so does the coding gain. Therefore, we
can improve the performance of such a biorthogonal
coder without introducing extra system delay.
Lossy/lossless compressidret the inputz(n) be a dis-
crete amplitude signal with stepsizZe,. For many ap-
plications, the inputs are integers, afig = 1. Suppose
the output ofP(z) is quantized using a quantizé},,.
Then, the MINLAB coder can be modified for lossless
compression as follows.
a) Set the stepsize @},, A, = nA,. Any type of
quantizer (round off or truncation or ceiling) can
be used as),,.

8)

Let P(z) = p(—1)z + p(0). From the normal equation (8),
we get the optimal predictor a$0) = p(—1) = p/(1+p?).

In this case, the optimal coding gain has the closed-form
expression

1 2

1

+p

COmNtAB(2) = >

2

where the index 2 indicates that the predictor has two taps.
In this case, however, only one multiplier is needed. We can
verify that there is no need to use a longer predictor because
the coding gain cannot be increased by using a longer filter.
Therefore, the gain given in the above equation is the max-

b) Set the stepsizes of the subband quantizers as imum coding gain that can be attained by MINLAB coder

Ny = A1 = A,. Use entropy coding to encode
the outputs of?y andQ; .
When2Ay = Ay > A,, we have a lossy MINLAB
coder. It becomes lossless whég = A = A,.
9) Coding of finite length signal:In a conventional sub-
band coder, when the input has finite lendththe total

2)

with any prediction filter order.
TakeP(z) = p(0). The optimal predictor is simply(z) =
p, and the coding gain is

1

COmntag(l) = ——
1—p
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3) Consider the coding gain for optimal orthonormal code 3 ' ' " ' ' ' '
with infinite taps and four taps. It was shown in [22]-[24

that the coding gains are, respectively CGDPCM(1) 'l.’

2.5 A

CGomino(20) = 12 _ . CGMINLAB(Z) ./_// |

V1= (16/72)(tan™ 1 p) R CGortho(oo) . //{‘_

[141/3p2 2 A

Cgortho(4) = 1—7p2 § ////+
g Lo E
4) The DPCM of order one is optimal in this case as the inp§ ‘ RO
is an AR(1) process. Its coding gain is given by 15 VAT
Cpron(l) = — '
DPCM 1—p2° N |

5) Suppose that we use the traditional biorthogonal coder
Fig. 1. Then, it can be shown that the maximum achievat

coding gain for a two-tap filteP(~) is given b ) : : . : : : : .
gd P ( ) g y 0 50 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
p
14 1 _ 202
COuadin(2) = 1-p2\[1+E,’ whereE), = (14 p2)2" Fig. 3. Coding gain comparison for AR(1) process.

These gains are shown in Fig. 3. It is clear from the 3 " " ' ' " " ' '
figure thatCGppom(1) > COMNLAB(2) > CGortno(00) >
CGortho(4) > CGuntan(1) for all possiblep. Therefore, we
see that for AR(1) process, the optimal MINLAB coder with 25
two taps (one multiplier) outperforms the optimal orthonorme
coder with infinite number of taps. From Fig. 3, we also not
that for the traditional biorthogonal coder in Fig. 1, its coding
0ainCG;raqit(2) < 1for p < 0.5.

We also compare the performance of the MINLAB coder witt =
the widely used/7 filters. Fig. 4 shows that the coding gain of §
MINLAB coder has a higher coding gain for AR(1) process witt© 1.5}
all p. In other words, the MINLAB coder has a better decorre
lation ability than thed /7 filters. The MINLAB coder has only
two taps (one multiplication), whereas th¢7 filters have 16 1
taps (eight multiplications). However, tigg7 filters are signal
independent, whereas the MINLAB coder is signal dependen

2

Gain

0.5 : . : ' . : : :
B. MA(1) Inputs 0 ©01 02 03 04 05 06 07 08

Let the input be an MA(1) process witti0) = 1, »(£1) = p P

for 0 < p < 0.5, andr(k) = 0 for all the otherk. Then, the op- Fig. 4. Comparison of MINLAB coder and tlt/7 filters for AR(1) process.
timal prediction filters of two taps and one tap are, respectively,

P(z) = p+ pz andP(z) = p. The coding gain for these two B 1
biorthogonal coder are, respectively Clorno(4) = 1— (4/3)p2'
COminLas(2) = ! COminras(l) = ! For the DPCM with one multiplier, its coding gain is

PR - . CGnrem(l) = 1/(1 - p?).
Note that in this case, there is no need to use a predictor longer
than two taps. The coding gain cannot be increased by usifige coding gain for the traditional coder in Fig. 1 is
a longer filter [this can be seen from the normal equation (8)].
Therefore CGnnr.ar(2) above is the maximum coding gain COtaait(2) = 1/v/ (1 — 20?)(1 + 2p?).
that can be attained by MINLAB coder with any prediction filter ) ] ) o o
order. For optimal orthonormal coder, it was shown [23], [Zﬁrom these coding gain expressions, it is not difficult to prove
that the coding gain is t

1 COmmNLAB(2) > CGprem(l) > Choreno(00) >

C ortho =
Gortho( o) 1—(16/72)p? CGortio(4) > COMINLAB(L) > CGiradin(2)
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1.4 (@) xm 44 ¥(n)
: G - g 2l
135 B z
Cc;\'MINLAB(Z)
1.3+ '
‘ + CCppey(") -
1250 = CGonho(‘”) 7
§ 1ob - CGorthO 4 /-/l , 2 Encoder Decoder
- CG 1 .
,_g CGMINLAZB( ) 4,'/ s g l Fig. 7. Traditional tree structure subband coder using ladder.
g 115 wadit® v
i1 - + where the argument indicates that there are infinite number of
’ T taps. Ifz(n) is a Gaussian process, then the rate distortion theo-
1.05 7t * _ .retic. bound [28] on the cc_)ding gain of any compression system
’ is given by (see Appendix B)
N =5 | )
CGrp = . (18)
1 ] L L 2w
095 0.1 0.2 0.3 0.4 0.5 \/GXP [fo In(S(w)S(w +)) dw/27f}
p
' _ _ ' This rate distortion theoretic bound can be achieved
Fig. 5. Coding gain comparison for MA(1) process. by DPCM of infinite order [25]. Using the fact that
St + exp[fo27T In A(w)dw/2r] < foh A(w)dw/2x for any
@ 2/3 non-negative functioml(w) (with equality if and onlyA(w) is

a constant), we can conclude from (17) and (18) that
1/3

COmnras(o0) £ CGrp

, . and Cggrp can be achieved by the MINLAB coder if and
025 05 o2 only if the productS(w)S(w + w) is a constant. For the
optimal orthonormal coder with an infinite order, it is shown
[22] that CGorino(o0) achievesCGrp in (18) if and only

_ ) if »(2k) = 6(k) and S(w)S(w + =) is a constant. There-
forall 0 < p < 0.5. The optimal MINLAB coder with two taps fore, both theCOynrap(o0) and Cona(nc) achieve the
again outperforms than the optimal orthonormal coder. Morgse gistortion theorectic bound for the same class of spec-
over the optimal MINLAB coder with two taps (one multiplica—trum' For the example shown in Fig. 6, we can verify that
tion) is superior to the DPCM with one multiplication. All thesecgl\’HNLAB(oo) = CGorno(00) = COrp = \/9/8.

gains are shown in Fig. 5.

Fig. 6. Example of piecewise constant spectrum.

VIl. TREE STRUCTUREMINLAB C ODERS

heIn the MINLAB FB shown in Fig. 2, the energy is mostly

in the lower branch. Therefore, we decompose the lower sub-

band signal:;(n) to obtain a biorthogonal wavelet decompo-

sition, as shown in Fig. 7. In a traditional wavelet coding, the

%Jantizers are placed directly after the subband signals as in
Ig. 7. There will be a mismatch between the encoder and de-

coder. Atthe encoder, the inputsiy(z) andP; (z) are the orig-

inal data, whereas at the decoder, the inputgfe) and P, (z)

C. Inputs Withr(2k) = 6(k)

For orthonormal coders, the coding gain is independent of t
even autocorrelation coefficient62K) [22]. In this subsection,
we consider the case when the inp@it ) is a WSS process with
its autocorrelation coefficients satisfying2k) = é(k). One
example that satisfies this condition is shown in Fig. 6. Sin
r(2k) = 6(k), we haveR, = I, and we have(n) = r(2n+1).
Therefore, the optimal predictor in (9) has the closed form

0 B 0 B " are the quantized data. It can be verified that this mismatch will
P(z) = Z r(2n+1)27" = Z r(2n+1)(z7" +2"7").  cause the amplification of quantization noise in the reconstruc-
n=—o0 n=0 (15) tion process. In the following, we will introduce a minimum

noise structure with unity noise gain for the ladder-based tree
structure biorthogonal coder. We will first derive the results for
the two-level decomposition in Fig. 7, and then the results of

) 2 duw the more general-level decomposition will be stated without
amg,min = S(CU)S(CU + 71')2— (16) prOOf.
0 Y
Using Theorem 1, the coding gain of the MINLAB coderis A. Two-Level Tree Structure MINLAB Coder
1 To avoid mismatch, we can use the quantized data as the input
CGmNLAB(00) = (17) to Py(») and P,(z) at the encoder. This can be done by modi-

\/fOQW S(w)S(w+ ) dw/2m fying the encoder as in Fig. 8. Using an analysis similar to the

It is shown in Appendix A that the variance of(n) can be
expressed as
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two-channel case, it can be shown that the following relatiol

) : (n)
continue to hold: X 2
yo(n) — x(2n) = qo(n)
yi(n) —z(dn —1) = 1 (n) 5
y2(n) — z(4dn — 3) = g2(n).
Therefore, the average output noise variance is given by > %@
1 1 1
2 _ 2 2 2
Qout Qaqo + ZO—(II + Zaqz
¢ > Xm)

5 (252700l +2707, +27%07)  (19)

where we have used (2) and the fact ﬂﬂ%\t —o2. The average Fig. 8. Tree structure MINLAB encoder. Its decoder is the same as that in
: L . : ® Fig. 7.
bit rate in this case is 9

Therefore, the maximum coding gain of the two-level MINLAB

1 1 1
b= —byp+ b1 + - bo. R .
2 4 4 coder in Fig. 8 is never less than that of the one-level MINLAB

Using the above equation and applying the AM-GM inequali§®der in Fig. 2.

to (19), we have

2 -2 2 2 2

1/4
2 2 2 /
Gom

(20)

x "

with equality if and only if the bits are allocated as

1 1
b, =b+ 5 logafji ~3 logaéM.

Note that there is no feedback loop in the minimum noise stry
ture shown in Fig. 8. Therefore, stability is always guaranteed.

Optimizing the Filterds(z) and P, (2): Let Py(z) and Py (2)
be FIR filters of the form

No—1 Ni—1

3 pom)z " Pz = Y pin)z

n=—N1

Po(z) =

n=—Ng

From (20), the lower bound is minimized Ry (z) and P (z)

B. L-Level Tree Structure MINLAB Coder

The same idea can be extended to the more getelalel
tree structure FB. If the inputs to all the prediction filté?g z)
at the encoder are quantized data, the noise gain will be unity,
and such d.-level tree structure will have the minimum noise
property. Since all the derivations are very similar to the two-
level decomposition, we will simply state the results below.
Let @, be the prediction gain of the predictor at (fet-1)th
c%i/el. Then, the optimal bit allocation formula becomes

1 1 AR /2"
bk:b—§10ngk+§10g[Gm G2 ---GPH} ,

In addition, under the optimal bit allocation, the coding gain is
cgmax = (GPO)I/Q(GIH )1/4 T (GP7,71 )1/271 . (21)

Since allG,, > 1, we conclude that the coding gain is unity if

are designed to minimize;, andoZ, , respectively. To mini- and only if all of the prediction gains are unity. Moreover, the
mize the variance aofo(n), the filter Py(z) is chosen as the op- coding gain satisfies the recursive formula
timal predictor obtained in Section Ill. To minimize the variance

of z1(n), the filter P, (2) is designed as the optimal predictor of

z(4n—1) based on the observationsufin —4N; +1), z(dn—
4N7+5),...,2(4n+ 4Ny — 3). The optimal solution of; ()

Cgmax,l = CgmaX,l—l(GPz—l)l/Ql

whereCGax,1 is the coding gain of &level tree structure FB.

can be obtained from a normal equation similar to (8). We cdrerefore, the coding gain always improves when we increase
show that bothP,(z) and P, () have linear phase. The predic-the number of levels. However, the coding gain saturates as

tion gains of these filters are

2
ag.

G, =—2>1
Po 2 =
Tzo

2

ag.
Gp,=— 21

0.73

1

increases, as we will see in the example at the end of this section.
Comments on the Complexitfithe predictorP;(z) is chosen

as >N pi(n)z"", then the optimal predictors will have

linear phase. To implement one level of the MINLAB encoder,

we need to implement one linear phase predictor and two adders

(except for theLth level, which needs only one adder). There-

fore, the complexity of ad.th-level MINLAB encoder is that of

The inequalities follow from linear prediction theory. The gaid’(#) and(2L —1) additions. Comparing the non-MINLAB en-

Gp, = 1if and only if the autocorrelation coefficient§2% +

coder with traditional structure in Fig. 7, the MINLAB encoder

1) = 0for0 < k < No — 1. The gainG,, = 1 if and only needs(L — 1) more additions. The complexity of decoder for
if #(4k 4+ 2) = 0for0 < k < N; — 1. Under the optimal bit both cases is the same.

allocation, the coding gain is given by

COmax = (Gpo)l/Q(GP1)1/4 > V GPO'

Asymptotic Results ak Approaches Infinitylet P,(z) =
Yoo pk(n)z~"™. We will study the asymptotic results of
this ideal case as the number of levelapproaches infinity.
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B ‘ I ' I I l ' 190) ¥y )
@ @ @
10+
i 095 i ’
p=r. Encoder Decoder
8t p=0.9 1
c p=0.85 Fig. 10. More general ladder-based biorthogonal coder.
s 7t |
(O]
o
£
O 6 L
S > Xn)
sl - —
4+ i
i ' o)
20 1 2 3 4 5 6 7 g Fig. 11.  MINLAB encoder for the system in Fig. 10. Its decoder is the same
number of levels L as that in Fig. 10.

Fig. 9. Coding gain of tree structure MINLAB coder. . . r
9 99 of the odd samples is unchanged. Hence, its performance is lim-

ited by the lower branch of Fig. 2. In the following, we will show
how to apply the more general structure of Fig. 10 to reduce the
variance ofz(n).

In this section, we assume that the filtéig») and P, (») are

From Theorem 1, we know that,, = 1 if and only if the
autocorrelation coefficients satisfy2*+1n — 2%) for all n =
0,4+1,42,.... By using

o0 causal filters of the form
UM n— 2"y = {1, 42, 43,.. }
k=0 'o—1 Ni—1
Po(2)= Y mo(m)=", Pz = > pi(n)z

it is not difficult to see that the coding gain oflalevel ideal

MINLAB coder CG, satisfiedimy,_..,CGy, = 1 if and only if

the input signal is white. The choice ofN, Ny, and N; will be discussed later in the
ExampleLet the input be an AR(1) process wittik) = pl*l. design. Note that the filter on the second ladder s P; ()

Using the normal equation (8), we can get the prediction gdistead ofP;(z). This delay is inserted so that there will be
of the k predictor as no delay-free loop in the MINLAB structure. For the coder in

Fig. 10, its minimum noise structure is shown in Fig. 11. In the
_1+4p minimum noise structure, the quantization najse») is added
PrTy gk to the first ladder so that the input 1 ( z) is the quantized data
Z(2n—1). Sincev; (n) depends only on the past valuegofn),
we do not have a delay-free loop. To see why the noise gain is

n=0 n=0

ok+1

Substituting this result into (21), the coding gain of Aevel

IS unity for the MINLAB coder, we can carry out the following
1/L i i
14 p? V2 ot 1/4 14 52" / analysis. From Fig. 11, we have
CGr, = 1= 2 [ S )
P P P z1(n) = z(2n — 1) — v1(n) + 1 (n)

This coding gain is plotted in Fig. 9 for three different values y1(n) = #1(n — N) +vi(n — N)

of p. Compared with the case of the one-level MINLAB in =z(2n —2N — 1)+ q(n — N)

Fig. 2,_the coding gain of the_ t_wo—level or three-levgl MINI__AB Zo(n) = 2(2n — 2N) — vo(n) + qo(n)

coder is much larger. In addition, note that the coding gain sat- .

urates as the number of levdldncreases. The saturation point vo(n) = Fo(n) +vo(n) = x(2n — 2N) + go(n).
L, depends on the correlation of the data. For AR(1) proce

; i —2(2n—2N) =
Leat = 3,4,5 for p = 0.85,0.9, 0.95, respectively. From the above equations, we ggtn) — (2n — 2N) = go(n)

andy; (n) —x(2n—2N —1) = g1(n— N). The noise gains for
the upper and lower branch are both unity. By carrying out the
VIII. A M ORE GENERAL MINLAB C ODER similar derivation as in Section lll, we can verify that the coding

The biorthogonal coder in Fig. 2 uses only one ladder. Sughin is maximized if the produot?co agl is minimized, and the

a system is a special case of the more general biorthogonal faBximized coding gain can be expressed as

shown in Fig. 10. The FB in Fig. 10 is studied in detailed in [4].

In the simple coder of Fig. 2, only the variance of the even sam- cg _ o3 . (22)

ples is reduced by prediction from odd samples, but the variance T ming, p /02, 02,
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Designing the Predictors to Maximize the Coding Gain iGiven the input statistics, the PLT can be obtained by using the
(22): From Fig. 11, it is clear thaftrgO depends only o(z), Levinson fast algorithm. In the special case of AR(1) process,
whereass2  depends on bottPy(z) and Py(z). To find the the optimal biorthogonal transform coder has a closed-form ex-
global optimality, we need nonlinear optimization. Thereforg@ression, and no optimization is required.
we consider a suboptimal solution. Sineg depends only
on Fy(2), we can desigiy( =) to be the optimal predictor of APPENDIX A

z(2n — 2N). After designingP,(z), the subband signaly(n) PROOF OF(16) IN EXAMPLE 1

is known. Its autocorrelation coefficients, (k) and its cross : o : L oy
correlation coefficients witly(2n — 1) can be calculated. Using be?onniif@ is given in (15), the analysis filtefo (c”*') in (1)

this information, the optimal predictaP; (z) can be derived

from the normal equation. Note that we are using the residue o '
of the even samples for prediction:of2n — 1). In general, the Ho(w) =1- Z (20 + 1) 9@t
choice of N, Ny, and V; will affect the coding gain. One way n=—co
to decide these parameters is the following. nd N Ciom
1) Choice of Ny: Note that we are using the odd samples - Z (=1)"r(n)e™
0 —
on the two sides of:(2n — 2V) for the prediction of e
z(2n — 2N). To get a linear-phase filtef,(z), we can where we have used the fact that2k) = &(k). Com-
chooseNy = 2NV — 1. paring the above equation with the power spectrum

2) Choice of N: When N increases, the prediction gain ofg(,) = S r(n)e 7", we have Ho(w) = S(w + 7).
Fy(z) increases. However, the correlation between tfgince the downsampler does not change the variance, the

observationzo(n) and the target(2n — 1) typically be- - minimum variance of:o(n) can be expressed as
comes weaker a& grows. The prediction gain df; (z)

decreases a& increases. Therefore, there is a tradeoff ) 2 ) dw
between the gains of the two predictdig ») and P, (). zo,min = /0 S(w)S™(w + 7r)§' (23)
3) Choice of N;: As N; increases, the prediction gain of
Py (z) increases, but the complexity also grows. Note th&incer(2k) = §(k), we haveS(w) + S(w + «) = 2 for all
in general P (z) is not linear phase. w. Using this relation and the fact th&fw) is periodic, we can
A Note on the Stability Issudlote that there is no feedbackfurther simplify (23) as
loop in the minimum noise structure in Fig. 11. The system is

stable if both/%(z) and P1 (=) are stable filters. We can verify 2

:/OWS(w)SQ(w—i-W);l—w—i-/ i S(w)SQ(w—i—ﬁ)g—w

that the noise transfer matrix from the quantizers to the subbandg® ™™ 7r @
" d ” d
has the form = / S(w)SHwtm)S2 + / S(w+m)S2(w) =2
0 2m 0 2m
< 1 —Po(z) ) T dw
—IP(z) 142 R(PUR) ) — [ s@)srlSerm+ S5
0
The noise tranfer matrix is FIR. Moreover, its determinant is G dw 2 dw
unity. Hence, it is a unimodular matrix, and its inverse is also :2/0 S(W)S(WJFW)g:/O S(W)S(WJFW)g-
FIR.
IX. CONCLUDING REMARKS APPENDIX B

In this paper, we have proposed a minimum noise structure THE RATE DISTORTION THEORETIC BOUND

(Fig. 2) for the class of ladder-based FB. The coding perfor- For a Gaussian WSS process with power spectfia), the
mance of the proposed biorthogonal coder is analyzed in deinimum distortion that can be achieved by dnpit coding
tail. For both AR(1) process and MA(1) process, the optimalstem is given by [28]

biorthogonal coder with two taps (with a complexity of only one

multiplication) outperformsinyoptimal orthonormal coders. In Don(b) = 272 exp U% In 5( )d_w}
addition to its excellent coding performance, the coder has many i o 27 |

other desired features (see Section V). These features make the

biorthogonal coder a potentially valuable and attractive altef0 obtain the coding gai@iGrp of the form in (18), we carry
native to the orthonormal coder. We have also generalized @& the derivation

minimum noise structure to the following two cases: 1) Tree

27 T 2w
structure biorthogonal FB and 2) more general biorthogonal FB/ In S(w)d—w = / In S(w)d—w + / In S(w)d—w
with more than one ladder. In [29], we introduce a novel pre-~© 2m o 2m T 2
diction-based lower triangular transform (PLT). The new trans- = / In S(w)d_w + / InS(w+ W)d_“’
form is biorthogonal and has a minimum noise structure with 0 27 0 27
unity noise gain. The PLT has an identical coding gain as the 1 dw

27
KLT, but it has a much lower design and implementation cost. = 5/0 In(S(w)S(w +m)) 5
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