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Fuzzy/Neural Congestion Control for Integrated
Voice and Data DS-CDMA/FRMA Cellular Networks

Chung-Ju Changsenior Member, IEEBBo-Wei Chen, Terng-Yuan Liu, and Fang-Ching R8tudent Member, IEEE

Abstract—The paper proposes congestion control using lization. In [2], a rough comparison was made among packet
fuzzy/neurzél t((ethniques fﬁr ilntegrated/fvoice and dattfi direCtli'sel- reservation multiple access (PRMA), frame reservation multiple
guence code division multiple access/frame reservation multiple P i :
access (DS-CDMA/FRMA) cellular networks. The fuzzy/neural access (FRMA)’ Clrcqlt reservation multiple access (CRMA).’
congestion controller is constituted by a pipeline recurrent neural burst reservation multiple access (BuRMA), and so forth, a.nd It
network (PRNN) interference predictor, a fuzzy performance indi- Was concluded that PRMA and FRMA would be better choices
cator, and a fuzzy/neural access probability controller. It regulates for integrated voice and data systems. In [3], an FRMA protocol
traffic input to the integrated voice and data DS-CDMA/FRMA  was proposed to reduce receiver activity for the integration of
cellular system by determining proper access probabilities for voice and data over PRMA. In [4], the permission probability
users so that congestion can be avoided and throughput can be ' - .
maximized. Simulation results show that the DS-CDMA/FRMA Qf DS'CDM_A/PRMA protocol was C_ontr_olled by _a plece-wlse
fuzzy/neural congestion controllers perform better than con- linear function. However, when fading is taken into consider-
ventional DS-CDMA/PRMA with channel access function in ation, the piece-wise linear function fails to catch characteris-
voice packet dropping ratio, corruption ratio, and utilization. In  tics of time-varying fluctuate traffic (interference). Thus, it is
addition, the neural congestion controller outperforms the fuzzy somewhat difficult to make a good decision under such a non-
congestion controller. stationary situation
i Index TelrtmT—Congestilcf)n control, Ci?feCt seltqulence-code In the past decade, fuzzy systems have replaced conventional

ivision multiple access/frame reservation multiple access . At ot ; ;
(DS-CDMA/FRMA) cellular networks, fuzzy/neural techniques. technologies |n.mar?y scientific applications and englnee.rl_ng

systems, especially in control systems and pattern recognition.
They can provide decision-support and expert systems with
|. INTRODUCTION powerful reasoning capabilities bound by a minimum of rules.

HE DIRECT-SEQUENCE code division multiple acces;;]he major tfeaf1tureb(_)f t_k:e _fuzhzy Iogicihi_s i'(ts abilitdy tob(_axptr_e_?s
(DS-CDMA) isapreferablecandidateforthethird—genergl-e amount ot ambiguity in human thinking and subjectivity

tion cellular systems. One characteristic of DS-CDMA is that gy & comparatively undistorted manner. When a mathematical

separation of pseudonoise (PN) codes, many users can trangmi el of .the process does not exist, it is appropriate to use
at the same time within the same frequency band. It manife ey logic [',‘:’]' on .the othgr hand, neyral networks are a
advantages in many aspects such as high spectrum efficiency, generation qf_ information processing systems t h?t are
soft limit on capacity, wide bandwidth (or frequency diversity)? nstructed to gt|l|ze some of the. organizational principles
multipath mitigation, interference suppression, inherent priva ,h'.Ch charaqtenzg the human bra|n_. Th<_ay are able 0 [earn
lower transmit power requirements, and unity reuse factor. rbitrary nonlinear mput.—output mapping directly from training
gata; they can sensibly interpolate input patterns that are new to

It has been recognized that CDMA capacity is only interfe ) . . : .
ence limited; any reduction of interference for CDMA systemté~|e network; and they can automatically adjust their connection
' eights to optimize their behaviors as controllers, predictors,

can convert directly and linearly into an increment of capaci . o
gttern recognizers, decision makers, etc. Neural networks

[1]. When the number of users becomes large, congestion i o

curs and transmission corruption happens due to multiple ¢ good at tas_ks S.UCh as _pa_ttem matching and F:Ias:5|f|cat|on,

cess interference (MAI). Congestion is an inherent problem f hction approximation, optimization, vector quantization, and
g.[a clustering [5]. Both fuzzy systems and neural networks

networks with multiple user access when the load exceeds wi cal del-f imat dd ical ; .
can be handled. Many air interface protocols were presenteoafg numerical model-iree estimators and dynamical systems,

lower the possibility of congestion and to increase system u}p_ey are the |ntell!gent techmqu.es that can improve systems
working in uncertain and nonstationary environments.

Therefore, in this paper we propose fuzzy/neural-based con-
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Fig. 1. A DS-CDMA/FRMA cellular system with the fuzzy/neural congestion controller.

linear and nonstationary. The fuzzy performance indicator comdicator, and a fuzzy/neural access probability controller
siders the system effective measures such as voice packet d(BpPC/NAPC). The cellular system contais cells, where
ping probability, packet corruption ratio, data packet delay, ugtach cell has separate uplink band and downlink band. PN
lization, and issues an overall performance indication as feembdes are assumed to be enough to support all users which are
back so that the fuzzy/neural congestion controller would hmiformly distributed within a cell.
a stable closed-loop system. Also, the access probability conin both uplink and downlink, the DS-CDMA/FRMA protocol
troller, based on the predicted next-step interference sample &ag a time-division frame structure which consists\oflots
the system performance indication, determines the access piwdr-frame timel”. Each slot has several CDMA code channels
abilities for users. We here consider two different designs for tifier users to transmit their packets. As shown in Fig. 2, the first
access probability controller (APC): fuzzy access probabiligtot of every uplink (downlink) frame is designed for contention
controller (FAPC) and neural-net access probability controllésignaling), and the remaining slots of the uplink (downlink)
(NAPC). FAPC uses fuzzy logics to realize, while NAPC adopfsame are for reservation (information). The uplink contention
radial-basis function network (RBFN) to implement. Simulatioslot is for contention users, defined as those who have packets to
results show that the DS-CDMA/FRMA fuzzy/neural congedransmit but who have not yet not attained reservation; the up-
tion controllers with intelligent techniques overrides the convetink reservation slots are for reservation users, defined as those
tional DS-CDMA/PRMA congestion controller with channelwho have successfully contended and have obtained a reserva-
access function [4] in the overall performance; and NAPC oufen. The uplink information packets include not only the in-
performs FAPC. formation bits, but also some signaling bits to notify the base
The rest of the paper is organized as follows. The systestation whether the user wants to continue transmitting or re-
model of the fuzzy/neural congestion controller in an integratéelse the reservation in the next frame. The downlink signaling
voice and data DS-CDMA/FRMA cellular system is introducedlot contains the message of access probability for uplink con-
in Section Il. The design of the PRNN interference predictarending users, contention result in the previous frame, and slot
the fuzzy performance indicator, and the access probability cqrosition for uplink reservation users. The downlink information
trollers using fuzzy logic techniques or neural networks are dglots are used by the base station to transmit downlink informa-
scribed in Section Ill. Simulation results are presented and di®n packets to mobile users. Note that the downlink signaling
cussed in Section IV. Section V gives some concluding remarlksot in frame(n + 1) contains the contention result of the uplink
contention slot in frame, and the slot position for reservation
users in framén — 1)’s slot NV and frame(n)’s slots2 ~ N.
Such a design is because of a time slot shift between uplink and
The system model of a DS-CDMA/FRMA cellular com-downlink frames. In this case, if a reservation user transmits the
munication system with a fuzzy/neural congestion controlleeservation release signal in its last packet in $foof frame
is shown in Fig. 1. The fuzzy/neural congestion controllgmn — 1), the capacity will still be reserved in frameand is ac-
consists of a PRNN interference predictor, a fuzzy performantelly released in framén + 1).

Il. SYSTEM MODEL
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Fig. 2. The frame structure of the DS-CDMA/FRMA protocol.

If a contention user wants to transmit information packetkg-normal random variable. For simplicity, the whole system
it first transmits a contention information packet at the coris assumed to be under perfect power control so that the slow
tention slot according to its access probability. The voice (dat@ding can be equalized and thus the received power at the base
access probability fofn + 1)th frame is denoted bgy-(n+ 1)  station is a constant valug.
(Pp(n+1)). If the user’s contention information packet is suc- As the interference power of usg¢rt any time instant in
cessfully received at base station, the base station will resebase statiork is considered, it is composed of the home-cell
a CDMA code of a time slot for the user and the user transmitgerference, the first-tier adjacent-cell interference, and the
information packets in the reservation slot of the next framésckground noise (additive white Gaussian noise), denoted by
accordingly. If the contending information packet is corruptefly (n), I1 x(n), andy, respectively. Generally speaking, the
because of MAI or not admitted to transmit, voice users ha®me-cell interference and the adjacent-cell interference are
different treatment from data users. For voice users, the canuch larger than the background noise, thus we iggonere.
tention information packet will be queued to transmit in the neX¥ssume that there a®¥,, . (Vq, 1) voice (data) users in cell
frame. If the contending voice packet has no chance to succeed the voice (data) traffic activity factor is denotediby é;).
until delay limit timeTp, the packet will be discarded and theThen I i (n) for a voice userj within a basic channel (time
next voice packet will try contention in the next frames. Foslot) can be expressed as [1]
data users, the contention information packet will be queued to
transmit until final success. Nox "

The newly successful user is first allocated with a CDMA
code in the glot which has more free capacity. When the system T uln) = 5 Z it Z bi @
incurs a situation such that the reservation capacity required is
more than the total capacity in reservation slots due to the in-
crease of reservation users, some bandwidth of the contentipere the first (second) term in the bracket is the total interfer-
slot will be borrowed for temporary use by some reservatidi!ce coming from the other voice users (all data uséss).(n)
users. In this case, the access probability will be decreastddiven by [1]
The reservation packets that are permitted to temporarily use
the contention slot should be voice packets only because of the

i=1,i#]

- 4
delay sensitivity of voice users. When the reservation load be- Iy (n)=S5 Z Z Vi - <7w> .10 —¢i8)/10
Tik
comes low, the reservation users in the contention slot will be
rearranged into reservation slots. Naos
The radio propagation model here contains two main loss fac- n Z 5 - 10(<7-r<u,)/10
tors: mean path loss and log-normal shadowing. Thus the av-

erage received power can be expressed as [1] 3)
I(r)y=P-r=.10%/1° 1)
where the first (second) term in the bracket is the total inter-
whereP is the transmitted power,is the distance between theference coming from all voice (data) users in delb € { the
base station and the usgis the path loss exponent, atiis the first-tier adjacent cells neighboring to c&l}, ;. is the distance
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of useri in cell b to the base station of cell, andr;;, is the dis-  1,(m
tance of usei to the base station of its home cell. Since perfec
power control is assumedly x(n) is the same for all users. The
interference power in a basic channel at time instantenoted
by Is(n), is the summation of g x(n) and 4 x(n). In this
paper,is(n) is periodically measured every frame tim& at
base station and is chosen as an input variable for the PRNN
terference predictor.

Voice source model is characterized as a two-state (talkspi
and silence) Markov chain and will generate one packet in ea
frame timeT’. The talkspurt and silence periods are assumed"
be exponentially distributed with mednf« and 1/43, respec-
tively. Data source model is assumed to be in Poisson proce
with mean arrival raté\;. Voice (data) packets will be put into
voice (data) queue with capacifyy- (Bp) before being trans-
mitted. If the queue is full or the packet cannot be successful
received at the base, the packet is considered dropped.

Il. FuzzY/NEURAL CONGESTIONCONTROLLER

The building blocks for the fuzzy/neural congestion
controller are the PRNN interference predictor, the fuzz,
performance indicator, and the fuzzy/neural access probabi
controller. Detailed designs are described in the following.

HX 3. The RNN structure.

A. PRNN Interference Predictor Is(n)toIs(n—q+1). There areM — 1 feedbacks from neuron

utputs:yz(n — 1) ~ yy(n — 1). w,; represents the weight

PRNN is a pipelined structure of recurrent neural networ%f the connection from théth input node to thejth neuron
(RNN). It_ has go_od prediction capa_bility and fast converges . p+q+ M 1< j< M Thejth neuron calculates'a
speed, with real-time recurrent learning (RTRL) algorithm [8 eighted sum, denoted hy (n), as

In the PRNN interference predictor, the predicted interference

sample at framén+ 1), Is(n+1), can be obtained frompre- pha M
viously measured interference samplgéi), n—p+1 < i < n v;(n) = Z wyi (n)w; (n) (6)
andq prediction errors:(j), n — ¢+ 1 < j < n, based on a P}
nonlinear ARMA (NARMA) model of procesds(n + 1) can
be expressed as wherew;(n) represents thé&h input node. Then, it transforms
v;(n) by a sigmoidal activation functiop(-) to an outputy;(n)
. iven b
Is(n+1) grven by
=h(Is(n), ..., Is(n —p+1); é(n), ..., én —q+1)) 1
T P yi(n) = ¢(v;(n)) = : @)
@) ’ ’ L+ exp (—v;(n))

] ) ] In this way,Is(n + 1) can be obtained by
where h(-) is an unknown nonlinear function and

é(j) = Is(j) — Is(4). To approximate the nonlinear function Istn+1) =y (n)
i(-) by RNN with RTRL algorithm, inputs of RNN cannot »
be error samples [7]. So we reformulate the above recursive = wy;(n)Is(n+1— 1) 4wy, pp1(n)
formula to be a new functiof/, which is expressed as P ’
pta+l ~
Ts(n+1) + E;Q wyi(n)ls(n —i+p+2)
~ ~ =p
= H (Is(n), ..., Is(n=p+1); Is(n), ..., Is(n — g+1)). Y
5) + D wu(nyimp—g(n = 1)
i=p+q+2
A fully connected RNN structure had neurons ang + ¢ + =H (Is(n), v Istn —p+ 1), Is(n), ...,
M input nodes, as shown in Fig. 3. The figsinput nodes are .
the external inputs which are the measured interference signals Is(n —q+ 1)> (8)

from Is(n)tols(n—p+1). Thereis abias input value which is X
always 1. The next input nodes are the predicted signals froowhereH (-) is the nonlinear approximated function Af(-).
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Fig. 4. The PRNN structure.

The incremental change of weight; is according to the
steepest decent method in the RTRL algorithm [8]

wij(n+ 1) = wi;(n) —

wherer is the learning rate parametéf(n) is the cost function

defined as

q

Cln)=>_N'é(n

i=1

9C(n)

8wij

—it1)

9)

(10)
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Fig. 5. The small RNN modulé

is much faster than RNN. And the PRNN interference predictor
operates not only with preliminary learning phase but also with
adaptive learning during working.

B. Fuzzy Performance Indicator

The system performance is usually described by measures
such as the voice packet dropping rafig-, the contention
corruption ratioRc, the system utilizatiorl/, and the data
packet delayDp. Neither of them can represent the system
performance alone without the consideration of others. We use
fuzzy logics to get an overall system performance indication
A, based on the four performance measures mentioned above

and),, is an exponential forgetting factor which is bounded iBs jnput linguistic variables. Thus the congestion controller has
[0, 1]. Note that the computation of the RNN prediction is proy concluding performance indication feedback so that it is a

portional toM* [6], [8].

closed-loop system and has stable and robust operations.

The PRNN structure, which divides the RNN structure jito e define the term set ofy as7'(Ly) = {Low, High} =
small RNN modules, is shown in Fig. 4, and each small RNN o Hi1, R asT(R¢) = {Little, Big} = {Lt, Bg}, U as
modulei has a structure similar to that of RNN [6]. As shownp(7) = {Small, Largg = {Sm, La}, andDp asT(Dp) =
in Fig. 5, the small RNN moduléconsists of\/’ neurons and {Short, Long = {Sh, Lg}. The membership functions for

(d + M’ + 1) input nodes, whereg x M’ = M andd =
p — q + 1. For theith module, the first input nodes are the {pLos pumit, M(Re)
external inputs which are the delayed signals fdarfn —i+ 1)

to Is(n — ¢ — d 4+ 2); the (d + 1)th input node is a constant
1. The(d + 2)th input node is the first neuron’s output of the
(¢ + 1)th module:y;41,1(n) if ¢ # ¢ or the feedback signal
from the first neuron’s output of modulg in time (n — 1).
yq,1{n — 1) if ¢ = ¢, and the rest}’ — 1) input nodes are the
feedbacks o2 ~ M’ neurons in the same modulgs(n—1) ~
yime(n — 1). w,; is the weight of connection from thiéh input
node to thejth neuron. Finally, the output of the first neuron
in the first module represents the PRNN prediction output at
time instant(n + 1). Note that the computation of the PRNN psn(Dp
= M*/¢3, thus PRNN

prediction is proportional tg x M’*

T(Ly), T(R¢), T(U), andT(Dp) are defined ad/(Ly) =

= {uLta NBg}v M(U) = {NSrna NLa}a
andM(Dp) = {usn, i1y}, Where

pro(Lv) =g(Lv; Ly, min, Loe, 0, Loy) (11)
pri(Lyv) =g(Ly; Hie, Ly, max, Hiy, 0) (12)
pri(Re) =g(Rc; Re,min, Lte, 0, Lt,,) (13)
1Bg(Be) =g(Re; Bge, Be,max, Bgw, 0) (14)
psm(U) = g(U; Upin, Sme, 0, Smy,) (15)
pwLe(U) =g(U; Lae, Upax, Lay, 0) (16)

) =9(Dp; Dp, min, She, 0, Shy,) a7
t2g(Dp) =9(Dp; Lge, Dp, max, Lgw, 0) (18)
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and LV, mins LV,maxv RC, mins RC,maxy l/vmin, l/vmax, and TABLE |

Dp. mins Dp. max are the minimum and maximum possible THE R%‘EERSE;‘;L%FSNE?&TE*REFUZZY
values for Ly, Rc, U, and Dp, respectively, andy(-) is a

trapezoidal function defined as Rue |Lv |[Rc | U [ Dp | A

1 Hi| Lt | Sm| Lg | A

2 He | Lt | La | Lg | A4

9(z; zo, 21, ao, a1) 3 | Hi | Lt [Sm | Sh | 4
xr — X9 4 Hi | Li | La ] Sh | Ay

+1, forzg—ap <z <mo 5 | Lo | Lt | Sm | Lg | As

a0 6 | Lo | Lt | La | Lg | As

1, forzg << 7 | Lo | Lt | Sm | Sh | A3

=9 20—z (19) 5 [ To | I | La | Sb | As
+1, forz<z<zi+a 9 Lo | Bg | Sm | Sh | As

al 10 Lo | Bg | La | Sh | Ag

0, otherwise. 11 | Lo | Bg | Sm]| Lg | As

12 Lo { By | La Lg | As
13 Hi | Bg | Sm| Sh | A7
14 Hi | Bg | La | Sh | As

The output linguistic variable is the performance

indicator A. The term set of A is defined as 5 | B | Bg | Sm | Lg | As
T(A) = {Al, AQ, Ag, A4, A;), A(;, A7, Ag}, 16 Hi | Bg | La Ly | As
and the membership function ofd4 is denoted by
M4 = 1 Py HAgs fodes Pdss Mgy fAny Hoag b _
wh(er()e Ltaans Pz tass faaas Bass ass Bz Has} Then apply thenaxoperator onw, andws; and yield the overall
membership value afl;, denoted by
HAL (A) = f(A7 Al,(’a Ov 0) (20)
w4, = max(wy, ws). (31)
HAay (A) = f(A7 A?,C7 0, 0) (21)
pas(A) = f(4; As ¢, 0, 0) (22)  Finally, the fuzzy performance indicator uses tleater of area
pa, (A) = f(A; Ay ., 0, 0) (23) defuzzification method to obtain the performance indicator
s (4) = f(4; 45,0, 0. 0) (24) Py combiningwa,, 1< ¢ <8
HAg (A) = f(A7 AG,Cv 07 0) (25) 8
pa,(A) = f(4; Az ., 0, 0) (26) D wa, x Ai
pas(A) = f(4; As, ¢, 0, 0) (27) A== : (32)
andf(-) is a triangular function defined as ; s
f(-T7 Lo, Qo, al) -
x — o C. Fuzzy/Neural Access Probability Controller
—— +1, forzg—ag <z <x _ )
ag From [12],SNR can be obtained by
- w—i—l, forzg <z < zo+ a1 (28) ST F
a1 I .5,
0, otherwise. SNR = Is— S (33)

We heuristically sefl; . = (0.540.5 x ), 1 < < Sto reflect whereF' is the spreading factor. The bit error probabiliy is
different degrees of the performance indication, and we den@f@Proximated by
A4 . in the middle to be the best performance. _

Table | shows the rule structure. These rules are set according PemQ (SNR) (34)
to experience and knowledge of that the contention corruption
ratio R plays a dominant role and then the voice packet dro}’)\'—here
ping ratio Ly does. We use thmax—mininference method to 1 o0 P
calculate the membership value of each terffi(r). Take rules Qlz) = or /w ¢ dy. (35)
4 and 5, which have the same tertn for example. In the first
step, the max—min inference method appliestiieoperator on If (L, B, <) BCH-code is chosen, wheteis the packet length,
membership values of associated term of all the input linguisti¢ is the number of information bits, andis the number of
variables for each rule. We denote the weights of rules 4 and@&rectable error bits, then the packet error probabiity is

by w4 andws; given by
wy = min (umi(Ly), pre(Be), pra(U), ps(Dp))  (29) Po_1_N <L> Py pyL—i 36
ws = min (pro(Ly), pre(Re), ism(U), irg(Dp)) - (30) . 2:3 i )P A—F) (36)
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If Pg* is the desired packet error probability in the air interface, TABLE I

I should be properly controlled under a maximum lekgl so THE RULE STRUGTURE FORFAPC

that Pr < Pg". Rule | Is | A | AP
Based on the knowledge, we hereafter design the access prob- 1 [ Hi | La [AR

ability controllers using fuzzy logic theory and neural networks. g g’, g“ 21;1
1) Fuzzy Ac_cess _Probability Controller (FAPCFAPC 1 Mi L’Z APz

takes the predicted interference sample at frame+ 1), 5| Me | Md | AD;

Is(n 4+ 1), and the performance indicator at frame 6 [ Me[ Sm| AP

A(n), as two input linguistic variables. We define the term T 1 Lo} La | AP

> - i . 8 | Lo | Md | AP

set of Is(n + 1) asT(Is) = {Low, Medium, Hight = 9 T Lo | Sm | AP,

{Lo, Me, Hi} and the term set ofd(n) as T(A) =

{Small, Middle, Larg¢ =  {Sm, Md, La}. Member-

ship functions forIs(n + 1) and A(n) are defined as B (n+1)

M(Is) = {tLo, tinte, poari y ANAM(A) = {pism, fards HLa}s
where

1

tiro(Is) = 9(Is; Is, min, Loc, 0, Loy,) (37)
pinre(Is) = f(Is; Meo, Mewo, Mey:) (38)
pai(Is) = a(Is; Hic, Is, max, Hiy, 0) (39)
tesm(A) = g(A; Amin, SMe, 0, Smy,) (40)
paa(A) = f(A; Mde, Mdyo, Mdy1) (41)
11La(A) = g(A; Lge, Amax, Lguw, 0) (42)

wherels win, Is, max, @Nd Apin, Amax are the minimum and
maximum possible values fdg and A, respectively.

The output linguistic variable is here defined as the adjust-
ment amount oFy-(n), denoted byA P. We choose the term set .
for AP asT(AP) = {AP,, APy, APs, APy, APs, AP} Ls(n+D) A(m)
and denote the membership function &P by M(AP) =
{par, pap,, BAP,, BAPy, BAPs, HAP, b+ pap (AP), i =
1, ..., 6, are given by

Fig. 6. The structure of RBFN for NAPC.

is then obtained by

par (AP) = f(AP; APy, 0, 0) (43)

piap, (AP) = f(AP; APy, 0, 0) (44) Pp(n+1)=fa-Pr(n+1) (50)
par, (AP) = f(AP; AP3, 0, 0) (45) where f, is a real number smaller than 1, denoting voice users
pary (AP) = f(AP; APy, 0, 0) 46)  have higher access priority than data users [4].

par (AP) = f(AP; APs, 0, 0) (47)  2) Neural-Network  Access Probability  Controller
pap,(AP) = f(AP; AP, 0, 0) (48) (NAPC): NAPC adopts RBFN to design. RBFN has a

wide variety of usage in many applications such as signal
whereAP;, 1 < i < 6, is theith adjustment step. We heuristi_proc_essing, pattern recognition, con_trol, a_nd_ function approx-
cally set—0.125 < AP, < 0.125andAP, = (—0.175+0.05x Imation. It can fit any arbitrary fu_nct|on_W|th just one hidden
i) to reflect different degrees of predicted interference and pégyer- RBFN generally cannot quite achieve the same accuracy
formance indication. Ads is low and 4 is in the middle, we @s the backpropagation network, but it can be trained several
chooseAP = AP, denoting a larger increment for the accerder faster than the backp_ropagation netwprk. In qddition,
probability; asls is large and is large, we selech P = AP; RBFN’S hg\_/e a great potent|a_l to relax the size growing and
denoting a larger decrement for the access probability. The ri@ming difficulty encountered in feedforward neural networks
structure is shown in Table II. Similarly, we use the max—min irf]; they have powerful adaptive and learning capabilities.
ference method to calculate the membership value for each tern he structure of RBFN for NAPC is shown in Fig. 6. The
of T(AP) and then apply the center of area for defuzzificatiodlidden node; in the RBFN performs the normalized Gaussian

OnceAP is obtained, we determing(n + 1) by activation function

17— 2 /202
Py(n+1)=Py(n)+ AP (49) = exp [|7 — mq|"/204] 1<q¢<k (51

2q = ,

k
17— w2 /202
The access probability for data ready contention uBer@:+1) ; exp [=|F = me|"/207]
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wheref is the input vectorii, (o) is the mean (variance) of Communication
thegth Gaussian function, aridis the number of hidden nodes. Networks

In this way, hidden node has its own receptive field centered

ons, with size proportional te,, and it will give a maximum

response to the input vector closestig. For an input vector Reinforcement Output
# = (Is(n+1), A(n)) lying somewhere in the input space, the Signal vector

receptive fields which are close to it will be properly activated.
The output of RBFN Py (n + 1), is simply the mapping of the
weighted sum of the hidden node outputs by

k
Py(n+1)= a<z wi,]z,]> (52)

q=1

Input /|
wherea(-) is the output activation function. That is to say, the vector ‘ |
function of RBFN is to group the input vectors which are close

to each other and then teaches every group to which output lesigl 7. A basic reinforcement learning structure.
it belongs.

Generally speaking, RBFN can be trained by either the h%-

brid learning rule or the error backpropagation rule. The form sted (optimal) one and is the so-calfethforcement signal

: . L . is to associate the input pattern and the output pattern; then
's composed of unsupervised leamning in the input layer and ?/\L/Jéights of RBFN in NAIgC cpan be dynamically gdjurs)ted so that
pervised learning in the output layer. The latter is a purely sup?ﬁ—

vised learning rule. If RBFN is trained by the error backprop- € costis minimized in the superv_lsed learning ph_ase. .
. - . . In other words, the cost function in backpropagation learning
agation learning rule, it does not learn appreciably faster tha

the backpropagation network and it may encounter Iarge-wicftllﬂe should have defined as [5]

problem. Therefore, the hybrid learning network is chosen in LA )
the following design for NAPC. E=3(Py—Fy) (55)
In the unsupervised learning phase to train RBFN in NAPC, .
the task is to determine the receptive field centgrand the wherePy is the optimal output value that NAPC should have.
width o,,. The adjustment of?,, denoted byAri, can be simply The adjustment of weights can be obtained by
found by

5 S oF -
Am = 77(3j - mclosest) (53) Awiq =n I =n- (PV - PV) wa <Z wiqz(1> =z (56)
iq 4

whereni esest 1S the center of the receptive field closest to the
input vector an_d other centers remain unchangeq. The Wildthwheren is the learning rate. However, sin@% _Py)isnotob-
can be determined by the mean distance to the first few nearteol%ame, it is substituted by a reinforcement sighalVe define

nelghbors R = (RC — Rc) (R = (fs — IS)) if Is < fS (IS > js) Here
v Re is the required corruption ratio of the whole system when
Z |7y — 7] the corruption ratio of voice contention packets approximates
o — =1 (54) 1072, andfs is the interfe[ence threshold obtained from simu-
1 ¥ lation experience. Usuallys is set smaller thais*. Therefore

where~ is the number of the first few nearest neighbors. (56) becomes

In the supervised learning to train RBFN in NAPC, it must
know the correct (optimal) value of the target output for eachWiq
input pattern. However, in NAPC, there does not exist an . , . .
optimal value of access probability which we can measure to re - (Be — Be) -a Zwiqzq “Zg, i ls < s
obtain. The only information we can have is the system perfor- _— 1

mance measures and the interference level for the determined R ] R
access probability. That is to say, the system only provides s - (Is = Is) - o <Z wiqzq) " #q if Is > Is
evaluative signals instead of instructive signals for NAPC. For 4

this reason, we utilize eeinforcement learning algorithrb], (57)

[8]-[11] to solve the learning problem.

Fig. 7 shows the interaction between RBFN and its controlle¥herenr. andn;, are two different learning rates for cases of
communication network, using the reinforcement learning algés < Is andls > Ig, respectively. The weights can then be
rithm. The reinforcement learning algorithm calculates the cogpdated by
function in term of an evaluative signal. This evaluative signal
is to indicate the deviation of the system performance from the Wiqg = Wiqg + Aw;g. (58)
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Fig. 8. The channel access function for DS-CDMA/PRMA system.

The simulation environment is defined &6: = 49,6 = 4,

After obtaining Py (n + 1), the access probability for datastandard deviation dfis8dB, 7" = 20ms,N = 10,1/a = 0.44
ready contention usergp(n + 1) = f4 - Py(n+ 1), as given S,1/8 =0.56s,1/\y = 0.04, F = 15,Tp = 40ms,By = 12,
in (50). Bp = 200,andthe RBFN outputactivationfunctia(x)istaken
tobel/[1 + exp(—x)]. The voice source rate is 8 kbit/s and thus
generates 160 information bits per frame time. Adding 64 header
bits, we choosel{ = 511, M = 229,¢ =38) BCH-code. The

We show the performance comparison of these twotalbandwidthis3.8325MHz. We sBE* = 0.01,1s* = 16 X
DS-CDMA/FRMA fuzzy/neural congestion controllers withS. According to simulation experiencBy, = 0.3, s1 = 0.007,
FAPC and/or NAPC and the conventional DS-CDMA/PRMAs2 = 0.08, breakpoint 6, andf, is settobe 0.25.
system with channel access function. Fig. 9 shows the voice packet dropping rafig versus the

DS-CDMA/PRMA has the same frame structure andumber of usersin a cell. Hefg includes voice packets drop-
time slots as DS-CDMA/FRMA, but all the time slots inpingduetobufferoverflowandvoice packetsdiscardingduetotoo
DS-CDMA/PRMA can be used for transmission of eithemuch contentiondelay. Itcan be seenthatthe DS-CDMA/FRMA
contention packets or reservation packets. If a user wantsfti@zy/neural congestion controller with either FAPC or NAPC
contend for reservation, it first transmits a contention packetagrforms much better than the DS-CDMA/PRMA system with
any time slot with a given access probability. Once contendimpannel access function. If the voice dropping ratio is set to
successfully, it can begin transmitting its information packet & 1072 (note that we did not take it as a requirement in the
the same time slot in the next frame. If the contention is failedesign), we see that the DS-CDMA/FRMA fuzzy/neural con-
the user can try at the next time slot. In [4], a channel accegsstion controller with NAPC can accommodate 176 users/cell,
function was defined to relate the voice access probability ¥ehich is five users/cell more than the one with FAPC and is
the number of reservation users. As Fig. 8 shows, the functiti@ users/cell more than the DS-CDMA/PRMA system with
is assumed to contain two linear piecewise segments of voieannel access function. The main reason is that the fuzzy/neural
access probability versus the number of reservation users witingestion controller adopts intelligent techniques such as fuzzy
the following parameters: the initial large access probability féogic control and neural networks; thus it has more powerful
voice users at very light traffic loaffy, ; the slopes of the two capability to determine proper access probabilities and more
linear segmentsl ands2 (in unit of access probability/users);adaptive to time-varying traffic. The other reason is that in
and the position of breakpoint (in the number of users). If tH28S-CDMA/FRMA protocol, the contention packets and the
number of reservation users is smaller (larger), more (fewegservation packets are separated so that the fluctuation of con-
contention users are allowed. Therefore, the slope of the fitehtion packet traffic would not influence the transmission of
segmentsl was designed to be smaller than the slope of threservation packets. However, in DS-CDMA/PRMA protocol,
second segment2. If the breakpoint is chosen larger, thehe contention packets and the reservation packets can be trans-
channel access function is more generous in the sense thatnited in the same time slot, so that the reservation packets are
system would allow more contention users; however, it mightfluenced by the contention packets. It can also be seen that
cause higher corruption ratio. If it is chosen smaller, the accé8APC outperforms FAPC. The mainreasonisthat NAPC utilizes
function is more restrictive in the sense that the system woURBFN which has powerful and adaptive learning capability to
allow fewer contention users; however it might cause the incrgive more appropriate access probability than FAPC.
ment of packet delay. These parameters were set according t®he contention corruption ratifi- versus the number of users
the simulation experiences so that the channel access functivacellis shownin Fig. 10. Het®. denotes the corruption ratio
is effective and can yield a good trade-off between corruptianthe contention slot. It can be found that the DS-CDMA/FRMA
ratio and packet delay. Afterwards, the access probability faizzy/neural congestion controller has significantly small
data users is that of voice users multiplied by a rgtio corruption ratio, while the DS-CDMA/PRMA system with

IV. SIMULATION RESULTS AND DISCUSSIONS
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095 the DS-CDMA/PRMA protocol allows users to contend at
09 | DS-CDMA/FRMA fuzzy/neural congestion controlier with NAPC ] any time SIOt, Whlle the DS'CDMA/FRMA pl’OtOCO| a"OWS

contention users only at the first time slot of a frame. Though
the DS-CDMA/FRMA protocol performs worse than the
] DS-CDMA/PRMA protocol in this aspect, it still has other ad-
vantages mentioned above overthe DS-CDMA/PRMA protocol.
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‘ V. CONCLUDING REMARKS

el ¥ In the paper, we propose a congestion controller using

fuzzy/neural intelligent techniques for DS-CDMA/FRMA cel-
05 . lular systems. The fuzzy/neural congestion controller contains a
120 130 140 150 160 170 180 180 20 PRNN interference predictor, afuzzy performance indicator, and
number of users in a cell -
a fuzzy/neural access probability controller. The fuzzy/neural
Fig. 11. The utilizatiorl’ versus the number of users in a cell. access probability controller denotes two alternative designs:
FAPC using fuzzy logic system and NAPC adopting RBFN.
Simulation results show that the DS-CDMA/FRMA system

06 |

channel access function has a noticeably high corruption ratia

This demonstrates that the former can regulate input traffic W(')th fuzzy/neural congestion controller performs much better

well that it has almost no contention failure. This is because t ean the DS-CDMA/PRMA system with channel access function

fuzzy/neural congestion controller is intelligent to adaptivelIn the voice packet dropping ratio, the corruption ratio, and the

adjustthe access probability and the DS-CDMA/FRMA protoc tilization, for all traffic loads. It is because the fuzzy/neural

separates the violently changing contention traffic from thceongestlon controller can intelligently compute to predict the

smoothly changing reservation traffic. next-step interference sample, to support the overall system

Fig. 11 shows the utilizatiofi versus the number of usersin aoerformance indication as a control feedback, and to deter-

' . , L mine an appropriate access probability for users; therefore

cell. Herd/ is defined as the used capacity divided by the total Cﬁl_can effectively regulate contending users at the contention

pacity. Inthelowtrafficload, the utilization of DS-CDMA/PRMA lots. thus maximizing the throuahput. It is also because the
systemis almostthe same asthe DS-CDMA/FRMA system. T %-éDMA/FRMA S sgtem onl gllgwé contention users to

isbecauseinlowtrafficload, both DS-CDMA/PRMA systeman y y

DS-CDMA/FRMA systems can accommodate well, Howeve(r:ontend atthe beginning of a frame, and it separates the violently

changing contention traffic from the reservation traffic; while the

when the traffic load grows up, the DS-CDMA/FRMA .S.ySt.ean—CDMA/PRMA system allows contention users to contend
with fuzzy/neural congestion controller has better utilization, ; .
t any time slot of a frame, and thus reservation packets may

Itis because the DS-CDMA/FRMA system with fuzzy/neurabe corrupted by contention packets in some slots, especially in
congestion controller can regulate input traffic better than the P y P » €SP y

DS-CDMA/PRMA system with channel access function, anh avy traffic. Furthermqre, NAPC outperforms FAPC in all per
. . rmance measures. Itis because neural networks have powerful
thus the former has lower corruption ratio than the latter. Thou . . L ) ;
o . adaptive and learning capabilities, while fuzzy logic systems are
the utilization of the two fuzzy/neural congestion controllers is

almost the same, NAPC still has utilization about 0.3% high(l?r}flexmlem asense, that parameters of membership functions are
than EAPC. ixed whenever chosen, compared to neural networks.

Fig. 12 shows the data packet delBy, versus the number
of usersin a cell. Her®;, counts the time from the data packet
arrival at the user’s terminal to its successful contention. In all The authors would like to give thanks to the anonymous re-
traffic loads, the DS-CDMA/PRMA system performs betteviewers and the Guest Editors for their suggestions in improving
than the two DS-CDMA/FRMA systems. This is due to thathe presentation of this paper.
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