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Fuzzy/Neural Congestion Control for Integrated
Voice and Data DS-CDMA/FRMA Cellular Networks
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Abstract—The paper proposes congestion control using
fuzzy/neural techniques for integrated voice and data direct-se-
quence code division multiple access/frame reservation multiple
access (DS-CDMA/FRMA) cellular networks. The fuzzy/neural
congestion controller is constituted by a pipeline recurrent neural
network (PRNN) interference predictor, a fuzzy performance indi-
cator, and a fuzzy/neural access probability controller. It regulates
traffic input to the integrated voice and data DS-CDMA/FRMA
cellular system by determining proper access probabilities for
users so that congestion can be avoided and throughput can be
maximized. Simulation results show that the DS-CDMA/FRMA
fuzzy/neural congestion controllers perform better than con-
ventional DS-CDMA/PRMA with channel access function in
voice packet dropping ratio, corruption ratio, and utilization. In
addition, the neural congestion controller outperforms the fuzzy
congestion controller.

Index Terms—Congestion control, direct sequence-code
division multiple access/frame reservation multiple access
(DS-CDMA/FRMA) cellular networks, fuzzy/neural techniques.

I. INTRODUCTION

T HE DIRECT-SEQUENCE code division multiple access
(DS-CDMA) is a preferable candidate for the third-genera-

tion cellular systems. One characteristic of DS-CDMA is that by
separation of pseudonoise (PN) codes, many users can transmit
at the same time within the same frequency band. It manifests
advantages in many aspects such as high spectrum efficiency,
soft limit on capacity, wide bandwidth (or frequency diversity),
multipath mitigation, interference suppression, inherent privacy,
lower transmit power requirements, and unity reuse factor.

It has been recognized that CDMA capacity is only interfer-
ence limited; any reduction of interference for CDMA systems
can convert directly and linearly into an increment of capacity
[1]. When the number of users becomes large, congestion oc-
curs and transmission corruption happens due to multiple ac-
cess interference (MAI). Congestion is an inherent problem for
networks with multiple user access when the load exceeds what
can be handled. Many air interface protocols were presented to
lower the possibility of congestion and to increase system uti-

Manuscript received February 15, 1999; revised August 1, 1999.
C.-J. Chang and F-C. Ren are with the Department of Communication En-

gineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C. (e-mail:
cjchang@cc.nct.edu.tw; u8313813@cc.nctu.edu.tw).

B.-W. Chen was with the Department of Communication Engineering, Na-
tional Chiao-Tung University. He is now with the Telecommunication Labora-
tory, Chung-Hua Telecommunication Company, Taoyuan 326, Taiwan R.O.C.
(e-mail: nicolas@ms.chttl.com.tw).

T.-Y. Liu is with the Telecommunication Laboratory, Chung-Hua
Telecommunication Company, Taoyuan 326, Taiwan R.O.C. (e-mail:
coky@ms.chttl.com.tw).

Publisher Item Identifier S 0733-8716(00)00504-7.

lization. In [2], a rough comparison was made among packet
reservation multiple access (PRMA), frame reservation multiple
access (FRMA), circuit reservation multiple access (CRMA),
burst reservation multiple access (BuRMA), and so forth, and it
was concluded that PRMA and FRMA would be better choices
for integrated voice and data systems. In [3], an FRMA protocol
was proposed to reduce receiver activity for the integration of
voice and data over PRMA. In [4], the permission probability
of DS-CDMA/PRMA protocol was controlled by a piece-wise
linear function. However, when fading is taken into consider-
ation, the piece-wise linear function fails to catch characteris-
tics of time-varying fluctuate traffic (interference). Thus, it is
somewhat difficult to make a good decision under such a non-
stationary situation.

In the past decade, fuzzy systems have replaced conventional
technologies in many scientific applications and engineering
systems, especially in control systems and pattern recognition.
They can provide decision-support and expert systems with
powerful reasoning capabilities bound by a minimum of rules.
The major feature of the fuzzy logic is its ability to express
the amount of ambiguity in human thinking and subjectivity
in a comparatively undistorted manner. When a mathematical
model of the process does not exist, it is appropriate to use
fuzzy logic [5]. On the other hand, neural networks are a
new generation of information processing systems that are
constructed to utilize some of the organizational principles
which characterize the human brain. They are able to learn
arbitrary nonlinear input–output mapping directly from training
data; they can sensibly interpolate input patterns that are new to
the network; and they can automatically adjust their connection
weights to optimize their behaviors as controllers, predictors,
pattern recognizers, decision makers, etc. Neural networks
are good at tasks such as pattern matching and classification,
function approximation, optimization, vector quantization, and
data clustering [5]. Both fuzzy systems and neural networks
are numerical model-free estimators and dynamical systems;
they are the intelligent techniques that can improve systems
working in uncertain and nonstationary environments.

Therefore, in this paper we propose fuzzy/neural-based con-
gestion control for integrated voice and data DS-CDMA/FRMA
cellular systems by providing adequate access probability for
users. The fuzzy/neural congestion controller is designed to con-
tain a pipeline recurrent neural network (PRNN) interference
predictor, a fuzzy performance indicator, and an access prob-
ability controller. The PRNN is adopted to predict the inter-
ference so as to achieve good nonlinear prediction capability
and fast convergence time [6], [7] because the uplink interfer-
ence process in a DS-CDMA/FRMA cellular system is non-
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Fig. 1. A DS-CDMA/FRMA cellular system with the fuzzy/neural congestion controller.

linear and nonstationary. The fuzzy performance indicator con-
siders the system effective measures such as voice packet drop-
ping probability, packet corruption ratio, data packet delay, uti-
lization, and issues an overall performance indication as feed-
back so that the fuzzy/neural congestion controller would be
a stable closed-loop system. Also, the access probability con-
troller, based on the predicted next-step interference sample and
the system performance indication, determines the access prob-
abilities for users. We here consider two different designs for the
access probability controller (APC): fuzzy access probability
controller (FAPC) and neural-net access probability controller
(NAPC). FAPC uses fuzzy logics to realize, while NAPC adopts
radial-basis function network (RBFN) to implement. Simulation
results show that the DS-CDMA/FRMA fuzzy/neural conges-
tion controllers with intelligent techniques overrides the conven-
tional DS-CDMA/PRMA congestion controller with channel
access function [4] in the overall performance; and NAPC out-
performs FAPC.

The rest of the paper is organized as follows. The system
model of the fuzzy/neural congestion controller in an integrated
voice and data DS-CDMA/FRMA cellular system is introduced
in Section II. The design of the PRNN interference predictor,
the fuzzy performance indicator, and the access probability con-
trollers using fuzzy logic techniques or neural networks are de-
scribed in Section III. Simulation results are presented and dis-
cussed in Section IV. Section V gives some concluding remarks.

II. SYSTEM MODEL

The system model of a DS-CDMA/FRMA cellular com-
munication system with a fuzzy/neural congestion controller
is shown in Fig. 1. The fuzzy/neural congestion controller
consists of a PRNN interference predictor, a fuzzy performance

indicator, and a fuzzy/neural access probability controller
(FAPC/NAPC). The cellular system contains cells, where
each cell has separate uplink band and downlink band. PN
codes are assumed to be enough to support all users which are
uniformly distributed within a cell.

In both uplink and downlink, the DS-CDMA/FRMA protocol
has a time-division frame structure which consists ofslots
per frame time . Each slot has several CDMA code channels
for users to transmit their packets. As shown in Fig. 2, the first
slot of every uplink (downlink) frame is designed for contention
(signaling), and the remaining slots of the uplink (downlink)
frame are for reservation (information). The uplink contention
slot is for contention users, defined as those who have packets to
transmit but who have not yet not attained reservation; the up-
link reservation slots are for reservation users, defined as those
who have successfully contended and have obtained a reserva-
tion. The uplink information packets include not only the in-
formation bits, but also some signaling bits to notify the base
station whether the user wants to continue transmitting or re-
lease the reservation in the next frame. The downlink signaling
slot contains the message of access probability for uplink con-
tending users, contention result in the previous frame, and slot
position for uplink reservation users. The downlink information
slots are used by the base station to transmit downlink informa-
tion packets to mobile users. Note that the downlink signaling
slot in frame contains the contention result of the uplink
contention slot in frame and the slot position for reservation
users in frame ’s slot and frame ’s slots .
Such a design is because of a time slot shift between uplink and
downlink frames. In this case, if a reservation user transmits the
reservation release signal in its last packet in slotof frame

, the capacity will still be reserved in frameand is ac-
tually released in frame .
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Fig. 2. The frame structure of the DS-CDMA/FRMA protocol.

If a contention user wants to transmit information packets,
it first transmits a contention information packet at the con-
tention slot according to its access probability. The voice (data)
access probability for th frame is denoted by
( ). If the user’s contention information packet is suc-
cessfully received at base station, the base station will reserve
a CDMA code of a time slot for the user and the user transmits
information packets in the reservation slot of the next frames
accordingly. If the contending information packet is corrupted
because of MAI or not admitted to transmit, voice users have
different treatment from data users. For voice users, the con-
tention information packet will be queued to transmit in the next
frame. If the contending voice packet has no chance to succeed
until delay limit time , the packet will be discarded and the
next voice packet will try contention in the next frames. For
data users, the contention information packet will be queued to
transmit until final success.

The newly successful user is first allocated with a CDMA
code in the slot which has more free capacity. When the system
incurs a situation such that the reservation capacity required is
more than the total capacity in reservation slots due to the in-
crease of reservation users, some bandwidth of the contention
slot will be borrowed for temporary use by some reservation
users. In this case, the access probability will be decreased.
The reservation packets that are permitted to temporarily use
the contention slot should be voice packets only because of the
delay sensitivity of voice users. When the reservation load be-
comes low, the reservation users in the contention slot will be
rearranged into reservation slots.

The radio propagation model here contains two main loss fac-
tors: mean path loss and log-normal shadowing. Thus the av-
erage received power can be expressed as [1]

(1)

where is the transmitted power,is the distance between the
base station and the user,is the path loss exponent, andis the

log-normal random variable. For simplicity, the whole system
is assumed to be under perfect power control so that the slow
fading can be equalized and thus the received power at the base
station is a constant value.

As the interference power of userat any time instant in
base station is considered, it is composed of the home-cell
interference, the first-tier adjacent-cell interference, and the
background noise (additive white Gaussian noise), denoted by

, , and , respectively. Generally speaking, the
home-cell interference and the adjacent-cell interference are
much larger than the background noise, thus we ignorehere.
Assume that there are ( ) voice (data) users in cell
and the voice (data) traffic activity factor is denoted by .
Then for a voice user within a basic channel (time
slot) can be expressed as [1]

(2)

where the first (second) term in the bracket is the total interfer-
ence coming from the other voice users (all data users).
is given by [1]

(3)

where the first (second) term in the bracket is the total inter-
ference coming from all voice (data) users in cell, the
first-tier adjacent cells neighboring to cell, is the distance



286 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 2, FEBRUARY 2000

of user in cell to the base station of cell, and is the dis-
tance of user to the base station of its home cell. Since perfect
power control is assumed, is the same for all users. The
interference power in a basic channel at time instant, denoted
by , is the summation of and . In this
paper, is periodically measured every frame time at
base station and is chosen as an input variable for the PRNN in-
terference predictor.

Voice source model is characterized as a two-state (talkspurt
and silence) Markov chain and will generate one packet in each
frame time . The talkspurt and silence periods are assumed to
be exponentially distributed with mean and , respec-
tively. Data source model is assumed to be in Poisson process
with mean arrival rate . Voice (data) packets will be put into
voice (data) queue with capacity ( ) before being trans-
mitted. If the queue is full or the packet cannot be successfully
received at the base, the packet is considered dropped.

III. FUZZY/NEURAL CONGESTIONCONTROLLER

The building blocks for the fuzzy/neural congestion
controller are the PRNN interference predictor, the fuzzy
performance indicator, and the fuzzy/neural access probability
controller. Detailed designs are described in the following.

A. PRNN Interference Predictor

PRNN is a pipelined structure of recurrent neural network
(RNN). It has good prediction capability and fast converges
speed, with real-time recurrent learning (RTRL) algorithm [8].
In the PRNN interference predictor, the predicted interference
sample at frame , , can be obtained frompre-
viously measured interference samples ,
and prediction errors , , based on a
nonlinear ARMA (NARMA) model of process. can
be expressed as

(4)

where is an unknown nonlinear function and
. To approximate the nonlinear function

by RNN with RTRL algorithm, inputs of RNN cannot
be error samples [7]. So we reformulate the above recursive
formula to be a new function , which is expressed as

(5)

A fully connected RNN structure has neurons and
input nodes, as shown in Fig. 3. The firstinput nodes are

the external inputs which are the measured interference signals
from to . There is a bias input value which is
always 1. The next input nodes are the predicted signals from

Fig. 3. The RNN structure.

to . There are feedbacks from neuron
outputs: . represents the weight
of the connection from theth input node to the th neuron,

, . The th neuron calculates a
weighted sum, denoted by , as

(6)

where represents theth input node. Then, it transforms
by a sigmoidal activation function to an output

given by

(7)

In this way, can be obtained by

(8)

where is the nonlinear approximated function of .
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Fig. 4. The PRNN structure.

The incremental change of weight is according to the
steepest decent method in the RTRL algorithm [8]

(9)

where is the learning rate parameter, is the cost function
defined as

(10)

and is an exponential forgetting factor which is bounded in
[0, 1]. Note that the computation of the RNN prediction is pro-
portional to [6], [8].

The PRNN structure, which divides the RNN structure into
small RNN modules, is shown in Fig. 4, and each small RNN
module has a structure similar to that of RNN [6]. As shown
in Fig. 5, the small RNN moduleconsists of neurons and

input nodes, where and
. For the th module, the first input nodes are the

external inputs which are the delayed signals from
to ; the th input node is a constant
1. The th input node is the first neuron’s output of the

th module: if or the feedback signal
from the first neuron’s output of module in time .

if , and the rest input nodes are the
feedbacks of neurons in the same module:

. is the weight of connection from theth input
node to the th neuron. Finally, the output of the first neuron
in the first module represents the PRNN prediction output at
time instant . Note that the computation of the PRNN
prediction is proportional to , thus PRNN

Fig. 5. The small RNN modulei.

is much faster than RNN. And the PRNN interference predictor
operates not only with preliminary learning phase but also with
adaptive learning during working.

B. Fuzzy Performance Indicator

The system performance is usually described by measures
such as the voice packet dropping ratio , the contention
corruption ratio , the system utilization , and the data
packet delay . Neither of them can represent the system
performance alone without the consideration of others. We use
fuzzy logics to get an overall system performance indication

, based on the four performance measures mentioned above
as input linguistic variables. Thus the congestion controller has
a concluding performance indication feedback so that it is a
closed-loop system and has stable and robust operations.

We define the term set of as Low, High
Lo, Hi , as Little, Big , as

Small, Large , and as
Short, Long . The membership functions for

, , , and are defined as
, , ,

and , where

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)
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and , , , , , , and
, are the minimum and maximum possible

values for , , , and , respectively, and is a
trapezoidal function defined as

for

for

for

otherwise.

(19)

The output linguistic variable is the performance
indicator . The term set of is defined as

,
and the membership function of is denoted by

,
where

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

and is a triangular function defined as

for

for

otherwise.

(28)

We heuristically set , to reflect
different degrees of the performance indication, and we denote

in the middle to be the best performance.
Table I shows the rule structure. These rules are set according

to experience and knowledge of that the contention corruption
ratio plays a dominant role and then the voice packet drop-
ping ratio does. We use themax–mininference method to
calculate the membership value of each term in . Take rules
4 and 5, which have the same term for example. In the first
step, the max–min inference method applies theminoperator on
membership values of associated term of all the input linguistic
variables for each rule. We denote the weights of rules 4 and 5
by and

(29)

(30)

TABLE I
THE RULE STRUCTURE FOR THE FUZZY

PERFORMANCEINDICATOR

Then apply themaxoperator on and and yield the overall
membership value of , denoted by

(31)

Finally, the fuzzy performance indicator uses thecenter of area
defuzzification method to obtain the performance indicator
by combining ,

(32)

C. Fuzzy/Neural Access Probability Controller

From [12], can be obtained by

(33)

where is the spreading factor. The bit error probability is
approximated by

(34)

where

(35)

If BCH-code is chosen, whereis the packet length,
is the number of information bits, andis the number of

correctable error bits, then the packet error probability is
given by

(36)
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If is the desired packet error probability in the air interface,
should be properly controlled under a maximum level so

that .
Based on the knowledge, we hereafter design the access prob-

ability controllers using fuzzy logic theory and neural networks.
1) Fuzzy Access Probability Controller (FAPC):FAPC

takes the predicted interference sample at frame ,
, and the performance indicator at frame,

, as two input linguistic variables. We define the term
set of as Low, Medium, High

and the term set of as
Small, Middle, Large . Member-

ship functions for and are defined as
and ,

where

(37)

(38)

(39)

(40)

(41)

(42)

where , , and , are the minimum and
maximum possible values for and , respectively.

The output linguistic variable is here defined as the adjust-
ment amount of , denoted by . We choose the term set
for as
and denote the membership function of by

.
, are given by

(43)

(44)

(45)

(46)

(47)

(48)

where , , is the th adjustment step. We heuristi-
cally set and

to reflect different degrees of predicted interference and per-
formance indication. As is low and is in the middle, we
choose , denoting a larger increment for the access
probability; as is large and is large, we select
denoting a larger decrement for the access probability. The rule
structure is shown in Table II. Similarly, we use the max–min in-
ference method to calculate the membership value for each term
of and then apply the center of area for defuzzification.

Once is obtained, we determine by

(49)

The access probability for data ready contention users

TABLE II
THE RULE STRUCTURE FORFAPC

Fig. 6. The structure of RBFN for NAPC.

is then obtained by

(50)

where is a real number smaller than 1, denoting voice users
have higher access priority than data users [4].

2) Neural-Network Access Probability Controller
(NAPC): NAPC adopts RBFN to design. RBFN has a
wide variety of usage in many applications such as signal
processing, pattern recognition, control, and function approx-
imation. It can fit any arbitrary function with just one hidden
layer. RBFN generally cannot quite achieve the same accuracy
as the backpropagation network, but it can be trained several
order faster than the backpropagation network. In addition,
RBFN’s have a great potential to relax the size growing and
learning difficulty encountered in feedforward neural networks
[5]; they have powerful adaptive and learning capabilities.

The structure of RBFN for NAPC is shown in Fig. 6. The
hidden node in the RBFN performs the normalized Gaussian
activation function

(51)
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where is the input vector, ( ) is the mean (variance) of
the th Gaussian function, andis the number of hidden nodes.
In this way, hidden node has its own receptive field centered
on with size proportional to , and it will give a maximum
response to the input vector closest to. For an input vector

lying somewhere in the input space, the
receptive fields which are close to it will be properly activated.
The output of RBFN, , is simply the mapping of the
weighted sum of the hidden node outputs by

(52)

where is the output activation function. That is to say, the
function of RBFN is to group the input vectors which are close
to each other and then teaches every group to which output level
it belongs.

Generally speaking, RBFN can be trained by either the hy-
brid learning rule or the error backpropagation rule. The former
is composed of unsupervised learning in the input layer and su-
pervised learning in the output layer. The latter is a purely super-
vised learning rule. If RBFN is trained by the error backprop-
agation learning rule, it does not learn appreciably faster than
the backpropagation network and it may encounter large-width
problem. Therefore, the hybrid learning network is chosen in
the following design for NAPC.

In the unsupervised learning phase to train RBFN in NAPC,
the task is to determine the receptive field center and the
width . The adjustment of , denoted by , can be simply
found by

(53)

where is the center of the receptive field closest to the
input vector and other centers remain unchanged. The width
can be determined by the mean distance to the first few nearest
neighbors

(54)

where is the number of the first few nearest neighbors.
In the supervised learning to train RBFN in NAPC, it must

know the correct (optimal) value of the target output for each
input pattern. However, in NAPC, there does not exist an
optimal value of access probability which we can measure to
obtain. The only information we can have is the system perfor-
mance measures and the interference level for the determined
access probability. That is to say, the system only provides
evaluative signals instead of instructive signals for NAPC. For
this reason, we utilize areinforcement learning algorithm[5],
[8]–[11] to solve the learning problem.

Fig. 7 shows the interaction between RBFN and its controlled
communication network, using the reinforcement learning algo-
rithm. The reinforcement learning algorithm calculates the cost
function in term of an evaluative signal. This evaluative signal
is to indicate the deviation of the system performance from the

Fig. 7. A basic reinforcement learning structure.

desired (optimal) one and is the so-calledreinforcement signal.
It is to associate the input pattern and the output pattern; then
weights of RBFN in NAPC can be dynamically adjusted so that
the cost is minimized in the supervised learning phase.

In other words, the cost function in backpropagation learning
rule should have defined as [5]

(55)

where is the optimal output value that NAPC should have.
The adjustment of weights can be obtained by

(56)

where is the learning rate. However, since is not ob-
tainable, it is substituted by a reinforcement signal. We define

( ) if ( ). Here
is the required corruption ratio of the whole system when

the corruption ratio of voice contention packets approximates
, and is the interference threshold obtained from simu-

lation experience. Usually, is set smaller than . Therefore
(56) becomes

if

if

(57)

where and are two different learning rates for cases of
and , respectively. The weights can then be

updated by

(58)
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Fig. 8. The channel access function for DS-CDMA/PRMA system.

After obtaining , the access probability for data
ready contention users, , as given
in (50).

IV. SIMULATION RESULTS AND DISCUSSIONS

We show the performance comparison of these two
DS-CDMA/FRMA fuzzy/neural congestion controllers with
FAPC and/or NAPC and the conventional DS-CDMA/PRMA
system with channel access function.

DS-CDMA/PRMA has the same frame structure and
time slots as DS-CDMA/FRMA, but all the time slots in
DS-CDMA/PRMA can be used for transmission of either
contention packets or reservation packets. If a user wants to
contend for reservation, it first transmits a contention packet at
any time slot with a given access probability. Once contending
successfully, it can begin transmitting its information packet at
the same time slot in the next frame. If the contention is failed,
the user can try at the next time slot. In [4], a channel access
function was defined to relate the voice access probability to
the number of reservation users. As Fig. 8 shows, the function
is assumed to contain two linear piecewise segments of voice
access probability versus the number of reservation users with
the following parameters: the initial large access probability for
voice users at very light traffic load ; the slopes of the two
linear segments and (in unit of access probability/users);
and the position of breakpoint (in the number of users). If the
number of reservation users is smaller (larger), more (fewer)
contention users are allowed. Therefore, the slope of the first
segment was designed to be smaller than the slope of the
second segment . If the breakpoint is chosen larger, the
channel access function is more generous in the sense that the
system would allow more contention users; however, it might
cause higher corruption ratio. If it is chosen smaller, the access
function is more restrictive in the sense that the system would
allow fewer contention users; however it might cause the incre-
ment of packet delay. These parameters were set according to
the simulation experiences so that the channel access function
is effective and can yield a good trade-off between corruption
ratio and packet delay. Afterwards, the access probability of
data users is that of voice users multiplied by a ratio.

Fig. 9. The voice packet dropping ratioL versus the number of users in a
cell.

The simulation environment is defined as: , ,
standarddeviation ofis 8dB, ms, ,
s, s, , , ms, ,

,andtheRBFNoutputactivationfunction istaken
to be . The voice source rate is 8 kbit/s and thus
generates 160 information bits per frame time. Adding 64 header
bits, we choose ( , , 38) BCH-code. The
total bandwidth is 3.8325MHz. We set ,

. According to simulation experience, , ,
, breakpoint , and is set to be 0.25.

Fig. 9 shows the voice packet dropping ratio versus the
number of users in a cell. Here includes voice packets drop-
pingduetobufferoverflowandvoicepacketsdiscardingduetotoo
much contentiondelay. It can beseen that the DS-CDMA/FRMA
fuzzy/neural congestion controller with either FAPC or NAPC
performs much better than the DS-CDMA/PRMA system with
channel access function. If the voice dropping ratio is set to
be 10 (note that we did not take it as a requirement in the
design), we see that the DS-CDMA/FRMA fuzzy/neural con-
gestion controller with NAPC can accommodate 176 users/cell,
which is five users/cell more than the one with FAPC and is
17 users/cell more than the DS-CDMA/PRMA system with
channel access function. The main reason is that the fuzzy/neural
congestion controller adopts intelligent techniques such as fuzzy
logic control and neural networks; thus it has more powerful
capability to determine proper access probabilities and more
adaptive to time-varying traffic. The other reason is that in
DS-CDMA/FRMA protocol, the contention packets and the
reservation packets are separated so that the fluctuation of con-
tention packet traffic would not influence the transmission of
reservation packets. However, in DS-CDMA/PRMA protocol,
the contention packets and the reservation packets can be trans-
mitted in the same time slot, so that the reservation packets are
influenced by the contention packets. It can also be seen that
NAPCoutperformsFAPC.Themain reason is thatNAPCutilizes
RBFN which has powerful and adaptive learning capability to
give more appropriate access probability than FAPC.

The contention corruption ratio versus the number of users
in a cell is shown in Fig. 10. Here denotes the corruption ratio
in the contention slot. It can be found that the DS-CDMA/FRMA
fuzzy/neural congestion controller has significantly small
corruption ratio, while the DS-CDMA/PRMA system with
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Fig. 10. The corruption ratioR versus the number of users in a cell.

Fig. 11. The utilizationU versus the number of users in a cell.

channel access function has a noticeably high corruption ratio.
This demonstrates that the former can regulate input traffic so
well that it has almost no contention failure. This is because the
fuzzy/neural congestion controller is intelligent to adaptively
adjust theaccessprobabilityand theDS-CDMA/FRMAprotocol
separates the violently changing contention traffic from the
smoothly changing reservation traffic.

Fig. 11 shows the utilization versus the number of users in a
cell.Here isdefinedas theusedcapacitydividedby the total ca-
pacity. Inthelowtrafficload,theutilizationofDS-CDMA/PRMA
system is almost the sameas the DS-CDMA/FRMAsystem. This
isbecausein lowtraffic load,bothDS-CDMA/PRMAsystemand
DS-CDMA/FRMA systems can accommodate well. However,
when the traffic load grows up, the DS-CDMA/FRMA system
with fuzzy/neural congestion controller has better utilization.
It is because the DS-CDMA/FRMA system with fuzzy/neural
congestion controller can regulate input traffic better than the
DS-CDMA/PRMA system with channel access function, and
thus the former has lower corruption ratio than the latter. Though
the utilization of the two fuzzy/neural congestion controllers is
almost the same, NAPC still has utilization about 0.3% higher
than FAPC.

Fig. 12 shows the data packet delay versus the number
of users in a cell. Here counts the time from the data packet
arrival at the user’s terminal to its successful contention. In all
traffic loads, the DS-CDMA/PRMA system performs better
than the two DS-CDMA/FRMA systems. This is due to that

Fig. 12. The data packet delayD versus the number of users in a cell.

the DS-CDMA/PRMA protocol allows users to contend at
any time slot, while the DS-CDMA/FRMA protocol allows
contention users only at the first time slot of a frame. Though
the DS-CDMA/FRMA protocol performs worse than the
DS-CDMA/PRMA protocol in this aspect, it still has other ad-
vantages mentionedabove over the DS-CDMA/PRMA protocol.

V. CONCLUDING REMARKS

In the paper, we propose a congestion controller using
fuzzy/neural intelligent techniques for DS-CDMA/FRMA cel-
lular systems. The fuzzy/neural congestion controller contains a
PRNN interference predictor, a fuzzy performance indicator, and
a fuzzy/neural access probability controller. The fuzzy/neural
access probability controller denotes two alternative designs:
FAPC using fuzzy logic system and NAPC adopting RBFN.

Simulation results show that the DS-CDMA/FRMA system
with fuzzy/neural congestion controller performs much better
than the DS-CDMA/PRMAsystemwithchannelaccess function
in the voice packet dropping ratio, the corruption ratio, and the
utilization, for all traffic loads. It is because the fuzzy/neural
congestion controller can intelligently compute to predict the
next-step interference sample, to support the overall system
performance indication as a control feedback, and to deter-
mine an appropriate access probability for users; therefore
it can effectively regulate contending users at the contention
slots, thus maximizing the throughput. It is also because the
DS-CDMA/FRMA system only allows contention users to
contend at the beginning of a frame, and it separates the violently
changing contention traffic from the reservation traffic; while the
DS-CDMA/PRMA system allows contention users to contend
at any time slot of a frame, and thus reservation packets may
be corrupted by contention packets in some slots, especially in
heavy traffic. Furthermore, NAPC outperforms FAPC in all per-
formance measures. It is because neural networks have powerful
adaptive and learning capabilities, while fuzzy logic systems are
inflexible inasense, thatparametersofmembership functionsare
fixed whenever chosen, compared to neural networks.

ACKNOWLEDGMENT

The authors would like to give thanks to the anonymous re-
viewers and the Guest Editors for their suggestions in improving
the presentation of this paper.



CHANG et al.: FUZZY/NEURAL CONGESTION CONTROL 293

REFERENCES

[1] K. S. Gilhousen, I. M. Jacobs, R. Padovani, A. J. Viterbi, L. A. Weaver,
Jr, and C. E. Wheatley, III, “On the capacity of a cellular CDMA
system,”IEEE Trans. Veh. Technol., vol. 40, pp. 303–312, May 1991.

[2] P. Taaghol, R. Tafazolli, and B. G. Evans, “On the reservation multiple
access protocols for future mobile communication systems,” inProc.
IEEE VTC 97, vol. 3, 1997, pp. 1523–1527.

[3] P. Narasimhan and R. D. Yates, “A new protocol for the integration of
voice and data over PRMA,”IEEE J. Select. Areas Commun., vol. 14,
pp. 623–631, May 1996.

[4] A. E. Brand and A. H. Aghvami, “Performance of a joint CDMA/PRMA
protocol for mixed voice/data transmission for third generation mo-
bile communication,”IEEE J. Select. Areas Commun., vol. 14, pp.
1698–1707, Dec. 1996.

[5] C. T. Lin and C. S. G. Lee,Neural Fuzzy Systems. Englewood Cliffs,
NJ: Prentice-Hall, 1996.

[6] S. Haykin and L. Li, “Nonlinear adaptive prediction of nonstationary sig-
nals,” IEEE Trans. Signal Processing, vol. 43, pp. 526–535, Feb. 1995.

[7] P. R. Chang and J. T. Hu, “Optimal nonlinear adaptive prediction
and modeling of MPEG video in ATM networks using pipeline
recurrent neural networks,”IEEE J. Select. Areas Commun., vol. 15,
pp. 1087–1100, Aug. 1997.

[8] R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,”Neural Comput., vol. 1, pp.
270–280, 1989.

[9] A. A. Tarraf, I. W. Habib, and T. N. Saadawi, “Reinforcement learning-
based neural network congestion controller for ATM networks,” inProc.
IEEE MILCOM, vol. 2, 1995, pp. 668–672.

[10] C. S. Lin and Y. H. E. Cheng, “Radial basis function networks for adap-
tive critic learning,” inProc. IEEE Int. Conf. Neural Networks, vol. 2,
1994, pp. 903–906.

[11] C. T. Lin and C. S. G. Lee, “Reinforcement structure/parameter learning
for neural-network-based fuzzy logic control systems,”IEEE Trans.
Fuzzy Systems, vol. 2, pp. 46–63, Feb. 1994.

[12] M. B. Pursley, “Performance evaluation for phase-coded spread spec-
trum multiple-access communication—Part I: System analysis,”IEEE
Trans. Commun., vol. COM-25, pp. 795–799, Aug. 1997.

Chung-Ju Chang (S’81–M’85–SM’94) was born
in August 1950. He received the B.E. and the M.E.
degrees in electronics engineering from National
Chiao Tung University, Hsinchu, Taiwan, in 1972,
and 1976, respectively, and the Ph.D. degree in
electrical engineering from the National Taiwan
University, Taiwan, R.O.C., in 1985.

From July 1976 to August 1988, he was with
the Division of Switching System Technologies,
Telecommunication Labs, Directorate General of
Telecommunications (DGT), Ministry of Commu-

nications, Taiwan, as a Design Engineer, Supervisor, Project Manager, and
then Division Director. There, he was involved in designing digital switching
system, ISDN user–network interface, and ISDN service and technology
trials. In the interim, he had acted as a Science and Technical Advisor for
the Ministry of Communications during 1987–1989 and once helped DGT
in the introduction of digital switching systems in 1987. In August 1988,
he joined the faculty of the Department of Communication Engineering,
College of Electrical Engineering and Computer Science, National Chiao Tung
University, as an Associate Professor. He has been a Professor since 1993. He
was Director of the Institute of Communication Engineering from August 1993
to July 1995. His research interests include performance evaluation, wireless
communications networks, and broadband networks. He had served as an
Advisor for the Ministry of Education to promote the education of communi-
cation science and technologies for colleges and universities in Taiwan since
1995. He is also acting as a committee member of the Telecommunication
Deliberate Body, a committee member of the Technical Review Assembly,
Industrial Development Bureau, a committee member of the Electronics
and Infomatics Development Committee, Ministry of Economic Affairs, a
committee member of the Telecommunication Administration Review Board,
Ministry of Transportation and Communications, and the Chairman of IEEE
Vehicular Technology Society, Taipei Chapter.

Dr. Chang is a member of CIE.

Bo-Wei Chen received the B.E. and M.E. degrees
in communication engineering from National
Chiao-Tung University, Hsinchu, Taiwan, R.O.C., in
1997 and 1999, respectively.

He presently serves in the army. His research in-
terests include mobile radio communication and in-
tegrated services network.

Terng-Yuan Liu received the B.E. and M.E. degrees
in communication engineering from National
Chao-Tung University, Hsinchu, Taiwan, R.O.C., in
1996 and 1998, respectively.

In 1999, he joined the Personal Communication
Service (PCS) Project at Telecommunication Labora-
tories (TL) of Chungh-wa Telecom Co., Ltd., Taiwan.
He is now an Associate Researcher of a protocol de-
velopment group.

Fang-Ching Ren (S’94) was born in Hsinchu,
Taiwan. He received the B.E. and M.E. degrees
in communication engineering from National
Chiao-Tung University, Hsinchu, Taiwan, R.O.C., in
1992 and 1994, respectively. He is currently pursuing
the Ph.D. degree in communication engineering at
National Chiao-Tung University.

His research interests include performance anal-
ysis, protocol design, and mobile radio network.


