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Summary

Investigation of spatial characteristics in the multi-channel EEG (electroencephalogram) has been of
great importance to the fundamental and clinical medicine. Conventional methods are mostly based on
the coherence and correlation analysis in time and frequency domain. The authors present the method
of quantifying the global waveform complexity in EEG by analyzing the high-dimensional state-space
trajectory constructed from the multi-channel EEG. The resulting average complexity index (8) is well
distinct between the background (4.0 ~ 4.5) and event (3.0 ~ 3.5 for the focal-sharp-wave transient) in
the 5-channel case study. In addition, the running § measurement for different electrode arrays, for a
fixed number of state-space dimension (n = 5), reveals the EEG spatial characteristic. An array com-
posed of nearby channels with similar EEG activities tends to have a small 8. On the other hand, the
computed § increases as the array consists of electrode sites with spatially incorrelated EEG activities.
Thus the method is capable of quantifying the spatial-temporal feature of the multi-channel EEG.

Key words: Multi-channel EEG (electroencephalogram); Spatial-temporal feature;
State-space trajectory; Intrinsic dimension; Complexity index; Global
waveform complexity.

1. Introduction

For decades, the electrical activity of the human brain (electroencephalogram,
EEG) has been extensively studied in order to help clinicians diagnose and treat
brain disfunctions. To deal with an enormous amount of recorded EEG, data quan-
tification has been the primary step of EEG analysis. A number of methods have
been developed to quantify the EEG. They can be generally classified as time-
domain, frequency-domain, and other techniques (VAN GILS et al., 1997). Among
many other techniques, methods based on the nonlinear dynamical theory have
been used to quantify the underlying brain dynamics and evaluate the EEG wave-
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form complexity since more than one decade ago (BABLOYANTZ and DESTEXHE,
1986; Lo and PrINCIPE, 1989; RAPP et al., 1989; PN et al., 1991). Nonetheless,
tools from nonlinear dynamical theory used for EEG analysis, such as the dimen-
sional computation and Lyapunov exponent estimation, mostly suffer from the
problems of computational inefficiency and bias from implementing parameters
(Lo and PrINCIPE, 1989). Thus they are not feasible for long-term monitoring or
practical use. YAYLALI, Kocak, and JAYAKAR (1996) proposed a method that esti-
mated the correlation dimension of unbiased autocovarianced EEG signals. They
proved their technique to be computationally robust with respect to implementing
parameters. Yet the method was develop to analyze a single EEG channel. The
spatial EEG features over the scalp surface are of great importance. WACKERMANN
et al. (1993) suggested viewing the n-channel EEG data as a trajectory in n-dimen-
sional state space. Then the ‘global’ correlation dimension was evaluated. Since
evaluating the correlation dimension involves slope computation using linear re-
gression, an appropriate linear scaling region needs to be determined first. The
estimation procedure is an indirect approach. Thus it is not feasible for the long-
term, multi-channel EEG analysis.

The topological or intrinsic dimensionality of a point set was introduced to
characterize the classifiers in the field of pattern recognition (FUKUNAGA and OL-
SEN, 1971; PETTIS et al., 1979; VERVEER and DUIN, 1995; BRUSKE and SOMMER,
1998). The fundamental idea of its application to EEG analysis is that the intrinsic
dimensionality in some sense reflects variation of data structure in a data set.
Accordingly, we adapt the technique for the multi-channel EEG analysis to ex-
plore the spatial-temporal characteristics in EEG. To improve the computational
efficiency, methods for determining the intrinsic dimension were mostly based on
the local approaches, that is, quantifying the local features in small regions. The
local intrinsic dimensionality (FUKUNAGA and OLSEN, 1971; PASSAMANTE and FAR-
RELL, 1991; MICHEL and FLANDRIN, 1993) can be estimated by: 1) eigenvalue ana-
lysis or principal-component analysis (PCA), and 2) K’s nearest neighborhood
(KNN) analysis. When applying to the long-term biomedical signals, computa-
tional efficiency and processing effectiveness are of important consideration. Thus
the authors develop a direct-computation algorithm, based on the KNN approach,
to analyze the multi-channel EEG. The algorithm avoids the problem of sophisti-
cated computation strategy usually involved in indirect approach like the correla-
tion dimension estimation. The mathematical basis is similar to that given in (Fu-
GA and FLICK, 1984). The derivation and implementation procedures are somewhat
different. Hence the estimated result is to be called “complexity index (9)”.

2. Evaluation of Complexity Index

As previously demonstrated (Lo and PrRINCIPE, 1989), the EEG trajectory forms a
strange attractor (HENTSCHEL and PROcAccia, 1983). Let X = {X,}Y, be the
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points on the EEG trajectory, where X; is an n-dimensional point constructed from
the n-channel EEG signals. For instance, X; = (F3(i), Fz(i), F4(i)) represents a
point on the 3-dimensional space, whose coordinates (degrees of freedom) are
brain electrical potentials recorded from sites F3, Fz, and F4, respectively. For
each point in the set X (e.g., X;), a KNN hyperiphere is determined and formed
by the K’s nearest neighboring (NN) points {V; 1> V€ X and V;; = X;. The X;
is called the seed point of the ith hypersphere. Inside the ith hypersphere, the
largest distance to the seed point X; is:

dixnn = || Xi — Vi || (1)
where the operator ||-|| evaluates the Euclidean distance. FUKUNAGA and FLICK
(1984) analyzed the pattern classification error and obtained

E {d(K+1)NN} 1

LS S )

E {dKNN} Kn

where E{dgnn} is the first order moment of dgnn. The dgnn denotes the Kth NN
distance of any hypersphere in X. The equation points out the effect of K on classifi-
cation error for a given number of space dimension n. Derivation of eq. (2) was
based on the concept that the probability of X being inside the ith hypersphere is:

w=P(X;) = p(X;) - viknn = p(Xi) - (&0 X d' gxn) (3)

where p(X;) is the probability density function and v; knn = O X dj gy 18 the vol-
ume of the ith hypersphere. The coefficient o is the amending factor in comput-
ing the hyperspherical volume from the nth power of distance d;xnn. The prob-
ability density p(X;) depends on the distribution of X. The first order moment of
the Kth NN distance of the ith hy]persphere, E{d;knn}, can be obtained by sub-
stituting  d; kNN = ul/(o - p(X;))~ /" Then the first order moment of dxkNN,
E{dknn}, is computed by taking the expectation of E{d;xnn} with respect to X;.
Detailed derivation can be found in (FUKUNAGA and FLICK, 1984).

FUKUNAGA and FLICK aimed at quantifying the pattern classification error in the
KNN model. They hypothesized an n-dimensional space for the pattern vectors,
where n is an integer. In order to quantify the global waveform complexity of
multi-channel EEG, we apply the concept of fractional dimensionality of a strange
attractor. Then the volume of the ith hypersphere can be estimated by

Vi KNN = 2 ax d?KNN (4)

u
p(Xi)

where 0 is the complexity index of the trajectory to be evaluated in this study. And 0
may be a fractional number. The first-order moment of d; knn for a given X; is

Eldon} = E{ (o) ]/B} - j (o) o du. 5
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where the probability density function p(u) is (FRASER, 1957)
N! N-K

_ K—1/1 _
Substituting eq. (6) into eq. (5) leads to an estimate of E{d; xnn} as
1
E{di,KNN} = (OLP(Xi))_l/a( ) J MKH/B ! M)N_K du
0
B \—1/0 N! NK+1/8) - T'(N—K+1)
= (ap(Xi)) (K—1)! (N —K)! I(N+1/841) 7
where I'(-) is the gamma function. Since I'(K) = (K—1)!, eq. (7) becomes
_ N \—1/0 I'(N+1) INK+1/8) - T'(N—K+1)
E{digonn } = (ap(X7)) I(K)-T(N—K~+1) T(N+1/6+1)
_ W1 TN+ T(K+1/9)
= (ap(Xi)) [K) T(N+1/8+1) (8)
which can be further reduced to
1 T(K+1/08
Eldun} 2 (op(x)) /> TE L L0) o)

I(K)
given that N > 1/9. Taking the first-order expectation, with respect to X;, of eq.
(9) results in

I'(K+1/0)

E{dgnn} = o PE{p™'0(X;)} (K

(10)

To eliminate the factor of p(X;) in computing 9§, the algorithm actually evaluates
the ratio of E{dx.1)n~n} to E{dknn}. Since

Efdgyw} JTK+1+1/0) T(K) _K+1/6_ 1 a1
E{dgynwy ~  T(K+1) T(K+1/8) K Ko
it follows that
E{d -
6:1(M_1> (12)
K E{dKNN}

which provides the way to evaluate the complexity index.

One advantage of the method is its easy implementation of the algorithm by
following eq. (12). The algorithm first determines a 2-dimensional N x N array D
with its elements dj;, i, j=1,..., N representing the inter-point distances. Then
elements in each row are sorted according to their magnitudes. The resulting N x N
array D' = [djj] i, j=1,..., N has its elements in each row arranged from the
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smallest (j = 1) to the largest (j = N) number. Thus the Kth element of the ith row
of D' is the dijxnn. (ie., dignn = dix) The algorithm actually compute the
E{dgnn} by averaging all the elements in the Kth column of D! Likewise, the
E{d+1)nn} can be computed by averaging all the elements in the (K4 1)th
column of D! The complexity index O is then computed by using eq. (12). Note
that, due to limitation of memory capacity, the algorithm may not be able to store
the N x N array if the size N is large. In that case, the implementing procedure
can be designed on the row-by-row basis, that is, obtaining d;xkny and d; (k11NN
for each row without storing the other irrelevant inter-point distances. The disad-
vantage is the doubling of computer time spent on computing all the inter-point
distances.

The computer time can be further reduced by modifying the sorting process as
follows. Consider the ith row, that is, the seed point is X;. The algorithm in the
beginning sorts the first (K + 1) inter-point distances, dj;, j=1,..., (K +1), and
keeps them in sequence in a data buffer. Let [d}j], j=1,..., (K + 1) represent the
sorted data array, i.e. df,, < d},if 1 < m<n < (K+ 1). Each of the remaining
distances, djj, j = (K + 2),..., N, is then compared with every element in the data
buffer. If d;; is smaller than one of the elements in the data buffer (e.g., di,), dj; is
inserted in the mth position and the dlf(K 1) is excluded from the buffer. The com-
petition process is performed on each newly computed inter-point distance. Final-
ly, the data buffer stores the smallest (K + 1)’s distances. Undoubtedly, computer
time required by the algorithm implemented in this manner is highly dependent on
the value of K. A large K costs more effort in the competition process. The overall
computer time is less than that required by the previous algorithm.

3. Considerations in Evaluating Complexity Index

For the model systems with known system equations, complexity index can be
evaluated from the model-generated trajectory. Thus the estimated & depends on
value of K and length of the evolving trajectory. Figure 1 plots the estimated & for
1 <K <100 for five model systems. The evolving length and time step used to
generate each trajectory are listed in Table 1. As shown in Figure 1, the estimated
0 reaches a steady value when K > 10. Note that the & versus K curves fluctuate.
Thus the authors average the &’s over a moderate range of values of K to obtain
the final estimate. The average O is denoted by O. As listed in Table 1, the values
of K used to obtain & range from 30 to 60. Table 1 also lists the correlation
dimension estimated for each model system (GRASSBERGER and PROCACCIA, 1983).
The average complexity index & well approximates the correlation dimension.
Evaluating the correlation dimension involves slope computation by linear regres-
sion. The result highly depends on the scaling range selected for slope computa-
tion. This fact evidently shows the advantage of the proposed algorithm over the
correlation dimension method.
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Since the computational time required for O evaluation highly depends on the
evolving length N (number of n-dimensional data points), it is a practical considera-
tion to choose the minimum value of N that ensures an adequate coverage of the
attractor dynamics. To examine the effect of N, complexity index of the Lorenz
model is computed for different evolving lengths. Figure 2 displays the 0 versus N
curves for different K ranges applied to the 8 computation. Apparently, pronounced
saturation of the curves is observed for N > 2500. Using an N smaller than 1000
results in a severe underestimation of the complexity index. This may be explained
as follows. The Lorenz trajectory is formed by the repetitive process of expansion
and contraction. If the analyzed length is not long enough, the evolving orbits may
not correctly characterize the global system complexity. Note that the range of
values of K shows little effect on & when N is properly selected (N > 2500). Devia-
tion is within 3% (6 = 2.01-2.06, compared with 2.06 listed in Table 1). This fact
demonstrates that & computation is rather insensitive to a wide range of K. It then
allows us to confidently select the range of values of K when evaluating the
E{dgnn} in eq. (12).

Table 1

Average complexity index estimated for five model systems

Complexity N/At range of K Correlation ~ N/At

Index (9) Dimension
Rabinovich- 222 8000/0.05 30-60 2.19 15000/0.25
Fabrikant model*
Lorenz model  2.06 8000/0.05 30-60 2.05 15000/0.25
Rossler model  1.86 8000/0.05 30-60 ok
Zaslavskii map 1.74 15000 30-60 ~1.50 25000
Hénon map 1.25 15000 30-60 1.25 15000

a: The Rabinovich-Fabrikant model is abbreviated to R-F model in Figure 1.
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Fig. 2. The & versus N curves for different K ranges (Lorenz model, Az = 0.05)

4. Global Complexity Index of Multi-Channel EEG

In this section, we shall first establish a guideline of selecting implementing param-
eters and then present the numerical results for multi-channel EEG analysis. The
EEG data analyzed in this study were recorded from a patient who had an EEG
finding of an epilepsy syndrome called “Benign Partial Epilepsy of Childhood”,
yet had never had obvious epileptic seizures (provided by Dr. Fred Matsuo). The
signals exhibit prominent focal-sharp-wave transients characterizing the EEG activ-
ities which were generated and spread from the focalized epileptic discharges. A
25-channel electrode array (Figure 3) with a common linked-ear reference was
applied in the recording. The signals were digitized by a rate of 200 Hz. Appar-
ently, evaluating the complexity index of multi-channel EEG involves some other
factors. They are the number of channels and channel combination. DESTEXHE,
SEPULCHRE, and BABLOYANTZ (1988) and DVORAK (1990) proposed to estimate the
correlation dimension of multi-channel EEG by using the number of recording
sites as embedding dimension of the state space. Following their work, we define the
state space dimension 7 as the number of channels. The channel combination indi-
cates the composition of recording sites used in the analysis. It is associated with the
set of state variables describing the brain dynamics. DVORAK (WACKERMANN et al.,
1993) showed that the estimated correlation dimension was not significantly affected
by array change. We shall present our results of the § evaluation in this aspect.

The determination of value of K and length N depends on each other. A 5-
channel protocol, involving electrode sites Cz, F3, F4, P3, and P4, is used to
study the effect of K and N on & computation for EEG. Figure 4 plots the §
versus K curves for three 20-second EEG segments which only consist of back-
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Fig. 3. The 25-channel electrode
array applied to the focal-sharp-
wave EEG recording

ground activities (no focal-sharp-wave transients). The curves start flattening out at
about K =20. The estimated 8 (EEGI: 4.64 4+ 0.09, EEG2: 4.57 + 0.08, EEG3:
4.73 +0.09) is fairly consistent in the range of K > 25. For a small K, poor statis-
tics (due to the small number of n-dimensional points involved) lead to an unreli-
able estimate. Yet, in consideration of computational efficiency, a small K is pre-
ferred. To study the effect of N, the average &’s (8’s) over several K ranges are
computed for values of N ranging from 500 to 4000 stepped by 500 sample points

)
5
1 Fig. 4. The d versus K curves
i for three 20-second back-
2 T T T T T T T T T ground EEG sequences

0 20 40 60 80 100
K
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Fig. 5. The § versus N curves for different K ranges. The values of N range from 500 to
4000 stepped by 500

(Figure 5). Five curves associated with different K ranges well coincide when
N > 1000. Nonetheless, the § increases with N. It cannot be simply imputed to a
deficiency of data points. The time-varying characteristics of brain dynamics may
cause an increase of complexity index. Unlike the model system (for example, the
Lorenz model) governed by a set of fixed parameters, extending the EEG duration
often involves changes in brain dynamics. In addition, signal duration required for
a reliable and convergent estimate may vary according to different brain states. As
a consequence, determining an appropriate length is an intricate task.

When viewing the 8 measure as a relative indicator of the global complexity of
EEG waveform patterns, development of the implementing algorithm need not aim
at derivation of absolute values. Thus the evolving length N can be much smaller
than that required to obtain a convergent estimate, only that it provides an invar-
iant feature descriptor when applied to the long-term EEG monitoring. Figure 6
illustrates the situation. The three curves represent the running measures of d, over
a 150-second EEG record, using N = 1000 (solid), 1500 (dashed), and 2000
(dotted). In all three cases the moving size is 100 points (0.5 seconds) and the K
ranges from 25 to 35. The horizontal axis indicates the beginning time of each
running window. The diamonds symbolize the occurrence of focal-sharp-wave
events. The three curves basically follow the same up-and-down course. However,
we may clearly recognize that increasing the signal duration N results in (time)
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Fig. 6. The running & computed for a 150-second EEG record. Three different window lengths
are used. The moving size is 100 points (0.5 seconds) and the K ranges from 25 to 35

advance and (magnitude) ascent of the running § curve. The phenomena can be
explained as follows. The background EEG has a complexity index between 4.0
and 4.5, which is reduced to 3.0 ~ 3.5 when focal-sharp-wave transient occurs.
Employing a larger window length in the running O analysis makes the running
window earlier encompass the pattern transition in EEG. The ascent of the run-
ning & curve simply reflects the aspect illustrated in Figure 5, in which the com-
puted 0 increases with N. This analysis demonstrates one of the applications of 0
computation to EEG signal. That is, the running & curve may be used to detect
the occurrence of particular events in the EEG monitoring.

As addressed in Section 2, the range of values of K determines the computa-
tional efficiency. Large values of K causes heavy computer burden in the competi-
tion process. To understand the effect of K range on the running O analysis, Fig-
ure 7 plots the running O curves for three K ranges, including 25-35 (solid), 25—
40 (dashed), and 25-45 (dotted). The running measurement uses a window length
of N=1000 (5 seconds) and a moving size of 100 points (0.5 second). All the
three curves mostly overlap one another; yet we observe that using the range
25 < K <45 tends to emphasize the transition in EEG activities for this particular
EEG record. Extensive study is needed to validate its statistical meaning.

Investigation of the effect of state-space dimension (n) is a complicated task
since it involves not only the values of n but the composition of electrodes. It is
known that, for a deterministic signal, the estimated fractional dimension does not
increase with the space dimension (Lo and PRINCIPE, 1989). When applying the
running & measurement to the EEG event tracking, computational efficiency be-
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Fig. 7. The running § curves for three K ranges (window length: 1000, moving size: 100)

comes the major consideration. It is apparent that more computational time is re-
quired to analyze the higher-dimensional trajectory. Since nearby EEG channels of-
ten record closely correlated brain electric activities (that is, information redundancy
exists among multi-channel EEG), a low-dimensional state space is feasible for char-
acterizing the EEG spatial-temporal feature. To illustrate the situation, Figure 8 plots
the running O curves for space dimension n = 3, 5, 9, 13, 17, 19, 23, and 25. The

8.0
6.0
g 4.0
2.0
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Fig. 8. The running & curves for different numbers of electrodes (dimensions, n) (window
length: 1000, moving size: 100, 25 < K < 35).
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n-dimensional electrode array is formed by the first n channels of the totally 25
channels in the order: F3, Cz, F4, P3, P4, F7, F8, TS, T6, Fpl, Fp2, O1, 02, Fz,
Pz, C3, C4, T3, T4, 101, 102, CB1, CB2, MSI1, and MS2. For example, the
9-dimensional trajectory is constructed from the EEG channels F3, Cz, F4, P3, P4,
F7, F8, T5, and T6. The group of thicker curves is used to plot the results for n =
3, 5,9, and 13. As n increases, the running 6 curve moves upwards. Nonetheless,
it appears to be bounded. The running & curve exhibits significant change when
the value of n increases from 3 to 13 and slightly settles down for values of n
between 13 and 19. We may deduce from this phenomenon that the first 13 elec-
trode sites involve sufficient information for quantifying the EEG spatial complex-
ity at this physiological state. In fact, the first 13 electrodes are sparsely distribu-
ted over the north-hemispherical (scalp) region (MATsUO, 1991). The additional 6
electrodes (Fz, Pz, C3, C4, T3, and T4) simply fill in between the 13-dimensional
electrode array (Figure 3), therefore, result in high information redundancy in the
19-dimensional electrode array. The running & curve raises again when n = 23
because the south-hemispherical electrodes are involved. In consideration of the
EEG (focal-sharp-wave) event tracking, the running O curve for the n > 5 proves
effective, whereas the curve for n = 3 fails to identify the events from background
EEG. The composition of electrodes is assumed to be the major factor.

Finally, we shall study the effect of electrode array on running O analysis for a
given array size (n = 5). Four electrode arrays are used in this study. They include:

arrayl: Cz F3 F4 P3 P4 array3: Cz F7 F8 T5 T6

array2: Cz Fz Pz C3 C4 array4: Cz Fpl Fp2 O1 O2

5.0
4.5
— 4.0
3.5
3.0
2.5

2.0 BRERIANASNNINAARERIR NN ERA AN R N R A A RN LA SR AR RN RN AR RRN

O 20 40 60 80 100 120 140
¢t (second)

I T 0 T 0 T Y

Fig. 9. The running & curves for four 5-dimension electrode arrays (window length: 1000, moving size:
100, 25 < K < 35)
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which are all centered on the Cz electrode. Arrayl and array2 are composed of
nearby electrode sites, while array3 and array4 involve the outer-orbital electrodes.
The window length is 1000 and the moving size is 100 sample points. The results
plotted in Figure 9 do not exhibit significant statistics associated with the elec-
trode array combination. Note that, during the time interval between the 75th and
the 80th second, the running o curve of array3 rises to the values of 4.1 ~ 4.7
while the other curves drop to the range of 3.4 ~ 4.0. In fact, the running o curve
of array3 departs from the others occasionally. The original EEG tracings show
that channels F7 and F8 have quite different waveform patterns compared to the
other channels used in this analysis. Thus the & analysis may be a tool to study
the spatial correlation in the multi-channel EEG signals.

5. Discussion

In this preliminary study, we have introduced the method of estimating intrinsic
dimensionality into multi-channel EEG analysis. The work is not aimed at obtain-
ing the absolute value of intrinsic dimensionality, considering the practical use in
EEG analysis. Since dimensionality in a sense characterizes the global waveform
complexity, we name it the “complexity index (d)”. Evaluation of complexity in-
dex is conceptually comprehensible and easily implemented. We have demon-
strated the effect of implementing parameters on & computation for both model
systems and multi-channel EEG. Though selection of implementing parameters
affects the computed value of average O (0), the running feature of 0 appears to
be fairly insensitive to a wide range of values of K and N. Considering the effect
of space dimensions n (number of electrodes), the running & curve fluctuates in a
coherent manner for n > 5. Analyzing the 5-dimensional (5-channel) EEG trajec-
tory simply requires as few as 1000 data points (5 seconds) for obtaining invariant
running O characteristic. It then resolves the problem of poor temporal resolution
and computational inefficiency often encountered in dimensional analysis. Ac-
cording to the analysis of four different electrode arrays, the background EEG
has an estimated O in the range of 4.0 < < 4.5, which drops to 3.0 <0 <3.5
at the occurrence of the events (focal-sharp-wave activities). The preliminary re-
sults presented in this paper demonstrate that this method has the potential value
to quantification of EEG spatial correlation and identification of EEG pattern
transition.
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