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Abstract

In the robotics assembly of DPP model, the coordinates of assembly point and magazine are dynamically changed
during robotics assembly so that evaluation of the assembly e$ciency is extremely complicated. To route the robotics
travel, most related investigations have utilized the "xed coordinate of insertion points and magazine using the Traveling
Salesman Problems (TSP) method to sequence the insertion points after arbitrarily assigning the magazine. However,
robotics travel routing should be based on a relative coordinate to obtain a better solution because the robotics, board
and magazine are simultaneously moved at di!erent speeds during assembly. To resolve such a dynamically combina-
torial problem, this study presents the Genetic Algorithm (GA), Simulated Annealing (SA), and Tabu Search (TS) based
algorithms. These approaches can simultaneously arrange the insertion sequence and assign the magazine slots by the
computer and yield a better performance compared to the conventional approach. Results presented herein also
demonstrate that the larger the number of insertion points and/or part numbers the better the performance. These
approaches are also compared. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In modern manufacturing, cycle time must be
reduced to enhance productivity and competitive-
ness. Reducing assembly time to increase e$ciency
has thus become a critical issue in the robotics
assembly industry. The most basic robot assembly
system consists of a robot, assembly table (board),
and component slots (magazine). Three factors
heavily contribute to overall assembly e$ciency:

(1) control of robotic motion, (2) sequence of inser-
tion point, and (3) assignment of the magazine slot.

Two types of robotic assembly problems have
been characterized on the basis of di!erent robot
motions: (1) "xed robot motion between "xed pick
and place (FPP) points and (2) robot motion
with dynamic pick and place (DPP) points. In the
FPP motion model, the magazine (or component
slots) moves horizontally along the X-axis and the
robot moves only vertically along the >-axis. The
assembly board (X}> table) moves freely in any
direction, allowing the magazine to move necessary
components to the "xed pickup points. When the
assembly board moves to a "xed placement loca-
tion, the robot picks up and places the components
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Fig. 1. The layout of the FPP model.

along the "xed pickup and placement points. Fig. 1
depicts the basic robot assembly system of the FPP
approach. Recent investigations have developed
assembly sequence and magazine assignment
methods, focusing alternatively on the FPP mode
[1}6].

The assembly sequence and magazine assign-
ment are two critical issues in routing robotics
travel. A better assembly sequence and magazine
assignment allow a shorter assembly cycle time. In
e!ectively responding to the undesirable robot
waiting time of the FPP approach at the "xed
pickup and placement points, Su et al. [7] de-
veloped robot moves with a #exible DPP approach
using a heuristic method to eliminate the robot
waiting time. That investigation also demonstrated
that DPP is superior to the FPP approach in most
cases involving randomly assigned magazine slots.

Su et al. [7] addressed robotics travel routing by
employing the Traveling Salesman Problems (TSP)
method [8] and random magazine assignments.
Wang et al. [9] developed a heuristic magazine
assignment approach to optimize the DPP method
by reasonably allocating the magazine slots. Never-
theless, Wang et al.'s approach still use the TSP
method to obtain robotics travel routing. As is
generally known, the TSP method is based on "xed
coordinates to route the travel path where the
robot assembly cell does not move and the robot
assembly sequence is changed depending only on
whether or not the magazine assignment has been
changed (regardless of whether or not the speed of
a robot, board, and magazine have been changed).

In the DPP model, the robot, board and maga-
zine are simultaneously moved at di!erent speeds,
allowing for dynamic change of the coordinates of
the insertion point and magazine during robotics
assembly. Therefore, in such a dynamic problem, in
addition to the factor of magazine assignment, the
change of speed in a robot, magazine, and board
actually in#uences the robot travel route.

Su et al. [7] and Wang et al. [9] did not consider
the simultaneous movement of robotics, board and
magazine and how such movement in#uences coor-
dinates solving all the time during assembly. In this
paper, we present the Genetic Algorithm (GA),
Tabu Search (TS), and Simulated Annealing (SA)
based appoaches to resolve this kind of combina-
torial problem. Employing these approaches via
the computer allows us to simulaneously obtain the
shortest (or near shortest) cycle time, the insertion
(assembly) sequence, and magazine slots assign-
ment. Implementation results of these apporaches
also demonstrate that the proposed approaches
can signi"cantly reduce the assembly cycle time.
These approaches are also compared.

2. DPP background

In the DPP model, the robot moves vertically
along the >-axis, and the pickup and placement
points are dynamically allocated; the assembly
board and magazine move only horizontally along
the X-axis. Therefore, only the x coordinates of the
pick and place locations change; meanwhile, the
y coordinates remain the same.

To more accurately describe the DPP model,
Table 1 lists the notations for a case with compo-
nents inserted sequentially on the board. Fig. 2 de-
picts the possible movements of the DPP model.
Let i!1 and i denote components, which are
placed consecutively in the placement sequence.
The following two sections describe how to deter-
mine the coordinate locations.

2.1. Determination of the pick coordinate on the
magazine

In Fig. 2(a), when the robot inserts the (i!1)th
component at point D(x

i
, y

i
) on the board and then
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Table 1
A list of notations for the DPP model

CT Cycle time to assemble all components
N Number of insertion locations
K Number of component types
m(i) Magazine pickup location of the ith assembly sequence
b(i) Placement location of the ith assembly sequence
TR(b(i), m(i)) Robot travel time from board location b(i) to magazine location m(i)
TR(m(i), b(i)) Robot travel time from magazine location m(i) to board location b(i)
<

r
Average speed of the robot

<
b

Average speed of the assembly board
<

m
Average speed of the magazine

TP Time needed to pick up a component upon arrival
TI Time needed to insert a component upon arrival
A(x

i
, y

i
) Coordinate of x and y at point A

PQ Distance between points P and Q

Fig. 2. Possible movements of the DPP model.

moves to the pickup point C(x
i
, y

i
), the magazine

simultaneously starts to move to the pickup loca-
tion. Points A(x

i
, y

i
) and B(x

i
, y

i
) are two possible

pickup locations due to the di!erence of robot
speed and magazine speed. The pickup location
A(x

i
, y

i
) is used when the robot reaches that point

from point D(x
i
, y

i
) after the magazine arrives at

point A(x
i
, y

i
) from point C(x

i
, y

i
). Restated, pickup

occurs at point A(x
i
, y

i
) if the following situation

is true:

TR(m(i!1), b(i!1))#TI#DA/<
r
*CA/<

m
. (1)

The pick coordinate location at point A(x
i
, y

i
) is

given by

A(x
i
)"D(x

i
) and A(y

i
)"C(y

i
). (2)

Otherwise, if the robot reaches point A(x
i
, y

i
)

from point D(x
i
, y

i
) before the magazine arrives

at point A(x
i
, y

i
) from point C(x

i
, y

i
), then the robot
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picks up the component at point B(x
i
, y

i
) and the

following equation holds:

TR(m(i!1), b(i!1))#TI#DB/<
r
"CB/<

m
(3)

where TR(m(i!1), b(i!1)) is known and DB/<
r
"

TR(b(i!1), m(i)). Eq. (3) can also be expressed as

TR(m(i!1), b(i!1))#TI

#

[(D(x
i
)!B(x

i
))2#(D(y

i
)!B(y

i
))2]1@2

<
r

"

DB(x
i
)!C(x

i
)D

<
m

. (4)

There are two cases for the place coordinate loca-
tion B(x

i
, y

i
) of the ith component:

(i) D(x
i~1

)(B(x
i
)(C(x

i
)

B(x
i
)"

!q#Jq2!4pr

2p
or

B(x
i
)"

!q!Jq2!4pr

2p

where

p"
1

VR2
!

1

VM2
,

q"!2 A
D(x

i~1
)

VR2
!

C(x
i
)

VM2

#

TR(b(i!1), m(i!1))#TI

VM B ,

r"
D(x

i~1
)2#(C(y

i
)!D(y

i~1
))2

VR2

!

C(x
i
)2

VM2
#

2C(x
i
)[TR(b(i!1), m(i))#TI]

VM

![TR(b(i!1), m(i!1))#TI]2 .

(ii) C(x
i
)(B(x

i
)(D(x

i~1
)

B (x
i
)"

!q#Jq2!4pr

2p
or

B (x
i
)"

!q!Jq2!4pr

2p

where

p"
1

VR2
!

1

VM2
,

q"!2A
D(x

i~1
)

VR2
!

C(x
i
)

VM2

#

TR(b(i!1), m(i!1))#TI

VM B ,

r"
D(x

i~1
)2#(C(y

i
)!D(y

i~1
))2

VR2

!

C(x
i
)2

VM2
#

2C(x
i
)[TR(b(i!1), m(i!1))#TI]

VM

![TR(b(i!1), m(i!1))#TI]2 .

Then, the B(y
i
) at point B(x

i
, y

i
) is set by B(y

i
)"

C((y
i
).

2.2. Determination of the place coordinate on the
board

In Fig. 2(b), when the robot attempts to pick up
the ith component at point D(x

i
, y

i
) to place it at the

point C(x
i
, y

i
), the board starts its motion to the

placement location. The points A(x
i
, y

i
) and B(x

i
, y

i
)

are possible placement locations. The placement
location A(x

i
, y

i
) is used when the robot reaches

point A(x
i
, y

i
) from point D(x

i
, y

i
) after the board

arrives at point A(x
i
, y

i
) from point C(x

i
, y

i
). Re-

stated, the placement occurs at point A(x
i
, y

i
) if the

following situation is true:

TR(b(i!1), m(i))#TP#AD/<
r
*CA/<b . (5)

Then, the placement coordinate location at point
A(x

i
, y

i
) is set by

A(x
i
)"D(x

i
) and A(y

i
)"C(y

i
) . (6)

Otherwise, when the robot reaches point A(x
i
, y

i
)

from point D(x
i
, y

i
) before the board arrives at

point A(x
i
, y

i
) from point C(x

i
, y

i
), the possible

placement of the board movement by the robot
occurs at point B(x

i
, y

i
). Restated, the robot places

the ith component at point B(x
i
, y

i
) and the follow-

ing relation holds:

TR(b(i!1), m(i))#TP#DB/<
r
"CB/<b . (7)
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where TR(b(i!1), m(i)) is known and AD/<
r
"

TR(m(i), b(i)). Eq. (7) can also be expressed as

TR(b(i!1), m(i))#TP

#

[(D(x
i
)!B(x

i
))2#(D(y

i
)!B(y

i
))2]1@2

<
r

"

DB(x
i
)!C(x

i
)D

<b
(8)

There are two cases for the ith pick up point loca-
tions:

(i) D(x
i
)(B(x

i
)(C(x

i
)

B (x
i
)"

!q#Jq2!4pr

2p
or

B (x
i
)"

!q!Jq2!4pr

2p

where

p"
1

VR2
!

1

VB2
,

q"!2A
D(x

i
)

VR2
!

C(x
i
)

VB2
#

TR(b(i!1), m(i))#TP

VB B ,

r"
D(x

i
)2#(C(y

i
)!D(y

i
))2

VR2

!

C(x
i
)2

VB2
#

2C(x
i
)[TR(b(i!1), m(i))#TP]2

VB

![TR(b(i!1), m(i))#TP]2 .

(ii) C(x
i
)(B(x

i
)(D(x

i
)

B (x
i
)"

!q#Jq2!4pr

2p
or

B (x
i
)"

!q!Jq2!4pr

2p

where

p"
1

VR2
!

1

VB2
,

q"!2A
D(x

i
)

VR2
!

C(x
i
)

VB2
#

TR(b(i!1), m(i))#TP

VB B ,

r"
D(x

i
)2#(C(y

i
)!D(y

i
))2

VR2

!

C(x
i
)2

VB2
#

2C(x
i
)[TR(b(i!1), m(i))#TP]

VB

![TR(b(i!1), m(i))#TP]2 .

The B(y
i
) at point B(x

i
, y

i
) is set by B(y

i
)"C(y

i
).

Herein, we use the assembly cycle time (CT) to
evaluate the assembly e$ciency. Eq. (9) expresses
total CT as a function of the total robot traveling
distance divided by robot speed (excluding TP and
TI).

CT"

N
+
i/1

TR(m(i), b(i))#
N
+
i/1

TR(b(i), m(i#1)) (9)

where m(N#1)"m(N). If the <
m

and <
b
are su$-

ciently large that the assembly table and the maga-
zine can move to the points before the robot
arrives, the magazine (or board) moves from point
C(x

i
, y

i
) to point A(x

i
, y

i
) and waits for the robot,

which travels only in the y direction for a distance

AD. Optimal assembly cycle time can be achieved
when Eqs. (1) and (5) are true. Then, the total cycle
time in Eq. (9) should also be optimal.

Eq. (1) and/or Eq. (5) may not hold in all cases
due to the speed limitation of <

m
and <

b
. To avert

idling of the robot at A(x
i
, y

i
), the robot moves an

angle from >-axis and catches A(x
i
, y

i
) at B(x

i
, y

i
)

such that no robot waiting time occurs. These situ-
ations can be found in Eqs. (3) and (7). Thus, the
DPP model eliminates robot waiting time in the
FPP model.

3. Methodology

The proposed approaches, Genetic Algorithm
(GA), Simulated Annealing (SA), and Tabu Search
(TS), are the general combinatorial optimization
techniques employed to resolve di$cult problems
through controlled randomization. In addition,
they are the global techniques that attempt to avert
local optimization traps by allowing occasional in-
creases of criteria. Genetic Algorithm (GA),
Simulated Annealing (SA), and Tabu Search (TS)
were proposed by Holland [10], Kirkpatrick [11],
and Glover [12}14], respectively. GA and SA are
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more thoroughly described elsewhere [15,16].
In addition, these three approaches have been suc-
cessfully applied in many "elds containing a manu-
facturing system such as scheduling [17}20],
machining optimization [21], group technology
[22}25], layout [26], operations research [27], as-
sembly assignment [28], and a loading in FMS
[29,30]. Thus, in addition to their e!ectiveness
in resolving a combinatorial problem, these
approaches can also more aptly solve a dynamic
robot assembly problem than other conventional
approaches. The proposed approaches are brie#y
described as follows.

3.1. Genetic Algorithm

GA, an adaptive search technique based on
population genetics, is also an iterative process in
which each iteration has two steps: evaluation and
generation. In the evaluation step, a set of solutions
are randomly generated, and solutions maintained
in population are termed as chromosomes. The
individual chromosome is then evaluated by the
"tness function. The generation step includes a se-
lection phase, crossover phase and mutation phase.
The selection phase concerns itself primarily with
the selection algorithm that not only plays a
prominent role in driving the search towards better
solution, but also guides the reproduction of new
candidates for subsequent iterations. In the cross-
over phase, crossover attempts to exchange
portions of their representation to introduce the
new representation. The crossover operator's in#u-
ence accelerates the process of reaching an optimal
solution. In the mutation phase, the mutation oper-
ator maintains diversity in the population; each
position of each representation in the population
randomly changes with a probability. The process-
ing of GA is described as follows:

Step 1: Create the initial population and set it as
the current population, in which the chromosomes
of population are presented as the number of inser-
tion sequences and magazine assignments.

Step 2: Evaluate the current population by the
"tness function.

Step 3: Generate a new population from the cur-
rent one using the genetic operators, reproduction,
crossover and mutation.

Step 4: Evaluate the new population, and set it as
the new population for the next generation by the
surviving probability.

Step 5: If the objective function or number of
generations is satis"ed, then stop; otherwise, go to
step 3.

Although GA has di$culty in "nding a good
setting of algorithm parameters that in#uence the
GA performance, the appropriate genetic operators
can be set through a simple experimental design to
obtain a solution to the problem.

3.2. Simulated annealing

SA is a technique based on ideas from statistical
mechanics, and is motivated by an analogy to the
behavior of the physical annealing process. SA
starts with an initial feasible solution and repeated-
ly generates a neighbor solution. A neighbor solu-
tion is always accepted if it has an enhanced value
of the objective function. However, if it is worse, the
solution may be accepted with a certain probabil-
ity. The temperature corresponds to the probability
of accepting a bad solution.

The SA algorithm requires that we de"ne (1)
a solution's con"guration, (2) an objective (energy)
function, (3) a generation mechanism, and (4) the
annealing schedule. The critical issue in an SA
algorithm is the annealing schedule, which consists
of (1) the initial temperature, (2) a cooling function,
(3) the number of iterations to be performed at each
temperature and (4) a stopping criterion to termin-
ate the algorithm. A system which is cooled too fast
may `freezea at an undesirable, high energy level.
The freezing of a system at an undesirable energy
state corresponds to the problem of an undesirable
local optimization. The general procedure for im-
plementing an SA is as follows:

Get an initial solution >0, and an initial temper-
ature C0.
While not yet frozen do the following steps:

Perform the following loop M times
Pick a neighboring solution >@ of > by
the move generation mechanism
Let *E"F(>@)!F(>)
If *E(0 (downhill move)

Set >">@
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Table 2
Factors and their experimental design level [9]

Factors Levels (low/high)

Number of assembly
points (N)

20/30

Number of component
types (K)

10/15

Length of board (BL) 20/40 (unit distance)
Width of board (BW) 15/25 (unit distance)
Speed of robot (<

r
) 6/12 (unit distance/unit time)

Speed of board (<
b
) 3/5.5 (unit distance/unit time)

Speed of magazine (<
m
) 2.5/4.5 (unit distance/unit time)

If *E*0 (uphill move)
Set >">@ with probability e~*E@C

Reduce the temperature: set C"c]C(c)1)
Return >

3.3. Tabu search approach

Tabu search is widely regarded as a higher-level
heuristic for solving combinatorial optimization
problems owing to its ability to overcome the prob-
lem of being trapped in a local optimum. The tabu
search method begins with an initial current solu-
tion. By applying some local exchange heuristic, the
method generates a list of candidate solutions from
the current solution. Next, the solutions in the
candidate list are evaluated. The method selects the
optimal solution from the candidate list with the
minimum value. If the selection is forbidden (i.e.,
tabu), the method proceeds to select the next best
solution in the candidate list. The selected solution
from the candidate list becomes the new current
solution.

The tabu list attempts to avoid the cycling be-
havior of the algorithm. To further demonstrate
this point, consider a situation in which our opti-
mal selection from the candidate list belongs to the
tabu list. The next step entails determining whether
or not it satis"es the aspiration criteria. If the cur-
rent solution is less than a speci"ed aspiration level,
the solution's tabu status is overridden and the
solution is still admissible as the next current solu-
tion. Notably, the tabu list and the aspiration cri-
teria are the basic mechanisms with which TS
avoids becoming trapped at a local optimal
solution.

As soon as a new current solution is found, the
algorithm then compares the new solution with
that of the current optimal solution. The current
optimal solution is updated if necessary and, then,
a new list of candidate solutions is generated
around the new current solution. The iterative pro-
cess for that new list repeats itself. The procedure
continues until the stopping criteria is satis"ed.

Although the above three heuristic approaches
usually require signi"cant computational times to
obtain a global solution, optimality of the "nal
solution is not ensured because no optimality con-
ditions can be veri"ed. However, despite the di$-

culty in specifying a precise stopping criterion for
such extensive problems, the best solution can be
obtained if (a) a perfect stopping criteria is available
and (b) an adequate computation time is allowed.
In addition, some parameters can also in#uence the
total computation time (e.g. the rate of reduction of
the temperature in SA; population size, as well as
amounts of crossover and mutation in GA; forbid-
den conditions and set number of candidate lists
in TS).

4. Implementation

4.1. The problem

In the robotics assembly problem with DPP
model, Wang et al. [9] indicated that reasonably
allocating the slots on a magazine yields a better
performance. That investigation also presented
a heuristic of magazine assignment, and designed
a seven factors and two-level (Table 2) and 32 (25)
combination runs (Table 3) experimental design to
address the assembly problem. To route the robot
traveling, Wang separated the problem into two
problems and, then, solved them individually. He
initially assigned the slots on a magazine and, then,
arranged the insertion sequence on the basis of
TSP. Although possibly routing better traveling on
the "xed coordinate, TSP cannot optimally resolve
the robot assembly problem because the coordi-
nates of the board and magazine are dynamically
changed during robot assembly.
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Table 3
Thirty-two combinations of "ve factors [9]

Combination BL BW <
r

<
b

<
m

20 40 15 25 6 12 3 5.5 2.5 4.5

1 * * * * *
2 * * * * *
3 * * * * *
4 * * * * *
5 * * * * *
6 * * * * *
7 * * * * *
8 * * * * *
9 * * * * *

10 * * * * *
11 * * * * *
12 * * * * *
13 * * * * *
14 * * * * *
15 * * * * *
16 * * * * *
17 * * * * *
18 * * * * *
19 * * * * *
20 * * * * *
21 * * * * *
22 * * * * *
23 * * * * *
24 * * * * *
25 * * * * *
26 * * * * *
27 * * * * *
28 * * * * *
29 * * * * *
30 * * * * *
31 * * * * *
32 * * * * *

Table 4
L
8

(27) orthogonal array

Factors BL BW <
r

<
b

<
m

Column 1 2 3 4 5 6 7

Trial No.
1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

This study presents the GA, SA, and TS ap-
proaches to resolve the robot assembly problem.
The approaches proposed herein also solve the
example in the study of Wang et al. [9]. Moreover,
the proposed approaches are compared with the
heuristic approach developed by Wang et al. [9] by
taking the implementation results of those
approaches using QBASIC language on a pentium-
100 PC. A more detailed description of the pro-
posed procedures is given in Appendix A and the
description of parameter settings used in the case
study is given in Appendix B.

4.2. Experimental design

In this study, thirty-two (25) combination runs
(Table 3) of the experimental design setup by Wang
et al. [9] are used to demonstrate the proposed
approaches' e!ectiveness. The average assembly time,
number of searching points, and computational time
for 30 runs of each combination are obtained respec-
tively through each proposed approach.

To obtain a dataset of robotics travel times, the
number of searching points and the computational
time in the case of N assembly points and K com-
ponent types, herein, the Table 3 experimental de-
sign is followed to perform computer simulation.
The computer randomly generates N placement
locations on the board and K corresponding com-
ponent types and, then, runs the program using
GA, SA, and TS until satisfying their stopping
criteria. Therefore, the insertion sequence and the
assignment of corresponding components to speci-
"c magazine slots can be determined. In addition,
the robotics assembly cycle time, the computation
time and the number of searching points are also
simultaneously obtained. One combination is the
average of 30 datasets obtained in the same manner
through each proposed approach.

On the other hand, the assembly cycle time for
these approaches can vary from one run to the next
for the same problem because of the random pro-
cess. To verify the solution stability of proposed
approaches, the orthogonal array (L

8
(27)) (Table 4)

is designed for the computer simulation.
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Table 5
A summary of implementation results

Cases N"20, K"10 N"20, K"15 N"30, K"10 N"30, K"15

The number of total
possible solutions

4.41E#24 1.59E#30 4.81E#38 1.73E#44

Cycle time in Wang's
approach (unit time)

52.25326 55.07241 80.19162 88.70944

Proposed
approaches

GA SA TS GA SA TS GA SA TS GA SA TS

Cycle time
(unit time)

49.75 49.67 49.97 51.30 50.70 50.04 75.07 75.13 74.61 81.42 78.46 77.64

CT reduction comparing
with WA

2.5 2.58 2.28 3.77 4.37 5.03 5.12 5.06 5.58 7.29 10.25 11.07

Percentage of reduction
(Performance %)

4.78 4.94 4.36 6.85 7.93 9.13 6.38 6.31 6.96 8.22 11.56 12.48

Average computation
time (s)

102.5 119.9 30 115.9 104.3 59.9 164.9 141.6 83.7 191.7 195.7 194.5

Average number of
searching points

3610 3791 1341 3610 3668 2153 3610 3522 2471 3610 3407 4177

Average variance 0.163 0.099 0.091 0.12 0.98 0.29 0.133 0.736 0.184 0.285 1.345 0.675

Note: GA"genetic algorithm, SA"simulated annealing, TS"tabu search, WA"Wang's approach.

Table 4 displays the layout of L
8
(27). Where

1 denotes the low level and 2 represents the high
level for the factors levels in Table 2. Five factors
are set on the "rst "ve columns. In each combina-
tion, the computer randomly generates a set of
experimental data in N assembly points and
K component types and, then, repeatedly runs the
program 50 times using the same set of experi-
mental data to obtain 50 datasets of cycle time. The
variances of these 50 datasets can be calculated.
Therefore, the solution stability of the proposed
approaches can be studied.

4.3. Implementation results

In the proposed procedures, some parameters
and the stopping criteria can in#uence the total
computation time and the performance. However,
they can be set through a simple experimental de-
sign to obtain a better solution of the problem. The
description of parameter settings is shown in Ap-
pendix B. After the parameter settings step, we can
start the work of simulation on a PC. Table 5 sum-

marizes the results of di!erent cases through the
computer simulation on a pentium-100 PC based
on the experimental design of Tables 2 and 3. Each
entry on the column of cycle time, the number of
searching points and computational time present
the average of 32 combinations, where each combi-
nation is the average of 30 di!erent solutions. For
the solution stability, each entry on the column of
average variance represents the average of eight
trials, by using the L

8
(27) orthogonal array for

simulation, where each trial is the variance of 50
di!erent solutions.

5. Discussion

Table 5 indicates that the performance in assem-
bly cycle time of the proposed apporaches is
superior to that of Wang's approach. For instance,
in the case of thirty assembly points and 15
component types, compared with the TS algorithm
and Wang's alogrithm, the reduction of average
cycle time is 11.07 time units and the percentage of
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the reduction is 12.48%. The reduction of average
cycle time is 10.25 and 7.29 time units and the
percentage of the reduction is 11.56% and 8.22%
using SA and GA, respectively. Such results signi"-
cantly improve the produce of due date or reduc-
tion of product cycle time. Moreover, the larger the
number of insertion points and/or part numbers
allows a better performance.

From the respective number of searching points,
the optimal (or near-optimal) solution can be found
in a relatively small number of searching points on
the total possible solutions. The largest average
computational time is no more than 196 seconds in
the proposed approaches. For instance, in the case
of 30 assembly points and 15 component types, the
number of total possible solutions is 1.73E#44.
However, SA can "nd the optimal (or near-optimal)
solution by searching about 3407 possible solutions
and taking only 195.7 seconds. Obtaining the opti-
mal (or near-optimal) solution saves considerable
time.

Table 5 also reveals that the variances only
slightly di!er in tested cases of GA because of their
same number of generations. Therefore, GA's
solutions are more stable than the other two
approaches in all tested cases. However, the perfor-
mance is worst among these approaches in a larger
number of insertion points and/or component
types. Restated, GA requires more computational
time (or larger number of generations) for the larger
size of tested cases if a near-optimal solution is
obtained similar to SA's and TS's. This is attributed
primarily to the fact that the implemented GA
uses a random crossover and mutation to store
various generations that are ine$cient. Also, GA
spends a prohibitive amount of time creating large
populations. In the SA approach, the solution vari-
ance is larger than the other two approaches, as
a result a cycling behavior may occur. However, the
number of searching points is more stable in the
tested cases. Restated, SA has a smaller number of
searching points, thereby implying that it has
a shorter time to "nd the optimal (or near optimal)
solution in large number of insertion points and/or
component types. On the other hand, the fact that
TS can avoid the cycling behavior accounts for why
its variance is smaller than that of SA. If computa-
tional time is not considered as a performance

benchmark, the TS approach is a preferred means
of resolving the problem.

However, TS's searching process is iteratively
deepening and can avoid cycling behavior. In this
study, TS's performance is better than the perfor-
mance of the other two approaches in terms of
a smaller number of problem sizes. However, more
computational time is necessary if the best perfor-
mance is necessary in a larger number of problem
sizes. Thus, the computational time for the TS is
extremely sensitive to the number of insertion
points and/or components. This sensitivity is be-
cause the batch neighborhood becomes larger
when the number of insertion points and/or com-
ponents is increased.

According to Table 5, the computational time
increases with the number of insertion points
and/or components for the these approaches. In
addition, if the approach has a larger number of
searching points per second, it basically has a high-
er probability and shorter computation time to
search for the optimal (or near optimal) solution.
For instance, TS has a better performance in all
tested cases. On the other hand, in the case of
N"30 and K"15, SA has a smaller number of
searching points. This "nding implies that SA has
a better performance in a larger number of problem
sizes if the computational time is limited.

In sum, SA and TS have two similarities:
(1) some constraints can be allowed in the stopping
criteria when a near-optimal solution is acceptable;
and (2) the computational time is #exible for di!er-
ent numbers of insertion points and/or compo-
nents. On the other hand, the cooling schedule can
be important in SA. TS's e!ectiveness heavily de-
pends on a strategy of tabu-list manipulation.
Moreover, representation is crucial and e!ec-
tiveness can be sensitive to the selection of para-
meter value and operators in GA.

The proposed approaches may have di!erent
characteristics on application to di!erent "elds.
Table 6 summarizes the di!erent characteristics of
GA, SA and TS for solving the robot assembly
problem.

Although not guaranteeing the global solution of
an objective function will be found, the proposed
approaches always perform a better search than the
existing algorithms. The fact that each approach

92 H.-P. Fu, C.-T. Su / Int. J. Production Economics 63 (2000) 83}98



Table 6
Characteristics of GA, SA and TS

Attributes Approaches

GA SA TS

Search process Search process with random
crossover and mutation

Search process with random
neighbor solution

Search process with random
neighbor solution, tabu list for
iterative deepening and
avoiding cycling behavior

Factors for solution
performance

Population size, amount of
crossover and mutation, and
number of generations

The rate of temperature and
stopping criteria

The forbidden conditions, set
number of candidate lists, and
stopping criteria

Solutions performance Solution is stable.
The near optimal solution
needs more computational
time (larger number of
generations).

Solution has a large variance
becuase cycling behaviour can
occur.
It has a better performance in
a larger problem size if
computational time is limited.

It has a stable solution
It has a better performance
in a smaller problem size
and has a better
performance in a larger
problem size if su$cient
computational time is
allowed.

Computational time Stable, but sensitive to the
number of assembly points

More stable than the other two
approaches, particularly in a
larger problem size

Sensitive to di!erent problem
sizes

has its own advantages and disadvantages in a var-
iety of applications and each problem should be
handled individually accounts for why selecting
a better approach for the robot assembly problem
is crucial. Based on the above results, we recom-
mend the following guidelines:

(1) TS is extremely sensitive to computational
time for di!erent problem sizes. The best solution
can be obtained with a smaller number of insertion
points and/or component types.

(2) SA is a robust technique that performs well
on all problems in the number of searching points
and computational times. The SA has a more stable
number of searching points and computational
times than the other two methods for large problem
sizes. If the approach is only given a limited amount
of time, then SA should be preferred for larger
problem sizes.

(3) GA does not perform well on this problem.
GA may be an appropriate tool for solving the
robot assembly problem if (a) the high frequency in
changing the product to assembly is necessary and
(b) adequate computational time is allowed.

6. Conclusions

The travel routing for a dynamic robot assembly
problem is extremely complicated. Until now, the
robotics travel routing in the DPP model has been
based on the TSP method [8], which focuses on the
solution of a "xed location and only considers the
assignment of magazines. However, it does not
consider the change of speed in robot, boards and
magazines.

To apply such an NP-complete problem of
robotics travel routing with the DPP model, a pre-
ferable method involves arranging the assembly
sequence and assigning the magazine simulta-
neously by solving a dynamic problem. In this
paper, we present the GA-, SA-, and TS-based
approaches to solve the above problem. Implemen-
tation results demonstrate that the proposed ap-
proaches are more e$cient than the approach
developed by Wang et al. [9] in all tested cases.
Also, those proposed approaches also indicate that
the larger the number of insertion points and/or
part numbers the better the performance.
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Table 7
Notations for the genetic algorithm

GN Numbers of initial population
CT Cycle time of robot assembly
cp Crossover probability
mp Mutation probability
sp Base surviving probability

Table 8
Notations for the simulated annealing approach

¹ Initial temperature.
CT

i
ith "tness function (assembly cycle time)

TTC
i

ith optimal solution
RP

i
ith energy probability in the ith iteration

AP
i

ith random probability in the ith iteration
R Rate by which the temperature is decreased
f
i
(P

i
, S

i
) ith solution for insertion sequence P

i
and maga-

zine assignment S
i

*Z Di!erence of CT
i
!TTC

i~1

Implementation results indicate that TS is
extremely sensitive to computational time for
di!erent problem sizes. The best solution can be
obtained with a smaller number of problem sizes.
SA is a robust technique that performs well on all
problems in the number of searching points and
computational time. In particular, SA is a better
approach for a larger problem size if the approach
is only given a limited amount of time. Although
not performing well on this problem, GA may be
appropriate for the high frequency in changing the
product to assembly if su$cient computational
time is allowed. Nevertheless, although not guaran-
teeing the global solution of an objective function,
the proposed approaches always perform a better
search than the existing algorithms.

Appendix A. The proposed procedures for robotics
assembly of DPP the model

The GA, SA and TS procedures are established
as follows to "nd the best robot assembly sequence
and magazine assignment.

A.1. GA-based procedure for the DPP model

The basic terms for the GA requirements are "rst
de"ned in Table 7. The possible solution for the
DPP model is represented by a chromosome. Each
gene in the chromosome represents the insertion
point and components. For instance, chromosome
(5, 2, 1, 4, 3) represents that there are "ve insertion
points where the "rst insertion point is point 5, the
second insertion point is point 2 and the last inser-
tion point is point 3. The chromosome (b, c, a)
represents that component b is located on the left-
most slot, component c is located on the second slot

and componenet a is located on right-most slot.
The "tness function is de"ned as the cycle time of
robotic assembly.

A more detailed description is given as follows:
(Step 1: Create the GN of initial solutions (popu-

lation).
Step 2: Calculate CT for each solution by the
"tness function.

Step 3: Select some solutions by the selection
probability to enlarge the search space. The solu-
tions are then separated into two groups, the sexual
reproduction pool and sexless reproduction pool.
The purpose of these two groups is to generate the
new solution by crossover and mutation. In the
sexual reproduction pool, crossover is processed
"rst by cp, and then mutation is processed by mp. In
the sexless reproduction pool, mutation is processed
by mp.

Step 4: The new solutions are evaluated by the
"tness function and some of them are chosen for the
next generation by sp.

Step 5: If the stopping criteria is satis"ed then
stop else go to step 3.

A.2. SA-based procedure for the DPP model

In SA, the "rst critical task is to de"ne a solu-
tion's con"guration. Here, the possible solution is
represented by a vector, which is the same as the
chromosome de"ned in the previous section. An-
other basic SA-related issue is the energy function,
which is also de"ned as the cycle time of robotic
assembly. The required notations for the SA are
de"ned in Table 8. The detailed procedure is stated
as follows:

94 H.-P. Fu, C.-T. Su / Int. J. Production Economics 63 (2000) 83}98



Table 9
Notations for the tabu search

CT Cycle time of robot travel routing
X Numbers of moves at forbidden status
f
i
(P

i
, S

i
) ith solution in placement sequence P

i
and

magazine assignment S
i

M
k
(i, j) Two-dimensional array of tabu list

P
i

ith set of placement sequence
S
i

ith set of magazine assignment
¸ Number of iterations

Step 1: Set ¹"high temperature; generate the
initial solution and evaluate the cycle time TTC

i
by

the energy function.
Step 2: Set i"i#1. The new solution is ob-

tained by swapping randomly the insertion points
or slots location of the solution f

i
(P

i
, S

i
).

Calculate the cycle time CT
i
of the new solution.

Step 3: Reduce ¹ at speci"ed times (¹"¹R).
Step 4: If CT

i
(TTC

i~1
then go to step 5, else

*Z"CT
i
!TTC

i
!1 and RP

i
"e(~*Z@T); Select

a probability say AP
i
. If RP

i
(AP

i
then

TTC
i
"TTC

i~1
and go to step 6, Else go to step 5.

Step 5: Set TTC
i
"CT

i
and current solution"

new solution.
Step 6: If stopping criteria is satis"ed then
`freezea else go to step 2.

A.3. TS-based procedure for the DPP model

The current solution also represented by a vec-
tor, is the same as the chromosome de"ned in the
previous section. The objective function is also de-
"ned as the cycle time of robot assembly. Table 9
lists the required notations for the TS method.

The detailed TS-based procedure for the DPP
model is described as follows:

Step 1: Generate and evaluate the current solu-
tion f

0
(P

i0
, S

0
), and establish 2-dimensional arrays

say M
1

and M
2

as the tabu list of P
0

and S
0
,

respectively.
Step 2: Generate random numbers TT and SS

such that their values are less than N and K, respec-
tively. The TTth placement point will exchange
sequentially with other placement points J

t
in the

P
i
set. The N!1 neighborhood solutions are gen-

erated as a candidate list. Also, the component on
the SSth slot will exchange sequentially with other
slots J

s
in the S

i
set. The K!1 neighborhood

solutions are generated as a candidate list.
Step 3: Compute the CT of all the solutions for

the candidate list and select the best solution based
on the minimum value. If the best solution in the
candidate list is smaller than the current optimal
solution, then go to step 5, else go to step 4.

Step 4: If the value of (TT, J
t
) or (SS, J

s
) in the

tabu list equals zero, then select the best solution as
the current solution and go to step 6; otherwise,
select the second optimal solution as the current
solution, and go to step 6.

Step 5: Select the best solution as the current
optimal solution and the current solution whether
the value of (TT, J

t
) and (SS, J

s
) are forbidden

status. The tabu list can be overridden using the
aspiration criteria since an enough good solution
has been obtained.

Step 6: Reset X to the values of (TT, J
t
) and

(SS, J
s
) in tabu list; all non-zero values of M

1
and

M
2

are subtracted by 1.
Step 7: If the current optimal solution is not

changed in ¸ iterations, then stop; otherwise, go to
step 2.

Appendix B. Parameter settings

Although the proposed procedures have di$-
culty in "nding a good setting of alogirthm para-
meters that a!ect the performance (such as
population size, amounts of crossover and muta-
tion in GA, the rate of reduction of the temperature
in SA; forbidden conditions and set number of
candidate lists in TS), they can be set through
a simple experimental design to obtain the solution
of the problem. These are the important factors to
be considered in the process of implementation.
The following is the description of parameter set-
tings.

In GA, the population size could a!ect the
searching time from generation to generation. In
the same generation, the smaller population size
has less searching time; however, it does not
guarantee better performance. On the other hand,
a larger population size needs more searching time,
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Table 10
Parameters and level settings of GA

Procedures Factors/levels Low(1) Medium(2) High(3)

GA Population size (PS) 10 15 20
Crossover/mutation probability (CP) 0.1 0.3 0.5
Surviving probability (SP) 0.1 0.3 0.5

SA Reduction rate (RR) 0.01 0.05 0.1
Initial temperature (IT) 1000 500 100

TS Forbidden number (FN) 1 2 3
Candidate list size (CL) (1/2)N (1/3)N (1/4)N

Notes: (1) The value of surviving probability presents the pp value of pp](1!pp)(i~2). (2) N represents the number of assembly
points.

Table 11
L
9

(34) orthogonal array

Experiment Column
No.

1 2 3 4

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

but it may have better performance. Also, the prob-
abilities of crossover and mutation could impact
the performance. A larger probability may have
a signi"cant impact on the implementation, but it
could miss a better solution. Thus, the proper
population size and probabilities of crossover and
mutation setting are important parameters in the
simulation.

In SA, the smaller reduction rate of temperature
may have better convergence than the larger reduc-
tion rate, but the smaller reduction rate needs more
searching time in the same stopping criteria. In
addition, a higher initial temperature setting could
take much time in ine$cient searching; however,
a lower initial temperature setting may miss a bet-
ter solution. Therefore, the initial temperature and
reduction rate are the critical factors for the perfor-
mance.

In TS, the forbidden number setting attempts to
avert the algorithm's cycling behavior. If the forbid-
den number setting is small, the e!ect of averting
the algorithm's cycling behavior is not signi"cant.
If the forbidden number setting is large, it may
cause a less e$cient performance by missing a bet-
ter solution with the forbidden at too many moves.
In addition, a larger candidate size implies more
searching time. As a result, how to choose the
proper candidate size and the forbidden number is
crucial for the performance.

Based on the above description, we are interested
in determining the e!ects of some controllable
parameters which in#uence the proposed proced-

ures' performance. Our goal is to determine a feas-
ible parameter setting so that the cycle time of
robot assembly is minimized, so that the para-
meters in each procedure have their proper values.
In this section, the parameters and their chosen
levels listed in Table 10 are investigated. The
experimental design of three levels is given in
Table 11.

In the process of parameter setting, we set
BL"20, BW"15, <

r
"6, <

b
"3, <

m
"2.5,

N"20 and K"10. The computer generates a set
of data (the coordinates of 20 insertion points and
10 component types). Then, the simulations are
performed. The simulations process is the same as
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Table 12
The average cycle time for di!erent parameter settings by GA

Procedures Parameters Level 1 Level 2 Level 3

GA Population size (PS) 51.83379 51.90633 52.02452
Crossover/mutation probability (CP) 52.12497 51.82277 51.81691
Surviving probability (SP) 51.81484 51.84528 52.10453

SA Reduction rate (RR) 52.50959 50.64617 50.59293
Initial temperature (IT) 51.82068 50.96542 50.96258

TS Forbidden number (FN) 50.81492 50.85716 50.78172
Candidate list size (CL) 50.68763 50.83141 50.93476

Table 13
Parameter settings of proposed procedures

Proposed procedures Parameter settings

Genetic algorithm Population size: 10
Crossover probability: 0.3
Mutation probability: 0.3
Survivor probability: pp](1!pp)(i~2)

by solutions ranking where pp"0.25
Stopping criteria: to run 300 genera-
tions

Simulated annealing Temperature: 100
Reduction rate of temperature: 0.1
Stopping criteria: the current optimal
solution shows no change for 450 iter-
ations

Tabu search Move steps: 2 for saving computation
time (1

2
N)

The number of moves at forbidden
status: 3
Aspiration criteria: a good enough
solution is obtained so far.
Stopping criteria: the current optimal
solution shows no change for 30 itera-
tions

the previous one, running 10 times for each experi-
ment to obtain 10 solutions. The average observa-
tions for each level of the proposed procedures can
be obtained as listed in Table 12.

In Table 12, we can determine the optimum level
for each factor. In the GA procedure, the best
population size setting is 10 (level 1), the best cross-
over/mutation probability setting is 0.3 (level 2) or
0.5 (level 3) and the best surviving probability set-

ting is 0.1 (level 1) or 0.3 (level 2). In the SA proced-
ure, the best reduction rate of temperature setting is
0.95 (level 2) or 0.9 (level 3), the best initial temper-
ature setting is 500 (level 2) or 100 (level 3). In the
TS procedure, the best forbidden number setting is
3 (level 3) and the best candidate list size setting is
1
2
N (level 1). In the parameter setting of the pro-

posed procedure, a better parameter setting may
exist among the factor levels. However, the para-
meter setting is for the small problem size
(N"20, K"10), but the parameter can be "nally
set through a simulation process by resetting the
stopping criteria and `trial and errora from a small
problem size to a lager problem size
(N"30, K"15). The following is our "nal result
too. In the GA procedure, we "nd that the best
crossover/mutation probability setting is 0.3
(level 2) and the best surviving probability setting is
adjusted slightly to 0.25. In the SA procedure, the
best reduction rate of temperature setting is 0.9
(level 3) and the best initial temperature setting is
100 (level 3). In the TS procedure, the best forbid-
den number setting is 3 (level 3) and the best candi-
date list size setting is 1

2
N (level 1). The parameter

settings of the proposed procedures used in the case
study are summarized in Table 13.

References

[1] S.U. Randhawa, E.D. Mcdonwell, S. Farupui, An integer
programming application to solve sequence mix problems
in printed circuit board production, International Journal
of Production Research 23 (1985) 543}552.

H.-P. Fu, C.-T. Su / Int. J. Production Economics 63 (2000) 83}98 97



[2] P. Cunnigham, J. Browne, A LISP-based heuristic sche-
duler for automatic insertion in electronics assembly, In-
ternational Journal of Production Research 24 (1986)
1395}1408.

[3] M.O. Ball, M.J. Magazine, Sequencing of insertions in
printed circuit board assembly, Operations Research 36
(1988) 192}201.

[4] P.J. Egbelu, C.-T. Wu, R. Pilgaonkar, Robotics assembly
of printed circuit boards with component feeder location
consideration, Production Planning and Control 7 (2)
(1996) 162}175.

[5] E.G. Mettalla, P.J. Egbelu, Alternative approaches to se-
quencing robot moves for PCB assembly, International
Journal of Computer Integrated Manufacturing 2 (1989)
243}256.

[6] M.C. Leu, H. Wong, Z. Ji, Planning of component place-
ment/insertion sequence and feeder setup in PCB assembly
using genetic algorithm, Journal of Electronic Packaging,
Transactions of the ASME 115 (4) (1993) 424}432.

[7] Y.-S. Su, C. Wang, P.J. Egbelu, D.J. Cannon, A dynamic
points speci"cation approach to sequencing robot moves
for PCB assembly, International Journal of Computer
Integrated Manufacturing 2 (1995) 243}256.

[8] R. Karg, G.L. Thompson, A heuristic approach to solving
travelling salesman problems, Management Science 10
(1964) 225}248.

[9] C. Wang, L.-S. Ho, H.-P. Fu, Y.-C. Su, A magazine assign-
ment heuristic for robotics assembly using the dynamic
pick-and-place approach, International Journal of Indus-
trial Engineering 4 (1) (1997) 24}33.

[10] J.H. Holland, Adaptation in Natural and Arti"cial system,
University of Michigan Press, Ann Arbor.

[11] S. Kirkpatrick, C.D. Gellatt Jr, M.P. Vecchi, Optimization
by simulated annealing, Science 220 (4598) (1983) 671}680.

[12] F. Glover, Tabu search, part 1, ORSA Journal on Com-
puting 1 (3) (1989) 190}206.

[13] F. Glover, Tabu search: A tutorial, Interfaces 20 (4) (1990)
74}94.

[14] F. Glover, Tabu search, part 2, ORSA Journal on Com-
puting 2 (1) (1990) 4}32.

[15] M. Srinivas, M. Patnaik Lalit, Genetic algorithm: A sur-
vey, Computer(IEEE) 27 (1994) 17}26.

[16] R.A. Rutrnbar, Simulated annealing algorithm: An over-
view, IEEE Circuits and Device Magazine 5 (1) (1989)
19}26.

[17] J.E. Biegel, J.J. Davern, Genetic algorithms and job shop
scheduling, Computers and Industrial Engineering 9 (1}4)
(1990) 81}91.

[18] J. Sridhar, C. Rajendran, Scheduling in a cellular manufac-
turing system: A simulated annealing approach, Interna-
tional Journal of Production Research 31 (12) (1993)
2927}2945.

[19] J. Skorin-Kapov, A.J. Vakharia, Scheduling a #ow-line
manufacturing cell: a tabu search approach, International
Journal of Production Research 31 (7) (1993) 1721}1734.

[20] J.-S. Song, T.-E. Lee, Tabu search procedure for periodic
job shop scheduling, Computers and Industrial Engineer-
ing 30 (3) (1996) 433}447.

[21] F. Kolahan, M. Liang, Tabu search approach to optimiza-
tion of drilling operations, Computers and Industrial
Engineering 31 (1}2) (1996) 371}374.

[22] C.T. Su, C.M. Hsu, A two-phased genetic algorithm for the
cell formation problem, International Journal of Industrial
Engineering 3 (2) (1996) 114}125.

[23] C.-L. Chen, N.A. Cotruvo, W. Baek, A simulated anneal-
ing solution to the cell formation problem, International
Journal of Production Research 33 (9) (1995) 2601}2614.

[24] D. Sun, L. Lin, R. Batta, Cell formation using tabu search,
Computers and Industrial Engineering 28 (3) (1995)
485}494.

[25] N. Aljaber, W. Baek, C.-L. Chen, Tabu search approach to
the cell formation problem, Computers and Industrial
Engineering 32 (1) (1997) 169}185.

[26] W.-C. Chiang, P. Kouvelis, Improved tabu search heuristic
for solving facility layout design problems, International
Journal of Production Research 34 (9) (1996) 2565}2585.

[27] C. Koulmas, S.R. Antony, R. Jean, A survey of simulated
annealing applications to operations research problem,
Omega, International Journal of Management Science 22
(1994) 41}56.

[28] L.C. Schmidt, J. Jackmen, Evaluating assembly sequences
for automatic assembly systems, IIE Transitions 27 (1)
(1995) 23}31.

[29] B. Srivastava, W.-H. Chen, Heuristic solutions for loading
in #exible manufacturing systems, IEEE Transactions on
Robotics and Automation 12 (6) (1996) 858}868.

[30] C. Basnet, Technical note: Tabu search heuristic for
a loading problem in #exible manufacturing systems, In-
ternational Journal of Production Research 34 (4) (1996)
1171}1174.

98 H.-P. Fu, C.-T. Su / Int. J. Production Economics 63 (2000) 83}98


