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Abstract

The optimal representative set selection problem is defined thus: given a set of test requirements and a test suite that satisfies all test
requirements, find a subset of the test suite containing a minimum number of test cases that still satisfies all test requirements. Existing
methods for solving the representative set selection problem do not guarantee that obtained representative sets are optimal (i.e. minimal). The
enhanced zero–one optimal path set selection method [C.G. Chung, J.G. Lee, An enhanced zero–one optimal path set selection method,
Journal of Systems and Software, 39(2) (1997) 145–164] solves the so-called optimal path set selection problem, and can be adapted to solve
the optimal representative set selection problem by considering paths as test cases and components to be covered (e.g. branches) as test
requirements.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In testing (hardware and software testing), testing objec-
tives must be defined first. A testing objective can be consid-
ered a set of testing requirements (hereafter, referred to as
requirements), and different testing objectives have different
sets of requirements. Once a set of requirements is deter-
mined, test cases are designed to satisfy the requirements. A
set of test cases that can collectively satisfy all requirements
is called a test suite [2]. A typical method of constructing a
test suite, which has been employed by most automated test
case generators [3–7], is to construct a test case for each
requirement. A test case designed specifically for a require-
ment may also satisfy other requirements. As a result, the
constructed test suite may contain redundancy because
some of its proper subsets may still satisfy all requirements.

Since the costs of executing test cases and managing test
suites may often be quite significant, a test suite subset that
can still satisfy all requirements is desirable. Such a subset is
known as a representative set [8]. Assuming that the cost of
executing and managing each test case is the same, a repre-
sentative set with a minimum number of test cases is desir-
able and is called an optimal representative set. The optimal
representative set selection problem is defined as given a

test suite and a set of requirements, find an optimal repre-
sentative set from the test suite. As mentioned in [2,8], the
optimal representative set selection problem is NP-complete
[9], and as mentioned in [2] it is equivalent to solving the
set-covering problem [10].

The greedy heuristic method [11] has conventionally
been used to solve the set-covering problem; therefore, it
can be used to obtain a representative set. The greedy heur-
istic method repeatedly selects a test case that satisfies the
maximum number of unsatisfied requirements at a time until
all requirements have been satisfied by a set of selected test
cases. Two other studies [2,8] also provide heuristic meth-
ods. However, these heuristic methods do not always obtain
optimal representative sets. That is, the optimal representa-
tive set selection problem has not yet been solved.

The optimal path set selection problem for structural
program testing is defined as: given a complete path setP
(P is defined as a set containing all paths) and a required
coverage criterion, select the subset ofP with the minimum
number of paths needed to satisfy the required coverage
criterion. A coverage criterion can be considered a set of
components to be covered (e.g. statements or branches), and
different coverage criteria have different sets of components
to be covered. The set of components to be covered in the
optimal path set selection problem can be considered the set
of requirements to be satisfied in the optimal representative
set selection problem. The paths and the complete path set in
the optimal path set selection problem can be considered the
test cases and the test suite in the optimal representative set
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selection problem, respectively. The coverage relationship
among paths and components in the optimal path set selec-
tion problem can be considered the satisfaction relationship
among test cases and requirements in the optimal represen-
tative set selection problem. Therefore, the optimal path set
selection problem in structural program testing is equivalent
to optimal representative set selection problem, and because
of this equivalence, optimal path set selection methods can
be adapted to solve the optimal representative set selection
problem.

There are two methods for solving the optimal path set
selection problem, the zero–one optimal path set selection
method [12] and the minimum flow method [13]. The
former is more powerful than the latter because it can be
applied to a large variety of constraints, cost functions, and
coverage criteria, but the latter can only be applied to all-
statements and all-branches coverage criteria [14,15]. The
major drawback of the zero–one optimal path set selection
method is that the computation is lengthy, and large
programs may take ten or more hours because it is exponen-
tially proportional to the number of candidate paths (i.e. the
paths in the complete path set) and proportional to the
number of components to be covered. Five reduction rules
have been proposed [1] to overcome this drawback. These
five rules enhance the zero–one optimal path set selection
method and make it applicable to large programs. This
paper introduces adaptation of the enhanced zero–one opti-
mal path set selection method to solve the optimal represen-
tative set selection problem.

The rest of this paper is organized as follows. Section 2
introduces the enhanced zero–one optimal path set selection
method. Section 3 shows adaptation of the enhanced zero–

one optimal path set selection method to solve the optimal
representative set selection problem, and how to apply this
method in testing and maintenance stages. Section 4
provides an example illustrating the use of this method in
testing and maintenance stages. Section 5 gives the conclu-
sion.

2. Enhanced zero–one optimal path set selection method
[1]

The enhanced zero–one optimal path set selection
method consists of zero–one optimal path set selection
method and five reduction rules. Section 2.1 introduces
the zero–one optimal path set selection method. Section
2.2 shows how to apply the five reduction rules to reduce
the long computation of zero–one optimal path set selection
method, and lists the steps in the enhanced zero–one opti-
mal path set selection method.

2.1. Zero–one optimal path set selection method [12]

In structural program testing, the structure of the program
under test is mapped to a program digraphG� �N;B�;
whereN andB represent the node and branch sets, respec-
tively. A node is a code segment executed sequentially
while a branch directs transfer of control flow. Without
loss of generality, it may be assumed that only one source
node and one terminal node exist in the digraph. A path,
starting at the source node and ending at the terminal node,
is a sequence of nodes connected by branches. Using
network methodologies such as node reduction [16], matrix
self-multiplication [17], or linearly independent circuits
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[18], the complete path setP of program digraphG can then
be constructed. For example, consider the program digraph
shown in Fig. 1(a), the corresponding complete path setP is
shown in Fig. 1(b). A program with loops may include an
extremely large number of paths. To this problem, the tester
can limit loop iterations to some constant number.

Given a complete path setP and a required coverage
criterion, a corresponding component-path coverage
frequency matrixF can be generated showing the coverage
frequency relationship among the paths and the compo-
nents. The rows inF represent the paths inP, the columns
in F represent the components to be covered,F�i; j� repre-
sents the coverage frequency of theith path over thejth
component. For example, consider the complete path setP
shown in Fig. 1(b). The coverage frequency matrix for the
all-branches coverage criterion is shown in Fig. 2.

To illustrate the concept of this method, the all-branches
coverage criterion is used as the required coverage criterion
in all following discussions. Thus, the optimal path set
selection problem can be defined as follows. In the complete
path setP, which paths must be selected to guarantee that
each branch inB is covered at least once and the number of
selected paths is minimal? This is a decision problem
because a decision as to whether to select each path must
be made. In this example, since there are 14 paths inP, we
can define 14 decision variablesxi ; i [ {1 ;2;…;14}; xi

corresponds to pathpi ; xi � 1 if pi is selected; 0, otherwise.
We first consider the requirement that each branch must

be covered at least once. Take brancha as an example. Since
this branch appears inp2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12,
p13, andp14, one or more of these paths must be selected.
This can be represented by the following constraint inequa-
tion:

x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12

1 x13 1 x14 $ 1; or

1 × x2 1 1 × x3 1 1 × x4 1 1 × x5 1 1 × x6 1 1 × x7

1 1 × x8 1 1 × x9 1 1 × x10 1 1 × x11 1 1 × x12

1 1 × x13 1 1 × x14 $ 1

Following the same argument, the complete set of
constraint inequations for all-branches coverage criterion
is set up as follows (the constraint inequations are listed
according to the order of brancha to branchs):

1 × x2 1 1 × x3 1 1 × x4 1 1 × x5 1 1 × x6 1 1 × x7

1 1 × x8 1 1 × x9 1 1 × x10 1 1 × x11 1 1 × x12

1 1 × x13 1 1 × x14 $ 1

1 × x1 $ 1

1 × x2 $ 1

1 × x3 1 1 × x4 1 1 × x5 1 1 × x6 1 1 × x7 1 1 × x8

1 1 × x9 1 1 × x10 1 1 × x11 1 1 × x12 1 1 × x13

1 1 × x14 $ 1

1 × x1 1 1 × x2 1 1 × x3 1 1 × x4 $ 1

1 × x4 1 1 × x5 1 1 × x7 1 1 × x9 1 1 × x10 1 1 × x12

1 1 × x14 $ 1

1 × x3 1 1 × x6 1 1 × x8 1 1 × x11 1 1 × x13 $ 1

1 × x4 1 1 × x7 1 1 × x9 1 1 × x12 1 1 × x14 $ 1

1 × x5 1 1 × x10 $ 1

1 × x3 1 1 × x4 $ 1

1 × x6 1 1 × x7 1 1 × x11 1 1 × x12 $ 1

1 × x8 1 1 × x9 1 11 × x13 1 1 × x14 $ 1

1 × x6 1 1 × x7 1 1 × x11 1 1 × x12 $ 1

1 × x8 1 1 × x9 1 1 × x13 1 1 × x14 $ 1
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1 × x5 1 1 × x6 1 1 × x7 1 1 × x8 1 1 × x9 1 1 × x10 1 1

× x11 1 1 × x12 1 1 × x13 1 1 × x14 $ 1

1 × x10 1 1 × x11 1 1 × x12 1 1 × x13 1 1 × x14 $ 1

1 × x5 1 1 × x6 1 1 × x7 1 1 × x8 1 1 × x9 $ 1

1 × x10 1 1 × x11 1 1 × x12 1 1 × x13 1 1 × x14 $ 1

1 × x5 1 1 × x6 1 1 × x7 1 1 × x8 1 1 × x9 1 1 × x10 1 1

× x11 1 1 × x12 1 1 × x13 1 1 × x14 $ 1

The above inequalities can be summarized as
P14

i�1 fij xi $
1; ;j � 1;2;…; 19 wherefij is the element of the branch-
path coverage frequency matrix at theith row and thejth
column. It can also be represented in the following matrix
form:

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0

1 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1

1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1

1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1

1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1

1 0 0 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 1

1 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1 0 1 1

1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1

1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1

1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1

1 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1

26666666666666666666666666666666666666664

37777777777777777777777777777777777777775

T

×

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

26666666666666666666666666666666666666664

37777777777777777777777777777777777777775

$

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2666666666666666666666666666666666666666666666664

3777777777777777777777777777777777777777777777775

:

Note that the first matrix on the left-hand side is the
branch-path coverage frequency matrix shown in Fig. 2.

We next consider the requirement that the number of
selected paths must be minimal. Since the value of the
objective functionz� x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1
x8 1 x9 1 x10 1 x11 1 x12 1 x13 1 x14 is the number of
paths in the selected path set,z is the minimization target.
Combining the objective function and constraint, the opti-
mal path set selection problem is formulated as the follow-
ing zero–one integer programming problem.

min �minimize� z�
X14

i�1

xi ;

s:t: �subject to�
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0

1 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1

1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1

1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1

1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1

1 0 0 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 1

1 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1 0 1 1

1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1

1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1

1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1

1 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1

26666666666666666666666666666666666666664

37777777777777777777777777777777777777775

T

×

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

26666666666666666666666666666666666666664

37777777777777777777777777777777777777775

$

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2666666666666666666666666666666666666666666666664

3777777777777777777777777777777777777777777777775

:

xi0 or 1; i [ {1 ;2;…;14}:

Consider the general form of program digraphG� �N;B�
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and its complete path setP� { p1; p2;…;pm} : Define a deci-
sion variable array X�m× 1� � ��xi��; i [ {1 ;2;…;m} ;
wherexi � 1 if pi is selected; 0, otherwise. LetuBu denote
the total number of branches in program digraphG and
F�m× uBu� the branch-path coverage frequency matrix.
The optimal path set selection problem is formulated as
the following zero–one integer programming problem:

min z�
Xm
i�1

xi

s:t: FTX $ I ; xi � 0 or 1; i [ {1 ;2;…;m} ; I �uBu × 1�

� �1 1 …1�T:
From the above discussion we know that the zero–one

integer programming method can be applied to all-branches
coverage criterion. As shown in [12,14,15], this method can
be applied to any structural program testing coverage criter-
ion and an optimal solution is guaranteed.

This method can be extended [12,14,15] to handle the
following two cases: (1) different paths have different test
costs; and (2) only critical components need to be covered
by selected paths. For the first case, we define a cost array
C � ��ci�� whereci represents the test cost of pathpi. Then,
change the objective function toz� CX� Pm

i�1 cixi : For
the second case, define a coverage requirement arrayR�
��ri�� whereri � 1 if the ith component must be covered; 0,
otherwise. Thus, the general optimal path set selection
problem can be modeled as:

min z� CX�
Xm
i�1

cixi

s:t: FTX $ R; xi � 0 or 1; i [ {1 ; 2;…;m} :

The problem definitely has a solution because the
program under test is assumed to be well-formed andX �
�11…1�T is a solution in the worst case. Many effective
algorithms are available to find a solution of the problem
[19,20]. Among them, the Balas’ zero–one additive algo-
rithm [19] is considered to be the fastest. The complexity of
the zero–one integer programming method is proportional
to (2uPathsu × uComponentsu) where uPathsu represents the
number of candidate paths anduComponentsu represents
the number of components to be covered. The computation
time is exponentially proportional touPathsu which is the
major drawback of this method.

2.2. Reducing zero–one optimal path set selection method
computation

The computation time required by the zero–one optimal
path set selection method can be reduced if the size of the
coverage frequency matrix (i.e. the number of candidate
paths and the number of components to be covered) is

reduced. We first consider every path’s test cost to be the
same and then different paths having different test costs.

To reduce the number of candidate paths and the number
of components that must be covered, we have the following
observations: (1) if a component does not have to be
covered, it can be ignored during path selection; (2) if a
component must be covered and is covered by only one
path, the path that covers the component must be selected;
(3) if every path covering a component, say,ci, also covers
another component, say,cj, the requirement thatci and cj

must be covered at least once can be reduced toci must
be covered at least once; and (4) if a path, say,pi, covers
all the components covered by another path, say,pj, and
some additional components, thenpj can be ignored during
path selection due to the existence ofpi. Based on these
observations, five reduction rules to reduce both the number
of candidate paths and the number of components to be
covered were proposed [1]. The following notation is
defined to illustrate the five reduction rules formally:

Symbol Representation
F�m× n� � ��fij �� Coverage frequency matrix
R�n × 1� � ��ri �� Coverage requirement array,r i � 0 or 1
Rowi ith row matrix ofF
Colj jth column matrix ofF
uRowiu � Pn

k�1 fik Summation ofF‘s ith row non-zero entries
uColju � Pm

k�1 fkj Summation ofF‘s jth column non-zero entries

The five reduction rules are described below.
Rule 1. Surely Satisfied Constraint: If a component does

not have to be covered at least once, its corresponding
constraint is surely satisfied and can thus be ignored. This
rule can be expressed formally as follows:

If ri � 0; i [ {1 ;2;…;n} ; then�a� delete Coli ;

�b� delete theith row of R �i:e: ri�:

Rule 2. Essential Path: A path is essential if and only if it
alone covers one or more components. After an essential
path, say,pk, has been selected, the components covered
by pk can be ignored during subsequent computation
because they have been covered by the selected pathpk.
This rule can be expressed formally as follows:

If uColj u � fkj andfkj $ 1; k [ {1 ;2;…;m} ;

j [ {1 ; 2;…;n} ; then�a� setxk � 1;

�b� delete Coli and correspondingri ; ;fki $ 1;

i [ {1 ; 2;…;n} ; and�c� delete Rowk:

Rule 3. Dominant Component/Dominant Column:
Componentci dominates componentcj if and only if every
path coveringci also coverscj. In this situation, the require-
ment thatcj must be covered at least once can be ignored
becauseci must be covered at least once. This rule can be
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expressed formally as follows:

If uColi u . 0; uColj u . 0; andfkj $ fki;

;k [ {1 ;2;…;m} ; then delete Colj ; deleterj :

Rule 4. Dominant Path/Dominant Row: Pathpi dominates
pathpj if and only if pi covers all the components covered by
pj. In this situation,pj can be ignored due to the existence of
pi. This rule can be expressed formally as follows:

If fik $ fjk; ;k [ {1 ;2;…;n} ; then�a� setxj � 0;

�b� delete Rowj :

Rule 5. Zero Path/Zero Row: Pathpi is a zero path if and
only if it does not cover any component. This situation
happens after Rule 2 has been applied and the essential
path is dominant over another path. In this case the zero
path can be directly deleted without affecting the problem
solution. This rule can be expressed formally as follows:

If fij � 0; ;j [ {1 ; 2;…;n} ; then�a� delete Rowi ;

�b� setxi � 0:

Among the five reduction rules, rule one should be
applied first because it simplifies computation by removing
unnecessary constraint inequations. Then, the other four
reduction rules can be applied repeatedly to reduce the
size of the coverage frequency matrix until none are applic-
able. A formal algorithm demonstrating application of the
five reduction rules can be found in [1].

If different paths have different test costs, reduction rule 4
can not be directly applied. For example, consider the cover-
age frequency matrix and each path’s test cost shown in Fig.
3. If reduction rule 4 is applied,p1 will be selected and the
total test cost will be 100. However, the optimal path set
should be {p2; p3} ; { p2;p4} or { p3; p4} because the total test
cost would then be 20. Therefore, if different paths have
different test costs reduction rule 4 should be modified as
follows:

Rule 40 . Dominant Path/Dominant Row: Pathpi domi-
nates pathpj if and only if pi covers all the components
covered bypj and the test cost ofpi is less than or equal to
that of pj. In this situation,pj can be ignored due to the
existence ofpi. Let Cost(x) be a function returning the
cost of pathx, this rule can be expressed formally as follows:

If fik $ fjk; ;k [ {1 ;2;…;n} and Cost�pi�
# Cost�pj�; then�a� setxj � 0; �b� delete Rowj :

The five reduction rules can be combined with the zero–
one optimal path set selection method to obtain an enhanced
zero–one optimal path set selection method. The steps in the
enhanced zero–one optimal path set selection method are
listed as follows:

Step 1:Generate a component-path coverage frequency
matrix F, define a coverage requirement arrayR, and define
a cost arrayC.

Step 2:Apply the five reduction rules to reduce the size of
F. If the reduced component-path coverage frequency
matrix is empty (i.e. all columns have been deleted), stop;
otherwise, go to step 3.

Step 3:Translate the reduced component-path coverage
frequency matrix into constraint inequations (each column
corresponding to a constraint inequation) and define the
objective function that excludes decision variables with
known values (i.e. 0 or 1).

Step 4:Solve the zero–one integer programming problem
formulated in step 3 using an available software package
(for examplelindo [21]).

The output of this method is the union of the essential
paths selected by reduction rule 2 in step 2 and the paths
selected by the software package used in step 4. Examples
illustrating how to apply the enhanced zero–one optimal
path set selection method can be found in [1].

3. Adapting the enhanced zero–one optimal path set
selection method to solve the optimal representative set
selection problem

To an optimal representative set selection problem,
assume that the given test suiteT containsm test cases,
requirement setR containsn requirements, and each test
case inT satisfies one or more requirements inR. An m
by n satisfaction matrixS can be generated to represent
the satisfaction relationship among the test cases inT and
the requirements inR. The rows ofSrepresent the test cases
in T, the columns ofS represent the requirements inR;
S�i; j� � 1 if test caseti [ T satisfies requirementrj [
R; 0; otherwise. Since each test case inT is either selected
or not selected, we define a decision variable array,X�m ×
1� � ��xi��; i [ {1 ;2;…;m} ; wherexi � 1 if ti is selected, 0,
otherwise. Since the cost of each test case may be different,
we define a cost array,C � ��ci��; whereci represents the
cost of test caseti [ T: The optimal representative set selec-
tion problem is formulated as the following zero–one inte-
ger programming problem:

min z� CX�
Xm
i�1

cixi

s:t: STX $ I ; xi � 0 or 1; i [ {1 ;2;…;m} ; I �n × 1�

� �1 1 …1�T:
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Thus, we can apply the enhanced zero–one optimal path
set selection method to find an optimal representative set.

The optimal representative set selection method can be
used in both the testing and maintenance stages. In the test-
ing stage, a set of requirementsR is defined first and then a
test suiteT is generated to satisfy all the requirements inR.
The satisfaction relationship among the test cases inT and
the requirements inR is analyzed and represented in a satis-
faction matrix. If different paths have different costs, we
define a cost array,C � ��ci��; whereci represents the cost
of pathpi. The optimal representative set selection method
can then be applied to obtain an optimal representative set.

In the maintenance stage, requirements may be added or
deleted due to program modifications. Existing test cases
may not satisfy all new requirements after new requirements
are added, and new test cases may have to be added. Some
existing test cases may not satisfy any requirement after
some existing requirements are deleted, so these test cases
will have to be deleted. The satisfaction matrixSmust then
be updated to represent the satisfaction relationship among
the test cases in the new test suiteT and the requirements in
the new requirement setR.

Programs should be re-tested after modification. If the
modification only relates to some requirements inR, we
can define a coverage requirement array,R� ��ri��; where
ri � 1 if the ith requirement is modification related, 0, other-
wise [22,23]. We may then apply the optimal representative
set selection method to find a minimal representative set to
rerun.

4. Example

In this section, an example is used to illustrate application
of the optimal representative set selection method to testing
and maintenance stages. A system (either hardware or soft-
ware) has been designed to satisfy 19 requirements, and 12
test cases have been designed to test for satisfaction of these
requirements. The 19 requirements can be considered func-
tional testing requirements that must be satisfied for soft-
ware integration or functional testing requirements for
hardware such as CPUs, hard disks, RAMs, floppy disks,

etc. The corresponding satisfaction matrix is shown in Fig.
4.

During testing, we want to find a minimal representative
set that satisfies the 19 requirements. Assuming the execu-
tion costs of all 12 test cases are the same, the objective is
then to minimize z� x1 1 x2 1 x3 1 ···1 x12. The five
reduction rules are applied to reduce the satisfaction matrix
size. Since requirementr1 dominates the requirements in
{ r2; r3; r4} ; r5 dominates {r1; r10} ; r7 dominates {r5; r9}, r11

dominates {r6; r13; r14} ; r16 dominates {r12; r19} ; and r17

dominates {r15; r18} ; reduction rule 3 can be applied. As a
result, the columns corresponding to the requirements in
{ r2, r3, r4, r1, r10, r5, r9, r6, r13, r14, r12, r19, r15, r18} are
deleted and the reduced satisfaction matrix is as shown in
Fig. 5. Since test caset1 dominates the test case in {t7}, t2
dominates {t5; t11} ; t4 dominates {t6}, and t10 dominates {t1},
reduction rule 4 can be applied and the reduced satisfaction
matrix is then as shown in Fig. 6. Since no more reduction
rules can be applied, the problem is reduced to:

min z� x2 1 x3 1 x4 1 x8 1 x9 1 x10 1 x12

s:t: x10 1 x12 $ 1

x2 1 x9 $ 1

x2 1 x3 1 x8 1 x10 $ 1

x4 1 x8 $ 1

x3 1 x4 1 x9 1 x12 $ 1:

Thelindo software package is used to solve the reduced
problem, and yields {t2; t8; t12} ; which means the obtained
optimal representative set is {t2; t8; t12} :

The satisfaction matrix shown in Fig. 4 may also be
considered an updated satisfaction matrix for the mainte-
nance stage. Assume that modification relates only to the
requirements in {r6, r7, r8, r9, r10, r11, r12} : Thus, a
coverage requirement array is defined asR�
�0000011111110000000�T: The five reduction rules are
applied to reduce the satisfaction matrix size. Since the
requirements in {r1, r2, r3, r4, r5, r13, r14, r15, r16, r17, r18,
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Fig. 4. Satisfaction matrix



r19} need not be satisfied, reduction rule 1 can be applied
and the reduced satisfaction matrix is then as shown in Fig.
7. Since requirementr7 dominates the requirements in
{ r9; r10} and r11 dominates {r6}, reduction rule 3 can be
applied and the reduced satisfaction matrix is then as
shown in Fig. 8. Since test caset1 dominates the test case
in { t7}, t2 dominates {t5; t11} ; t3 dominates {t4; t6; t8} ; andt10

dominates {t1}, reduction rule 4 can be applied and the
reduced satisfaction matrix is then as shown in Fig. 9.
Since no more reduction rules can be applied, the problem
is reduced to:

min z� x2 1 x3 1 x9 1 x10 1 x12

s:t: x10 1 x12 $ 1

x2 1 x9 $ 1

x2 1 x3 1 x10 $ 1

x3 1 x9 1 x12 $ 1:

Thelindo software package may then be used to obtain
{ t2; t12} ; which indicates that only the test cases {t2; t12}
need to be rerun to verify the correctness of the modifica-
tion.

5. Conclusion

The optimal representative set selection problem and the
optimal path set selection problem both involve finding a
minimum subset from a given set that satisfies given
requirements, so they can be classified as set-covering
problems. This means the enhanced zero–one optimal
path set selection method, used in structural program test-
ing, can be adapted to solve the optimal representative set
selection problem. The proposed method can be applied in
testing and maintenance stages. The proposed method can
be applied even when different test cases have different test
costs. A program based on the proposed method that can be
executed on IBM compatible PC has been implemented.
The optimal representative set can be obtained automati-
cally within a reasonable time after the satisfaction matrix
and objective function have been inputted.
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Fig. 5. Reduced satisfaction matrix (after applying reduction rule 3).

Fig. 6. Reduced satisfaction matrix (after applying reduction rule 4).

Fig. 7. Reduced satisfaction matrix (after applying reduction rule 1).

Fig. 8. Reduced satisfaction matrix (after applying reduction rule 3).

Fig. 9. Reduced satisfaction matrix (after applying reduction rule 4).
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