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Abstract

A distributed computing system consists of processing elements, communication links, memory units, data
"les, and programs. These resources are interconnected via a communication network and controlled by
a distributed operating system. The distributed program reliability in a distributed computing system is the
probability that a program which runs on multiple processing elements and needs to retrieve data "les from
other processing elements will be executed successfully. This reliability varies according to (1) the topology of
the distributed computing system, (2) the reliability of the communication edges, (3) the data "les and
programs distribution among processing elements, and (4) the data "les required to execute a program. In
this paper, we show that computing the distributed program reliability on the star distributed computing
systems is NP-hard. We also develop an e$ciently solvable case to compute distributed program reliability
when some additional "le distribution is restricted on the star topology.

Scope and purpose

Recent advances in VLSI circuitry have a tremendous impact on the price-performance revolution in
microelectronics. This development has led to an increased use of workstations connected in the form of
a powerful distributed computing system. Potential bene"ts o!ered by such distributed computing systems
include better cost performance, enhanced fault tolerance, increased system throughput, and e$cient sharing
of resources. Distributed program reliability is an important measure that should be examined for designing
a high fault-tolerance distributed computing system. This reliability varies according to (1) the topology of
the distributed computing system, (2) the reliability of the communication edges, (3) the data "les and
programs distribution among processing elements, and (4) the data "les required to execute a program. This
article is concerned with the analysis of distributed program reliability on star distributed computing
systems. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A distributed computing system (DCS) consists of processing elements, communication links,
memory units, data "les, and programs. These resources are interconnected via a communication
network and controlled by a distributed operating system. A distributed computing system has
become very popular for its high fault tolerance, potential for parallel processing, and better
reliability performance. One of the important issues in the design of the DCS is the reliability
performance. For traditional networks, many reliability indice have been proposed. They include
two-terminal reliability, all-terminal reliability, and K-terminal reliability [1}5]. However, these
measures are not applicable to practical DCS's since the reliability measure for DCSs should
capture the e!ects of distribution on redundant data "les.

In Prasanna Kumar et al. [6] and Kumar et al. [7] distributed program reliability
was introduced to model the reliability of DCS. The distributed program reliability in a dis-
tributed computing system is the probability that a program which runs on multiple process-
ing elements and needs to retrieve data "les from other processing elements will be executed
successfully.

Most of network reliability problems (e.g., K-terminal reliability), in general, are NP-hard. The
class of NP-hard problems was introduced by Valiant [8]. Computing distributed program
reliability (DPR) for general DCS's is also NP-hard. One possible means of avoiding this
complexity is to consider only a restricted class of DCS's.

The star topology is one of the most widely used structures for a communication system. The star
network was used because it was easy to control } the software is not complex and the tra$c #ow is
simple. Fault isolation is also relatively simple in a star network because the line can be isolated to
identify the problem. In a star topology, each machine on the network has its own dedicated
connection to a hub or switch. The star topology is used mostly with twisted pair cabling, usually in
an Ethernet environment.

In this paper, we are interested in star topologies. We highlight the problem of computing the
distributed program reliability for a star topology because the simplicity of the topology may
incorrectly be conceived as trivial. We show that computing the distributed program reliability on
the star distributed computing systems is NP-hard. We also develop an e$ciently solvable case to
compute distributed program reliability when some additional "le distribution is restricted on the
star topology.

In Section 2, the de"nitions and notation are given for this paper. In Section 3, we show that
computing the distributed program reliability on the star distributed computing systems is
NP-hard. In Section 4, we propose an e$ciently solvable case of DPR problem for star topologies
in which data "les are restricted to a certain type of distribution. Finally, summary and concluding
remarks are given.

2. Notation and de5nitions

Notation

D"(<, E, F) an undirected distributed computing system (DCS) graph with vertex set <, edge
set E and data "le set F

130 M.-S. Chang et al. / Computers & Operations Research 27 (2000) 129}142



m the number of distinct "les in a DCS
FA

i
the set of "les available at node i (note: F"XFA

i
)

e
i

edge (r, v
i
)

v
i

the node whose incident edge is e
i

p
i

reliability of edge i
q
i

1!p
i

H subset of "les of F, i.e., H-F, and H contains the programs to be executed and all
needed data "les for the execution of these programs

R(D
H
) the DPR of D with a set H of needed "les: PrMall data "les in H can be accessed

successfully by the executed programs in HN

De5nition. A ,le spanning tree (FST) is a tree whose nodes hold all needed "les in H.

De5nition. A minimal ,le spanning tree (MFST) is an FST such that there exists no other FST that
is a subset of it.

De5nition. Distributed program reliability (DPR) is de"ned as the probability that a distributed
program that runs on multiple processing elements (PEs) and needs to communicate with other
PEs for remote "les will be executed successfully.

By the de"nition of MFST, the DPR can be written as

R(D
H
)"Prob(at least one MFST is operational), or

R(D
H
)"Prob A

dmfst

Z
j/1

MFST
jB ,

where dmfst is the number of MFSTs for a given needed "le set H.

De5nition. A star DCS is a topology with n#1 nodes Mr, v1, v2, 2 , v
n
N and n edges M(r, v1),

(r, v2), 2 , (r, v
n
)N, where r is a root node of a star DCS.

De5nition. A set s
i
of edges of DCS with a star topology is called a ,le cutset for "le f

i
if it consists of

all edges (r, v
i
) such that node v

i
contains "le f

i
, i.e., s

j
"M(r, v

j
) D f

i
3FA

j
N.

De5nition. A star DCS D has the consecutive ,le distribution property i! for each node l, there
exists, f

i
3FAl and f

j
3FAl then f

k
3FAl for all k, i(k(j .

3. The computational complexity of DPR for a star topology

In this section we show that computing the distributed program reliability on the star distributed
computing systems is NP-hard. Complexity results are obtained by transforming a known
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NP-hard problem into our reliability problem [9]. For this reason, we "rst state some known
NP-hard problems.

(i) K-terminal reliability (K¹R) [5]
Input: An undirected graph G"(<, E) where< is the set of nodes and E is the set of edges that
fail s-independently of each other with known probabilities. A set K-< is distinguished with
DK D*2.
Output: R(G

K
), the probability that the set K of nodes of G is connected in G.

(ii) Number of edge covers (dEC) [10]
Input: an undirected graph G"(<, E).
Output: the number of edge covers for G

,DMC-E: each node of G is an end of some edge in CND.

(iii) Number of vertex covers (d<C) [11]
Input: an undirected graph G"(<, E).
Output: the number of vertex covers for G

,DMK-<: every edge of G has at least one end in KND.

Theorem 1. Computing DPR for a general DCS is NP-hard.

Proof. We reduce the K¹R problem to our DPR problem. For a given network G"(<, E) and
a speci"ed set K-<, we can de"ne an instance of the DPR problem. Construct a DCS graph
D"(<, E, F) in which the topology and the reliability of each edge are the same as G. Let
F"X

/0$% i|KM f
i
N and FA

i
"M f

i
N if node i3K else FA

i
"0 for each node i3<. If we set

H"F"X
/0$% i|KM f

i
N then we have R(D

H
)"R(G

K
). However, Rosenthal [5] and Valiant [8] show

that the problem of computing K¹R, in general, is NP-hard, so computing DPR, in general,
is NP-hard. K

The result of Theorem 1 implies that it is unlikely that polynomial time algorithms exist for
solving the DPR problem. One possible means of avoiding this complexity is to consider only
a restricted class of structures. The class of interest here is a star topology that is widely used in
one-node circuit switched networks.

Theorem 2. Computing DPR for a DCS with a star topology even with each DFA
i
D"2 is NP-hard.

Proof. We reduce the dEC problem to our problem. For a given network G"(<1, E1) where
E1"Me1, e2, 2 , e

n
N, we construct a DCS D"(<2, E2, F) with a star topology where

<2"Mr, v1, v2, 2 , v
n
N, E2"M(r, v

i
) D1)i)nN, and F"M f

i
D for each node i3GN. Let FA

vi
"

M f
u
, f

v
D if e

i
"(u, v)3GN for 1)i)n, FA

r
"0 and H"F. From the construction of D, it is easy to

show that there is one-to-one correspondence between one of the sets of edge covers and one FST.
The DPR of D, R(D

H
), can be expressed as

R(D
H
)" +

&03 !-- FST
t|D

G <
&03 %!#)
%$'% i|t

p
i

<
&03 %!#)
%$'% iNt

(1!p
i
)H .

132 M.-S. Chang et al. / Computers & Operations Research 27 (2000) 129}142



Thus, a polynomial-time algorithm for computing R(D
H
) over a DCS with a star topology and each

DFA
i
D"2 would imply an e$cient algorithm for dEC problem. Since dEC problem is NP-hard,

Theorem 2 follows. K

Theorem 3. Computing DPR for a DCS with a star topology even when there are only two copies of
each ,le is NP-hard.

Proof. We reduce the d<C problem to our problem. For a given G"(<
1
, E

1
) where DE

1
D"n

and <
1
"Mv

1
, v

2
, 2 , v

m
N, we construct a DCS D"(<

2
, E

2
, F) with a star topology where

<
2
"<

1
XMrN, E

2
"Me

i
"(r, v

i
) D1)i)mN, and F"M f

i
D for all edge i3GN. Let FA

i
"M f

j
D for all

edge j that are incident on v
i
3GN and H"F. From the construction of D, it is easy to show that

there are only two copies of each "le in D and one-to-one correspondence between one of the sets of
vertex covers and one FST of D. The DPR of D, R(D

H
), can be expressed as

R(D
H
)" +

&03 !-- FST
t|D

G <
&03 %!#)
%$'% i|t

p
i

<
&03 %!#)
%$'% iNt

(1!p
i
)H .

Since d<C problem is NP-hard, Theorem 3 follows. K

By Theorems 2 and 3, we show that computing the DPR for a DCS with a star topology in
general is NP-hard.

4. An e7ciently solvable case for DPR analysis on a star topology

The results of the previous section indicate that computing DPR over a star DCS is NP-hard.
These results imply that it is unlikely that polynomial algorithms exist for solving them. It is,
however, possible that an e$cient algorithm exists for computing DPR over a star DCS with
a certain restricted class of "le distribution.

The following sections will use the concept of cutset to compute DPR for DCS with a star
topology. We "rst introduce the concept of cutset for calculating the measure of network reliability.
Then, we get the "le cutsets from a star DCS. We do not make a reduction of "le cutsets before
a semilattice is considered because it cannot reduce the time complexity of algorithm REL in
Section 4.2. We construct the "le cutsets to be a semilattice structure and test whether or not this
semilattice structure is also satis"ed with some additional properties. If these additional properties
are satis"ed, then an e$cient algorithm exists for computing DPR over a star DCS.

4.1. Basic concept

It is important to be able to assess the reliability of a complex system, based on know-
ledge concerning the reliabilities of its individual components. In a typical situation, edges of
the network are assumed to fail in a statistically independent fashion with known probabilities.
For such networks, a variety of probabilistic measures of system performance have been
considered.
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Numerous algorithms have been proposed for calculating these measures of network reliability.
One class of methods is based on the idea of a path, a minimal set of edges whose operation ensures
that the system functions. In this approach, paths must "rst be enumerates and then combine either
by applying the inclusion}exclusion principle or by e!ecting a partition into mutually disjoint
events [12}14]. An alternative approach uses instead the enumeration and combination of cutsets,
minimal sets of edges whose failure ensures that the system cannot function [15, 16].

The following section uses the concept of cutset to compute DPR for DCS with a star topology.
The emphasis is on identifying an underlying semilattice structure that captures certain algorithmi-
cally desirable features of such networks. In the following section, we apply the results of Provan
and Ball [17] and Shier [18] to obtain a pseudo-polynomial-time algorithm for computing the
DPR with a star topology.

4.2. A pseudo-polynomial-time algorithm for computing DPR of a DCS with a star topology

In this section, we will propose a pseudo-polynomial-time algorithm for computing the DPR of
a DCS with a star topology. This algorithm is polynomially bounded in the number of "le cutsets.
However, there exists a method that allows the "le cutsets to be generated e$ciently in terms of the
number of data "les. Therefore, processing of these "le cutsets by a pseudo-polynomial algorithm
might be e!ective in case the number of distinct "les, m, is not too large. On the other hand we
believe that our algorithm alone is a polynomial solution if the solution of "le cutsets are not
considered. Our algorithm REL assumes that "le cutsets S"Ms

1
, s

2
, 2 , s

m
N are obtained by some

other "le cutset algorithms as the input of our proposed algorithm. The "le cutset problem, in fact,
is another important separated issue.

Suppose that (C, K) is a coherent system with components C"Mc
1
, c

2
, 2 , c

n
N and minimal

cutsets K"Mk
1
, k

2
, 2 , k

m
N. The collection of minimal cutsets K is assumed to be endowed with

a partial ordering, ), that forms a meet semilattice. In other words, any two k
i
and k

j
have

a greatest lower bound k
i
'k

j
. If this semilattice also satis"es the following two additional

properties, then the O(nm2) algorithm can be applied to calculate the reliability of the system
(C, K) [18].

Property I. If k
i
)k

r
)k

j
, c3k

i
, c3k

j
, then c3k

r
.

Property II. k
i
'k

j
-k

i
Xk

j
.

We transfer these restrictions into DCS with a star topology for computing DPR. In a DCS
D"(<, E, F) with a star topology, < is a node set, <"Mr, v

1
, v

2
, 2 , v

n
N . E is an edge set,

E"Me
1
, e

2
, 2 , e

n
N"M(r, v

i
) D1)i)nN, and data set F. By identifying edge e

k
3E of a star topo-

logy with component c
k

of a semilattice framework and identifying the "le cutset s
j
3S of a star

topology with cutset k
j
of a semilattice framework. This means that the "le cutsets S of a star

topology should be partially ordered by ), forming a semilattice. Moreover, the above properties
can be restated in a fairly appealing manner:

Property I@. If s
i
)s

r
)s

j
, e3s

i
, e3s

j
, then e3s

r
.

Property II@. s
i
's

j
-s

i
Xs

j
.
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Property I@ simply states that each "le cutset s
i
is a convex set with respect to the ordering ).

Property II@ states a closure condition. We are interested in examining the implication of these
properties with "le distribution of a star topology.

Example 1. Consider a star DCS D"(<, E, F) with edge E"Me
1
, e

2
, e

3
, e

4
, e

5
N shown in Fig. 1.

Here the s
i
will be the "le cutset of each needed "le of the network. If we need "les f

1
, f

2
, f

3
, f

4
, f

5
, f

6
to complete one program's execution, then the "le cutsets of each "le can be obtained.

s
1
"Me

1
, e

4
N, s

2
"Me

1
, e

4
N, s

3
"Me

2
, e

4
, e

5
N, s

4
"Me

2
, e

5
N, s

5
"Me

3
, e

5
N, s

6
"Me

3
N .

The partial order ) is de"ned by

s
i
)s

j
, j)i .

Then Properties I@ and II@ will hold. In this case, the Hasse diagram for the partial order is simply
a chain shown in Fig. 2.

If the "le cutsets of a star topology with partial ordering, (s
i
,)), have the semilattice property

and satisfy Properties I@ and II@, then a polynomial time algorithm to compute DPR of a star
topology can be fashioned by adapting the algorithm given in [18].

Fig. 1. A star DCS with six "les.

Fig. 2. A semilattice of Fig. 1.
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For purposes of exposition, suppose that the edges of a star topology are labelled 1, 2, 2 , n with
q
k

being the probability that the edge k fails. Let X
j
denote all edges involved in "le cutset s

j
,

j"1, 2, 2 , m. Fig. 2 displays an illustrative semilattice having six "le cutsets and "ve edges. To
present the computing of DPR of a star topology, we de"ne, for any set s

j
of "le cutsets S,

)(X
j
)" <

k|Xj

q
k
, )(/)"1.

Then the following algorithm correctly determines the DPR of a star topology.

Algorithm REL. This algorithm calculates DPR for a star topology with "le cutsets
S"Ms

1
, s

2
, 2 , s

m
N and edges E"Me

1
, e

2
, 2 , e

n
N that satisfy both the Properties I@ and II@. The

edge k fails randomly and independently with probabilities q
k
.

1. Place the "le cutsets s
1
, s

2
, 2 , s

m
in topological order so that if s

i
(s

j
, then j(i. Let X

j
denote

the set of edges contained in "le cutset s
j
.

2. For j"1, 2, 2 , m,

g
j
")(X

j
)! +

si:sj

g
i
)(X

j
!X

i
) ,

where g
j
is the probability that "le cutset s

j
is not covered.

3. Output DPR"1!+m
j/1

g
j
.

The quantity g
j
needed in step 2 can be computed using the value g

i
for "le cutset s

i
. The validity

of this algorithm follows from the development in Shier [18]. As also established there, its worst
case complexity is O(nm2), which is polynomial in the number of edges n and the number of "le
cutset m.

To illustrate this approach, we apply this algorithm to Example 1. We get

g
6
") (X

6
)! +

si:s6

g
i
) (X

6
!X

i
)") (X

6
)") (e

3
)"q,

g
5
") (X

5
)! +

si:s5

g
i
) (X

5
!X

i
)") (e

3
, e

5
)!+g

6
) (e

5
)"0,

g
4
") (X

4
)! +

si:s4

g
i
) (X

4
!X

i
)") (e

2
, e

5
)![g

6
) (e

2
, e

5
)#g

5
) (e

2
)]"q2!q3,

g
3
") (X

3
)! +

si:s3

g
i
) (X

3
!X

i
)") (e

2
, e

4
, e

5
)![g

6
) (e

2
, e

4
, e

5
)#g

5
) (e

2
, e

4
)

#g
4
) (e

4
)]"0,

g
2
") (X

2
)! +

si:s2

g
i
) (X

2
!X

i
)") (e

1
, e

4
)![g

6
) (e

1
, e

4
)#g

5
) (e

1
, e

4
)

#g
4
) (e

1
, e

4
)#g

3
) (e

1
)]"q2!q3!q4#q5 ,
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g
1
") (X

1
)! +

si:s1

g
i
) (X

1
!X

i
)") (e

1
, e

4
)![g

6
) (e

1
, e

4
)#g

5
) (e

1
, e

4
)

#g
4
) (e

1
, e

4
)#g

3
) (e

1
)#g

2
) (/)"0,

DPR"1!
m
+
j/1

g
j
"1!(q#q2!q3#q2!q3!q4#q5)"1!q!2q2#2q3#q4!q5 .

For instance, if all edges in the problem of Fig. 2 were randomly available with probability q"0.1,
then the DPR of a star topology is computed to be 0.88209.

By Theorem 2, we have shown computing DPR on a star topology with each DFA
i
D"2 is

a NP-hard problem. In Properties III and IV, we will show classes of semilattice that satis"es
Properties I@ and II@ for computing DPR over a star topology with each DFA

i
D"2.

Property III. If a semilattice, for computing DPR over a star topology with each DFA
i
D"2, has at least

two branches on the same node with length greater than or equal to 2, then the semilattice does not
satisfy Properties I@ and II@.

Proof. We "rst draw a semilattice with "le cutsets that has two branches on the same node with
length greater than or equal to 2 as in Fig. 3 and assume that the semilattice satis"es Properties I@
and II@.

From Fig. 3, assume edge e
x
3s

i
's

j
"s

h
. This means the "le f

h
is in a node, v

x
, whose incident

edge is e
x
. By Property II@, e

x
-s

i
Xs

j
, then e

x
-s

i
, or e

x
-s

j
. Without loss of generality, assume

e
x
-s

i
. Then, the node v

x
contains a "le f

i
. By Property I@, if s

i
)s

k
)s

h
, e

x
3s

i
, e

x
3s

h
then e

x
3s

k
.

This means the "le f
k

is in the node v
x
.

From the above discussion, the "les, f
i
, f

h
, f

k
, are in the same node v

x
, which is a contradiction to

DFA
x
D"2. K

Property IV. If a semilattice, for computing DPR over a star topology with each DFA
i
D"2, has at

least three branches with length equal to one, then the semilattice does not satisfy properties I@ and II@.

Fig. 3. A semilattice for Property III.
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Fig. 4. A semilattice for Property IV.

Proof. We "rst draw a semilattice of three branches with length equal to 1 as in Fig. 4 and
assume that the semilattice satis"es Properties I@ and II@.

From Fig. 4 and Property II@, we have s
k1

's
j
"s

i
and s

i
-s

k1
Xs

j
. Without loss of generality, we

assume there is an edge e
x

such that e
x
3s

i
and e

x
N s

j
. This implies e

x
3s

k1
. With the same reason,

e
x
3s

k2
and e

x
3s

k3
. From the above discussion, we conclude that

e
x
3s

i
, e

x
3s

k1
, e

x
3s

k2
, and e

x
3s

k3
.

This means the "les, f
i
, f

k1
, f

k2
, and f

k3
are in the same node v

x
whose incident edge is e

x
. This

contradicts DFA
x
D"2. K

Theorem 4. There are only two cases of semilattice, for computing DPR over a star topology with
DFA

i
D"2 that can satisfy Properties I@ and II@.

(1) The semilattice is a linear chain.
(2) The semilattice has only two branches with length one on the top node of the linear chain.

Proof. We "rst draw these two cases of semilattice as follows:

From the proof of Properties III and IV, it is easy to prove Theorem 4. K
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Example 2. Consider a DCS D"(<, E, F) with a star topology and DFA
i
D"2 shown in Fig. 5.

The "le cutset s
i
of each "le f

i
are

s
1
"Me

1
, e

2
N , s

2
"Me

2
, e

3
N, s

3
"Me

1
, e

3
N, s

4
"Me

4
N, s

5
"Me

4
, e

5
N, s

6
"Me

5
N .

The partial order)is de"ned by

s
1
's

3
, s

2
's

3
, and s

3
's

4
's

5
's

6
.

Then, the semilattice is as shown in Fig. 6. From case (2) of Theorem 4, the semilattice satis"es
Properties I@ and II@.

In the following, we propose a method to distribute the "les without DFA
i
D"2 restriction on

a star topology. The semilattice can be easily obtained by this method and the DPR of a star
topology can be computed in polynomial time. We use Theorem 5 to show this method.

Theorem 5. A ,le cutset, S"Ms
1
, s

2
, 2 , s

m
N is a semilattice with topological order s

m
(s

m~1
(2(s

2
(s

1
, satisfying Properties I@ and II@ i! all "les in a star DCS have the consecutive "le

distribution property.

Fig. 5. An example for a star topology with each DFA
i
D"2.

Fig. 6. A semilattice of Fig. 5.
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Proof. We "rst draw an example to show that all "les in a star DCS have the consecutive "le
distribution property as Fig. 7.

If : For edge e
x
, assume its adjacent node, v

x
, contains consecutive "les by its index, f

i
, f

i`1
,

f
i`2

, 2 , f
j
. Then, the "le cutsets s

i
, s

i`1
, s

i`2
, 2 , s

j
contain the edge e

x
and the semilattice of "le

cutsets with total order relation, s
j
(2(s

i`2
(s

i`1
(s

i
, satis"es Properties I@ and II@.

Only if: We assume there exists a semilattice with a total order relation, s
j
(2s

i`2
(s

i`1
(s

i
,

and satis"es Properties I@ and II@, then the "le cutsets s
i
, s

i`1
, s

i`2
,2s

j
contain the same edge e

x
.

This means the "les, f
i
, f

i`1
, f

i`2
, 2 , f

j
, are in the same node of incident edge e

x
. K

4.3. The experiment result for algorithm REL

In this paper, we want to see the real a!ection of di!erent number of edges and data "les of star
topologies. We use an ALR PC with 386/33 CPU to run the algorithm REL. We have run 72 sets of

Fig. 7. An example for Theorem 5.

Fig. 8. The curve of CPU time of "xing number of edge n.
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Fig. 9. The curve of CPU time of "xing number of distinction "le m.

data "les, generated by the consecutive "le distribution property, on star topologies to show how
the execution time varies according to the changes in the number of edges n and the number of
distinct "les m. One CPU clock time is 0.054945 s in Figs. 8 and 9. In Fig. 8, we "x the number of
edges and vary the number of distinct "les. In Fig. 9, we "x the number of distinct "les and vary the
number of edges.

5. Conclusions

In this paper, we investigated the problem of distributed program reliability on star distributed
computing systems. We have shown that it is computationally intractable for star distributed
computing systems. Furthermore, we identify one class of star topology, in which the "le distribu-
tion is performed with respect to a consecutive property, for computing distributed program
reliability can be done in polynomial time. We also propose a pseudo-polynomial time algorithm
to compute the distributed program reliability over the class of a star topology. Theorem 4 is
proposed to conclude that only two cases of semilattice on star distributed computing systems with
DFA

i
D"2 can satisfy Properties I@ and II@. Finally, we propose Theorem 5, which is a method to

distribute "les on each node for computing DPR in polynomial time without DFA
i
D"2 restriction

on star distributed computing systems.
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