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Abstract

Conforming and nonconforming error estimators are presented and analyzed for the mixed �nite element approximation
of the Stokes problem. The estimators are obtained by solving local Poisson-type problems that do not involve boundary
conditions, compatibility and balancing conditions, incompressibility constraint, or 
ux jumps across inter-element bound-
aries. The estimators are bounded from above and below by constant multiples of the actual error in an energy-like norm
and can be used in adaptive h; p, and hp computations. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Adaptive computation with reliable error controls is now a practical reality in modern numeri-
cal simulations. A posteiori error estimation is a driving force of adaptive computation and is an
essential part of error controls. Error estimators are well established for self-adjoint, elliptic partial
di�erential equations. However, the issues particularly associated with the mixed �nite element ap-
proximation of the Stokes equations such as incompressibility condition, inf–sup condition, equilib-
rium (compatibility) condition and boundary conditions of the local residual problems, etc. make the
error estimation more di�cult and complicated than that of self-adjoint PDEs.
Error estimators for the Stokes problem can be categorized into two classes. The �rst class (e.g.

[11,23,24]) is based on the local evaluation of residuals whereas the second one is based on the
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solution of local problems. The second class can be further divided into two subclasses. One of
which is dealing with local Stokes-type problems [10,23] whereas the other is dealing with local
Poisson-type problems [2,21]. The �rst class is less expensive but provides only re�nement indicators.
The second class gives more accurate global error estimators as well as local error indicators. The
present estimators belong to the last subclass.
Our formulation of the local problems reduces all the above issues to only one condition on

the construction of the complementary �nite element subspaces for the approximation of the local
problems. Both resulting conforming and nonconforming estimators are shown to be bounded from
above and below by constant multiples of the actual error in an energy-like norm.
We summarize the main features of the present work as follows:

• The estimators are independent of the type of element used to approximate the original Stokes
problem and therefore can be used in all adaptive h; p, and hp computations.

• The formulation does not explicitly involve the 
ux jumps across inter-element boundaries and
do not require any local boundary conditions.

• The size of the system of linear equations resulting from the local problems is the smallest when
compared with all the previous systems of the second class.

• The error analysis presented here is in �nite-dimensional setting whereas that of Ainsworth and
Oden [2] is in in�nite setting.

2. Preliminaries

We consider a mixed �nite element approximation of the Stokes equations

−��u +3p= f in 
;
div u = 0 in 
;

u = 0 on @
;

(2.1)

where 
 is an open bounded domain in R2 with a Lipschitz boundary @
; �¿ 0 a viscosity parameter,
u ∈ (H 1(
))2 the velocity �eld, p ∈ L2(
) the pressure, and f : 
 → R2 the body force. Here
Hr(
); r ∈ R, denotes a usual Sobolev space equipped with the norm ‖ · ‖r and with the semi-
norm | · |r .
To formulate (2.1) in a weak form, we use the following notation:

H = (H 1
0 (
))

2;

H 1
0 (
) = {v ∈ H 1(
) : v= 0 on @
};

|C|21 =
∫


3C : 3C dx =

∫



2∑
i; j=1

(
@vi
@xj

)2
dx;

M=
{
q ∈ L2(
) :

∫


q dx = 0

}
;

(2.2)
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a : H ×H → R; a(u; C) = �
∫


3u : 3C dx;

b :M×H → R; b(q; C) =
∫


q div C dx;

c :M×M → R; c(p; q) =
∫


pq dx;

L : H → R; L(C) =
∫


f · C dx;

(2.3)

where dx = dx1 dx2. The weak formulation of the Stokes problem is to �nd (u; p) ∈ H ×M such
that

a(u; C)− b(p; C) = L(C) ∀C ∈ H ;
b(q; u) = 0 ∀q ∈ M:

(2.4)

The existence and uniqueness of a solution (u; p) of the weak problem is guaranteed (see e.g. [15])
since L(·) is continuous and a(·; ·) is continuous and coercive while b(·; ·) is continuous and satis�es
an inf–sup condition, namely, there exist positive constants �1; �2 and � such that

a(C; C) = �|C|21 ∀C ∈ H ;

a(u; C)6�1 |u|1 |C|1 ∀u; C ∈ H ;

inf
q∈M; q 6=0

sup
C∈H ;C6=0

b(q; C)
‖q‖0|C|1¿�;

b(q; C)6�2 ‖q‖0|C|1; q ∈ M; C ∈ H :

(2.5)

We note that the uniqueness of the pressure p is unique up to an additive constant.
For the approximation of (2.4), we introduce two families of �nite-dimensional subspaces Hh⊂H

and Mh⊂M which are associated with a partition Th = {ti | i = 1; 2; : : : ; m} on �
. The partition is
characterized by a mesh size h. For any two distinct elements (triangles or rectangles or both) ti
and tj in Th; ti ∩ tj is either empty, a single vertex, or a common edge. Two elements are said to be
adjacent if they have a common edge. For a given rectangular element let hmax and hmin denote the
largest and smallest edge lengths, respectively. Then the element edge ratio is de�ned by hmin=hmax.
We always assume that the mesh Th belongs to a regular family of structured or unstructured meshes
on �
. Recall that, see e.g. [3,7], the family is regular if all angles of its triangular elements and
all edge ratios of rectangular elements are bounded below by some constant �¿ 0. The constant is
called shape regularity parameter of the mesh Th. Shape regularity does not require a mesh to be
globally quasi-uniform, but it does imply local quasi-uniformity of the mesh.
The mixed �nite element approximation of (2.4) is to �nd (uh; ph) ∈ Hh ×Mh such that

a(uh; C)− b(ph; C) = L(C) ∀C ∈ Hh;

b(q; uh) = 0 ∀q ∈ Mh:
(2.6)
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We note that if the �nite-dimensional spaces Hh and Mh satisfy the discrete inf–sup condition, i.e.,
there exists a constant �h¿ 0 such that

inf
q∈Mh; q 6=0

sup
C∈Hh; C6=0

b(q; C)
‖q‖0|C|1¿�h; (2.7)

the existence and uniqueness of the solution of (2.6) are then ensured. The solution is stable if
�h is independent of h. Otherwise, or, even worse, (2.7) does not hold, the solution is unstable.
Nevertheless, exactly the same as that of Ainsworth and Oden [2], condition (2.7) is not required
for our error estimation. Of course, it is impractical to use unstable approximation.

3. A conforming error estimator

Usually, the norm on H ×M can be taken as

‖(C; q)‖2H×M = | ‖C‖ |2 + ‖q‖20 ∀C ∈ H ; q ∈ M;

where

| ‖C‖ |2 = a(C; C) = �|C|21:
Following [2], the discretization error (eu; ep) ∈ H ×M, where eu= u− uh and ep=p−ph, de�nes
a pair (e; �) ∈ H ×M such that

a(e; C) = a(eu; C)− b(ep; C) = L(C)− a(uh; C) + b(ph; C); (3.1)

c(�; q) =−b(q; eu) = b(q; uh) (3.2)

for all (C; q) ∈ H ×M. Moreover, we have the equivalence relation

C1‖(e; �)‖H×M6‖(eu; ep)‖H×M6C2‖(e; �)‖H×M: (3.3)

The computation of the residual norm

‖�‖0 = ‖div uh‖0 =
{∑
ti∈Th

∫
ti
(div uh)2 dx

}1=2
(3.4)

is straightforward. The work is left to estimate | ‖e‖ |.
Since

a(e; C) = a(eu; C)− b(ep; C) = L(C)− a(uh; C) + b(ph; C) = 0 (3.5)

for all (C; q) ∈ Hh × Mh, we should consider the discrete problem of (3.1) in a richer space
H �h; Hh⊂H �h⊂H , namely, determine �e ∈ H �h such that

a( �e; C) = L(C)− a(uh; C) + b(ph; C) (3.6)

for all C ∈ H �h.
Note that (3.6) is a standard �nite element approximation of (3.1) and that the bilinear form a(·; ·)

is symmetric. It follows C�ea’s Lemma [13] that

| ‖e − �e‖ |= inf
C∈H �h

| ‖e − C‖ |: (3.7)
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Let e0 ∈ Hh denote the solution of (3.6) for all v ∈ Hh. By (3.5), it is a trivial solution, i.e., e0 = 0.
Hence, by (3.7) we have

| ‖e − �e‖ |6�| ‖e‖ | (3.8)

with �61. The inequality will assume the equality if and only if

a( �e; �e) = 2a(e; �e) = 2a( �e; �e) = 0

which implies that �¡ 1 provided H �h 6= Hh. This suggests that the enlarged space H �h can be de�ned
on the current mesh Th, i.e., more basis functions that do not belong to Hh are constructed on the
present mesh without any re-meshing. These functions constitute a complementary subspace H c

h to
Hh in H �h. Apparently, for any �xed mesh or equivalently any �xed mesh parameter h, the constant �
is independent of the h and depends only on how many or how these complementary basis functions
are constructed as long as H c

h 6= ∅. We thus de�ne the enlarged space by
H �h =Hh ⊕H c

h ; Hh ∩H c
h = {0}; H c

h 6= ∅ (3.9)

such that (3.8) holds for �¡ 1 independent of h. This is a saturation assumption frequently used in
a posteriori error analysis [7,8,16].
Since (3.6) is a Poisson-type problem, the space H �h can be de�ned via, for instance, the standard

hierarchical basis functions on Th [22] without any stability restriction.
The de�nition of the enlarged space also implies the strengthened Cauchy–Schwarz inequality

(3.10) for which a proof can be found, for example, in [7,14].

Lemma 3.1. Let H �h be de�ned by (3:9). Then there exists a constant 
 ∈ [0; 1) independent of
the mesh size h such that

|a(C;w)|6
| ‖C‖ | | ‖w‖ | ∀C ∈ Hh; ∀w ∈ H c
h : (3.10)

The approximation of e can be reduced to solving the conforming error problem: Determine
ec ∈ H c

h such that

a(ec; C) = L(C)− a(uh; C) + b(ph; C) ∀C ∈ H c
h : (3.11)

By (3.8) and (3.10) and the standard argument given, for instance, in [7,8,12,16,19], we have the
following result.

Lemma 3.2. Let e be de�ned by (3:1). If (3:9) holds for H �h; then (3:11) has a unique nontrivial
solution ec ∈ H c

h and

(1− �)
√
1− 
2| ‖e‖ |6| ‖ec‖ |6(1 + �)| ‖e‖ |; (3.12)

where the constants �; 
 ∈ [0; 1) are independent of the mesh size h.

The a posteriori (conforming) error estimate for the mixed �nite element solution of (2.6) is then
a direct consequence of (3.3) and (3.12).
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Theorem 3.3. Let (u; p) ∈ H × M and (uh; ph) ∈ Hh × Mh be the solutions of (2:4) and (2:6);
respectively. Let (eu; ep)=(u−uh; p−ph). If (3:9) holds for H �h; then (3:11) has a unique nontrivial
solution ec ∈ H c

h and

(1− �)√1− 
2
C2

‖(eu; ep)‖H×M6‖(ec; �)‖H×M6
1 + �
C1

‖(eu; ep)‖H×M; (3.13)

where the constants �; 
 ∈ [0; 1) and C1; C2 ∈ (0;∞) are all independent of the mesh size h.

4. A nonconforming error estimator

Although the residual norm of (3.4) can be calculated on an element-by-element basis, the com-
putation of ec ∈ H c

h in (3.11) will result in a global solution if the basis functions of H
c
h have

supports on more than one element. The error estimator will be impractical when the complemen-
tary space H c

h is large as required for reliable error estimation. On the other hand, if the basis
functions have supports only on their individual elements, the error estimator will not be e�ective
to handle the errors across elements (
ux jumps). In fact, most widely used error estimators, see
e.g. [1,4–7,9,20,21,24,25], explicitly involve the jumps.
The nonconforming approach is devised to consider both e�cient and e�ective aspects of prac-

tical error estimators. We now describe our nonconforming error estimator for the mixed FEM. It
does not explicitly involve the jumps but retains the use of the weak residual term in (3.11). The
errors occurring on the edges of elements are handled indirectly by a proper modi�cation of the
basis functions of the conforming complementary space H c

h for which we need to be more speci�c.
For simplicity, we assume that the approximation space Hh consists of piecewise linears. The

following results hold for more general approximation with some technical modi�cations. For any
�xed mesh Th, we construct a set K of shape functions such that each function � ∈ K has its
support on a pair of two adjacent elements and its nodal point at the center of the common edge of
the pair, namely, these functions are side modes [22]. Let

K =
{
�: �=

(
�

0

)
or
(
0

�

)
for � ∈ K

}
;

K (ti) = {�: � ∈ K ; supp(�) ∩ ti 6= ∅; ti ∈ Th}:
De�ne the conforming and nonconforming subspaces

H c
h = span{�: � ∈ K}⊂H ; (4.1)

H c
h (ti) = span{�: � ∈ K (ti)}⊂H c

h ⊂H ; (4.2)

H n
h (ti) = span

{
�̃: �̃=

{
� ∈ K (ti) on ti;
0 otherwise;

}
6⊂H ; (4.3)

H n
h =H

n
h (t1)⊕H n

h (t2)⊕ · · · ⊕H n
h (tm) 6⊂H : (4.4)

Exploiting the property of the shape regularity of Th and the �nite dimensionality H c
h (ti), the

following lemma can be proved in a similar way as that of Bornemann et al. [12].
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Lemma 4.1. For any two adjacent elements ti; tj ∈ Th; there exists a positive constant C3 inde-
pendent of h such that

| ‖Cci ‖ |2tj6C3| ‖Cci ‖ |t2i ; ∀Cci ∈ H c
h (ti); (4.5)

where | ‖Cci ‖ |2ti = �
∫
ti
3Cci : 3Cci dx:

We now localize Eq. (3.11) on each element ti as follows. The test and trial functions on the
left-hand side are taken to be the halved-functions of H n

h (ti) while the test functions on the right-hand
side are still conforming. More speci�cally, the nonconforming error estimator is obtained by deter-
mining ẽi ∈ H n

h (ti) such that, for each ti ∈ Th,
a(ẽi ; Cni ) = 1

2(L(C
c
i )− a(uh; Cci ) + b(ph; Cci )) ∀Cni ∈ H n

h (ti); (4.6)

where Cci = Cni on ti and Cci ∈ H c
h (ti). Note that the conforming function Cci is obtained by extending

the basis functions of Cni from the element ti to its neighbors. The factor 1
2 on the right-hand side

re
ects the residual contribution to the element ti since every basis function of H c
h (ti) has its support

on two adjacent elements and the size of the two elements does not di�er too much, i.e., the mesh
Th is locally quasi-uniform. The uniqueness and existence of ẽi is guaranteed since the bilinear form
a(·; ·) induces a norm in the space H n

h (ti) and the space itself is �nite dimensional. Thus

a(Cni ;wni ) = �
∫
ti
3Cci : 3wci dx; | ‖Cni ‖ |2 = a(Cni ; Cni ) ∀Cni ;wni ∈ H n

h (ti):

De�ne

| ‖en‖ |:=
(

m∑
i=1

| ‖ẽi‖ |2
)1=2

; en = ẽ1 ⊕ ẽ2 ⊕ · · · ⊕ ẽm: (4.7)

Lemma 4.2. Let e be de�ned by (3:1). If (3:9) holds for H �h and H c
h and H

n
h are de�ned; respectively;

by (4:1) and (4:4); then

(1− �)
√
1− 
2| ‖e‖ |6| ‖en‖ |6C4(1 + �)| ‖e‖ |; (4.8)

where C4 is a positive constant; � and 
 are given in Lemma 3:2; and all the constants are
independent of the mesh size h.

Proof. Let ec ∈ H c
h be the solution of (3.11). De�ne e

c
i ∈ H c

h (ti) and e
n
i ∈ H n

h (ti) such that

eci = e
n
i = e

c on ti:

It then follows from (3.11) and (4.6) that

| ‖ec‖ |2 = a(ec; ec)

=
1
2
a

(
ec;
∑
i

eci

)

=
1
2

∑
i

a(ec; eci )
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=
∑
i

a(ẽi ; eni )

6
∑
i

| ‖ẽi‖ | | ‖eni ‖ |

=
∑
i

| ‖ẽi‖ | | ‖eci ‖ |ti

6
1
2

∑
i

(| ‖ẽi‖ |2 + | ‖ec‖ |2ti)

= 1
2(| ‖en‖ |2 + | ‖ec‖ |2);

where the �rst factor 1
2 accounts for a twice integration over each element. Hence

| ‖ec‖ |6| ‖en‖ |;
which together with (3.12) proves the left inequality of (4.8). Similarly, for the right inequality, we
have

| ‖ẽi‖ |2 = a(ẽi ; ẽi)
= a(ẽi ; ẽ

c
i )

= 1
2a(e

c; ẽci )

6 1
2 | ‖ec‖ |Si | ‖ẽci ‖ |Si ;

where ẽci ∈ H c
h (ti) and Si are de�ned by

ẽci = ẽi on ti;

Si = ti ∪j∈J tj:
Here J is an index set of j 6= i such that tj ∈ Th is adjacent to ti. Note that, by Lemma 4.1, we
have

| ‖ẽci ‖ |2Si = | ‖ẽci ‖ |2ti +
∑
j∈J

| ‖ẽci ‖ |2tj

= | ‖ẽi‖ |2 +
∑
j∈J

| ‖ẽci ‖ |2tj

6 | ‖ẽi‖ |2 + C3
∑
j∈J

| ‖ẽci ‖ |2ti

= | ‖ẽi‖ |2 + 4C3| ‖ẽci ‖ |2ti
= (1 + 4C3)| ‖ẽi‖ |2:

Here we have used the fact that each element has at most four adjacent elements. Hence,

| ‖ẽi‖ |6
√
1 + 4C3
2

| ‖ec‖ |Si :
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Therefore,

| ‖en‖ |2 =
m∑
i=1

| ‖ẽi‖ |2

6
1 + 4C3
4

m∑
i=1

| ‖ec‖ |2Si

=
5(1 + 4C3)

4
| ‖ec‖ |2

which together with (3.12) implies the right inequality of (4.8) with C4 =
√
5(1 + 4C3)=4.

Following (3.3) and (4.8), we now state the main result of the nonconforming error estimator.

Theorem 4.3. Let (u; p) ∈ H × M and (uh; ph) ∈ Hh × Mh be the solutions of (2:4) and (2:6);
respectively. Let (eu; ep) = (u − uh; p − ph). If (3:9) holds for H �h and H c

h and H
n
h are de�ned;

respectively; by (4:1) and (4:4); then the computable error en is uniquely determined by (4:6) and
it satis�es the estimate

(1− �)√1− 
2
C2

‖(eu; ep)‖H×M6‖(en; �)‖H×M6
C4(1 + �)

C1
‖(eu; ep)‖H×M; (4.9)

where the constants �; 
 ∈ [0; 1) and C1; C2; C4 ∈ (0;∞) are all independent of the mesh size h.

5. Concluding remarks

If both conforming and nonconforming formulas, i.e., (3.11) and (4.6) are used, we obtain a
generic method for all h; p, and hp adaptive computations. For example, assuming that the approx-
imation order is p, if the next hierarchical shape functions of degree p+1 are internal modes [22],
we use (3.11) to compute the error estimator. Otherwise, we use (4.6) for side modes.
Comparison among the �rst and second classes of error estimators has been addressed in [2]. We

now stress the di�erences between the present estimators and that of [2,21] denoted by AO-estimator
for convenience.
First of all, we note that our error problems do not explicitly contain the 
ux jumps which

inevitably obliges one to solve an auxiliary system that balances interior and boundary residuals
between two neighboring elements since both residuals appear on the right-hand side of the local
equations for the AO-estimator. The balancing system is also a consequence of the compatibility
condition which is a necessary and su�cient condition for the existence of the local problems.
The extended shape functions on the residual term of (4.6) to the neighboring elements take both
residuals into account. The residual term is in weak form which obviously involves the gradients of
the computed solution on the subdomain associated with any particular element. In other words, the

ux jumps are implicitly handled by the extended shape functions. The existence and uniqueness of
the local problems (4.6) is solely determined by the complementary space in (3.9). In summary, the
weak residual formulation of (3.11) and (4.6) transforms all the previous balancing and compatibility
conditions to the construction of the complementary basis functions and their extensions.
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We next remark on the a posteriori estimates (3.13) and (4.9). The most signi�cant di�er-
ence between our estimates and that of Ainsworth and Oden [2] is that our analysis is based on
�nite-dimensional local problems whereas the latter is in an in�nite dimensional setting. However, our
estimates require the saturation assumption which, together with the strengthened Cauchy–Schwarz
inequality, results in a loss of the so-called upper bound property of the AO-estimator, i.e., the con-
stants on the lower bound of (3.13) and (4.9) are not available explicitly whereas the corresponding
constant for the AO-estimator is exactly equal to one.
Finally, we brie
y discuss some numerical aspects of the estimators. The principal concept of

using weak residual without 
ux jumps to estimate errors has been proposed in a general and
abstract setting and been numerically veri�ed by various boundary value problems such as linear
elliptic problems, PDEs of mixed-type, and variational inequalities in [17]. Moreover, in [18], we also
present some implementation details as well as numerical examples which include a driven cavity
model and a semiconductor device model. All numerical evidence shows that both conforming and
nonconforming estimators are e�ective and reliable for adaptive computation.
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