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Abstract

A reduction method is proposed which allows standard sensitivity techniques for variational inequalities
to applied to equilibrium network ¯ow problems without additional assumptions on either the underlying
network or the numbers of active paths. In particular it is shown that under mild regularity conditions,
small perturbations of equilibria can be given an explicit arc-¯ow representation which is free of path-¯ow
variables. It is also shown that this reduced form allows the di�erentiability of perturbations to be studied
by standard methods. These results are illustrated by a small numerical example. Ó 1999 Elsevier Science
Ltd. All rights reserved.

1. Introduction

Methods of sensitivity analysis for nonlinear programming problems (Fiacco, 1983) and for
variational inequality problems (Dafermos, 1988; Kyparisis, 1987; Kyparisis, 1988; Tobin,
1986; Qiu and Magnanti, 1987; Pang, 1990) have been applied to spatial price equilibrium
problems (Chao and Friesz, 1984; Dafermos and Nagurney, 1984a; and Tobin, 1987). How-
ever, direct application of these methods to the variational inequality formulation of the
equilibrium network ¯ow problem is not feasible since its solutions do not typically satisfy the
required local uniqueness conditions. This is primarily due to the presence of path variables in
the problem formulation. As a consequence, computational procedures which have thus far
been proposed to ®nd the gradients of arc-¯ow variables with respect to parameter perturbations
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require the determination of an unperturbed equilibrium path-¯ow vector with a restricted
number of active paths (as for example in Dafermos and Nagurney (1984c) and Tobin and
Friesz (1988)). However, since traditional algorithms (such as the Frank±Wolfe feasible direc-
tions algorithm) usually terminate with approximate solutions which do not satisfy these re-
strictions, one must employ auxiliary search procedures to ®nd such path-¯ow vectors (as in the
linear-programming approach of Tobin and Friesz (1988)). Hence, our main objective in this
paper is to develop an alternative approach which permits standard gradient-based methods of
sensitivity analysis to be applied directly to the approximate solutions obtained by existing al-
gorithms. The method we introduce in this paper ®nds a perturbed path-¯ow vector which is the
``least distance'' from an unperturbed path-¯ow vector (path-¯ow information, see also Cho
(1991)). Our central result is to show that if this unperturbed vector is positive in all minimum-
cost path components (i.e., if all such paths are used in equilibrium), then the resulting mini-
mum-distance perturbed path-¯ow vectors can be used to formulate feasible arc-¯ow sets en-
tirely in terms of arc variables. In particular, it is shown that in a su�ciently small
neighborhood of the unperturbed equilibrium, the only relevant ¯ow information required for
sensitivity analysis is the basic set of ¯ow-conservation conditions which must hold at each node
in the network.

2. Equilibrium network ¯ow problems

Consider a transportation network±consisting of a ®nite set of nodes, i 2 N , and arcs a 2 A,
together with a nonempty set of origin±destination pairs, w 2 W � N 2. Each w 2 W is joined by a
nonempty ®nite set of paths, p 2 Pw. If P � [w2W Pw denotes the set of all paths, then each p 2 P
consists of a ®nite sequence of connected arcs, and is representable by a zero-one column vector,
Dp � �Dap: a 2 A�, with Map � 1 if arc, a, belongs to path p, and, Dap � 0 otherwise. If the cardi-
nalities of A, W and P are denoted respectively by a � jAj; x � jW j, and q � jP j, then the �a� q�-
matrix, D � �Dp: p 2 P � is designated as the (A, P)-matrix. Similarly, if for each p 2 P and w 2 W
we let Kwp � 1 if p 2 Pw and Kwp � 0 otherwise, then the �x� q�-matrix, K � �Kwp�, is designated
as the (W, P)-matrix. If the real numbers, nonnegative reals, and positive reals are denoted re-
spectively by R; R� and R��, then each positive column vector, T � �Tw: w 2 W � 2 Rx

��, is des-
ignated as a possible travel-demand vector. Each nonnegative column vector, h � �hp: p 2 P � 2 Rq

�,
is designated as a path-¯ow vector consistent with T i� Kh � T . Similarly, each nonnegative
column vector, f � �fa: a 2 A� 2 Ra

�, is designated as an arc-¯ow vector consistent with T i� f �
Dh for some path-¯ow vector consistent with T. Equivalently, if the set of path-¯ows consistent
with both f and T is denoted by

H�f ; T � � fh 2 Rq
�: f � Dh and Kh � Tg; �1�

then f is consistent with T i� H�f ; T � 6� 0. Each function, c : Ra
� ! Ra

� is designated as a possible
arc-cost function, where c�f � � �ca�f �: a 2 A� denotes the vector of per-unit ¯ow costs on each arc,
a 2 A, for the arc ¯ow pattern f. For each path, p 2 P , the associated path cost is assumed to be the
sum of its arc costs, as given by

cp�f � � DT
p c�f �: �2�
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If for each f 2 Ra
� and w 2 W , we let the minimum path cost in Pw be denoted by

cw�f � � minfcp�f �: p 2 Pwg; �3�
then a (®xed-travel-demand) user equilibrium can be de®ned for such network ¯ows as follows.
For any given arc-cost function, c, and travel demand vector, T, a path-¯ow vector h� consistent
with T is designated as a user equilibrium for �c; T � i� for all p 2 Pw and w 2 W

h�p > 0) cp�Kh�� � cw�Kh��: �4�

The associated arc-¯ow vector, f � Kh�, is then designated as a equilibrium arc-¯ow vector for
�c; T �. As is well known (see for example Dafermos, 1980), the set of equilibrium arc-¯ow vectors
for �c; T � can be identi®ed with the solutions of a certain variational inequality problem (VI-
problem). To de®ne this problem in a convenient manner for our purposes, we employ the fol-
lowing notation. For any nonempty sets, S � X � Rn, and function q: X ! Rn, the set

VI�q; S� � fx 2 S: q�x�T�y ÿ x�P for all y 2 Sg �5�
is designated as the solution set for the VI-problem de®ned by q and S. In particular, for any travel
demand vector, T, we designate the set

X�T � � ff 2 Ra: H�f ; T � 6� 0g �6�
of all arc-¯ow vectors consistent with T as the feasible arc-¯ow set for T, then for any arc-cost
function, c, the solution set, VI�c;X�T ��, corresponds precisely to the set of equilibrium arc-¯ow
vectors for �c; T �.

Hence, all sensitivity questions relating to the in¯uence of arc-cost and travel-demand pa-
rameters on equilibrium arc-¯ows can be studied in terms of perturbations of this VI-problem.

3. Perturbation systems

To formulate this perturbation problem, suppose that the ¯ow-cost function and travel-de-
mand vector are in¯uenced by some ®nite-dimensional vector of parameters, h 2 Rk. In particular,
suppose that a given function, c0, and demand vector, T0, are determined by parameter values, h0,
and that it is meaningful to consider changes in C0 and T0 corresponding to parameter values in
some neighborhood, H, of h0 in the parameter space Rk. Then, if for each h 2 H, we de®ne the
corresponding perturbation vector, e � hÿ h0, we may reparameterize these functions in terms of
the associated set of perturbation vectors, D � fe 2 Rk: h0 � e 2 Hg. Of special interest is the zero
perturbation vector, 0 2 D, which corresponds to the initial (unperturbed) parameter vector, h0. In
particular, we shall be primarily concerned with small perturbations in this initial vector h0, and
hence assume for convenience that all su�ciently small perturbations are possible. To be more
precise, if for each x 2 Rn and positive scalar, d > 0, we designate the set
B�x� � fy 2 Rn: kxÿ yk < d, as an x-neighborhood in Rn, then we now assume that D contains
some 0-neighborhood, B(0), in Rk. In addition, since we are only interested in small perturbations,
we assume that D is bounded (i.e., is contained in some 0-neighborhood). Finally, to study the
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continuity properties of perturbations, it is convenient to assume that D is a closed set (and hence
that D is compact in Rk). In summary then, we now say that:

De®nition 3.1. Each compact set, D � Rk, containing a 0-neighborhood is designated as an
admissible perturbation domain.

Given any perturbation domain, D, it is postulated that for each e 2 D we may associate a
unique arc-cost function, c��; e�, and positive travel-demand vector T �e�. Hence if for each e 2 D
and f 2 Ra, we now let

H�f ; e� � fh 2 Rq
�: f � Dh and K � T �e�g �7�

and de®ne the feasible arc-¯ow set corresponding to Eq. (1) by

X�e� � ff 2 Ra: H�f ; e� 6� /g � Ra
� �8�

(where H�f ; 0� � H �f ; T ; �0�) in Eq. (1) and X�T �0�� in Eq. (6)) then the set of equilibrium arc-
¯ow vectors for the equilibrium problem de®ned by c��; e� and T �e� is now given by the solution
set for the associated VI-problem, i.e., by

VI�c��; e�;X�e�� � ff 2 X�e��: c�f ; e�T�g ÿ f �P 0 for all g 2 X�e�g: �9�
Our primary concern in the present paper is with those perturbation problems for which these
equilibrium arc-¯ow vectors are at least locally unique. Hence, we now de®ne a general class of
perturbation systems which have this property. If the closure of a set X � Rn, is denoted by cl(X),
then we now say that:

De®nition 3.2. For any perturbation domain, D, continuous functions,
c : Ra

� � D! Ra
�; T : D! Rx

��, and open set, F � Ra, the ordered collection �D; F ; T ; c� is
designated as a perturbation system i� the following local uniqueness condition is satis®ed:

C (Local uniqueness). For all perturbation vectors, e 2 D,

jVI�c��; e�;X�e� \ F j � 1 � jVI�c��; e�;X�e�� \ cl�F �j:
Condition C asserts that for each perturbation vector, e 2 D, the VI-problem in Eq. (9) has ex-
actly one solution, f �e� 2 X�e� \ F , and that there exist no other solutions in X�e� \ cl�F �. If
VI�c��; e�;X�e�� ÿ F 6� / then f �e� is locally unique with respect to F, and if
VI�c��; e�;X�e�� ÿ F 6� /, then f �e� is globally unique in X�e�. In all cases, the solution vectors, f �e�,
de®ne a unique equilibrium arc-¯ow function, f : D! F , with respect to the region F � Ra. Our
main result is to show that small perturbations in such systems always yield small changes in the
associated local equilibrium arc-¯ows.

Theorem 3.1 [Continuity of arc-¯ows] For each perturbation system, �D; F ; T ; c�, the associated
equilibrium arc-¯ow function, f : D! F is continuous.

Notice also that the continuity of perturbed equilibrium arc-¯ows depends only on the conti-
nuity of c and T. In particular, this continuity property is independent of any monotonicity
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properties of c, as employed for example in the continuity theorems of Fang (1979), Dafermos and
Nagurney (1984b) and Dafermos (1986). 1

But while this result may be said to provide a satisfactory conceptual framework for the
analysis of small perturbations in equilibrium arc-¯ows, it fails to yield any operational proce-
dures for doing so. Hence, our main objective is to impose stronger structural conditions on
perturbation systems, �D; F ; T ; c�, which, will yield a procedure for approximating the equilibrium
arc-¯ow function, f : D! F , in some small neighborhood of the unperturbed state, e � 0.

3.1. The reduction method

As mentioned in the introduction, the central di�culty in applying standard approximation
techniques to the present problem is the presence of path-¯ow sets, H�f ; e�, in the de®nition of
feasible arc-¯ow sets in Eq. (8). Hence, our ®rst objective is to construct a reduced version of the
feasible arc-¯ow set which has a simple explicit representation solely in terms of arc-¯ow vari-
ables. To do so, we employ a ``minimum-distance'' technique to select a unique equilibrium path-
¯ow vector for each equilibrium arc-¯ow vector, f �e�. These minimum-distance solutions will then
be employed to construct a reduced version of the VI-problem in Eq. (9) which continues to
characterize arc-¯ow equilibria, f �e�, in some neighborhood of the unperturbed state, e � 0.

To do so, it is necessary to impose further regularity conditions on the perturbation system,
�D; F ; T ; c�, which will allow such a local reduction procedure. To motivate our ®rst regularity
condition, suppose that we are able to reduce the feasible arc-¯ow set, X�e� in Eq. (9) to a smaller
set, S � X�e�, for which f �e�, is also a solution, i.e. is an element of VI�c��; e�; S�. Then in general,
f �e�, may no longer be the unique solution to this reduced problem. To preserve uniqueness, we
thus require a stronger condition on c��; e�. In particular, a function, q: Ra

� ! Ra
�, will be said to be

strictly monotone on S � Ra
� i� �q�x� ÿ q�y��T�xÿ y� > 0 for the distinct x; y 2 S, and we now

require that �D; F ; T ; c� satisfy the following local strict monotonicity condition:

C1 (Local strict monotonicity). There exists some 0-neighborhood, Bs � D such that c��; e� is
strictly monotone on X�e� \ cl�F � for all e 2 Bs.

As an immediate consequence of this regularity condition, we have the following useful
property:

Lemma 3.1. If �D; F ; T ; c� is a perturbation system satisfying C1, then for each e 2 Bs and set S � Ra
�

with

f �e� 2 S � X�e�; �10�

1 It should be noted however that such assumptions yield stronger results. In particular it is shown in Dafermos and

Nagurney (1984b) (Theorems 3.1 and 4.1) and Dafermos (1980) (Theorem 2.4) that if c is strongly monotone on Ra
�,

and if both c and T are Lipschitz continuous on D, then f must also be Lipschitz continuous on D.

H.-J. Cho et al. / Transportation Research Part B 34 (2000) 31±51 35



it must be true that

VI�c��; e�; S� \ F � ff �e�g: �11�

Proof. First observe from Eq. (9) that f �e� 2 VI�c��; e�;X�e�� ) c�f �e�; e�T �f ÿf �e��P 0 for all
f 2 S � X�e� ) f �e� 2 VI�c��; e�; S�. Moreover by Eq. (5), if there is some f 2 VI�c��; e�; S� \ F
with f 6� f �e� then (as in Kinderlehrer and Stampacchia, 1980, p. 14) we must have,
06 c�f �e�; e�T�f ÿ f �e�� � c�f ; e�T�f �e� ÿ f � � ÿ�c�f �e�; e� ÿ c�f ; e��T�f �e� ÿ f �, which together
with f, f �e� 2 X�e� \ F , contradicts the strict monotonicity of c��; e� in X�e� \ F . �

As a ®rst application of this result, we now show that for e su�ciently close to zero, X�e� can be
reduced to a smaller set, X0�e�, satisfying Eq. (11) which involves much lower dimensional path-
¯ow vectors. To do so, recall from Eq. (4) that each user equilibrium path-¯ow vector for the
unperturbed state, �c��; 0�; T �0��, must have zero ¯ow on each path, p 2 P , which is not a mini-
mum-cost path. Moreover, as we now show, each such path must continue to have zero ¯ow in all
user equilibria for perturbed states, e 2 D, which are su�ciently close to zero. Hence if for each
origin-destination pair, w 2 W , we now let

cw�e� � minfcp�f �e�; e�: p 2 Pwg �12�
denote the minimum path cost in Pw (as in expression (3) above), then the set of minimum-cost
paths in Pw is given by:

Pw�e� � fp 2 Pw: cp�f �e�; e� � cw�e�g �13�
and the corresponding minimum-cost path set for the entire network is given by

P �e� � [w2W Pw�e�: �14�
With this notation, we now show that:

Lemma 3.2. For any perturbation system �D; F ; T ; c�, there exists a 0-neighborhood, B0 � D, such
that for all e 2 B0

P �e� � P �0�: �15�

Proof. It su�ces to produce a 0-neighborhood, B0 � D, such that for all e 2 B0,
P ÿ P �0� � P ÿ P �e�. To do so, observe ®rst that if P �0� � P then the result is trivial. Hence,
we may assume that P �0� ÿ P 6� /. But for any p 2 P ÿ P �0�, we must have cp�f �0�; 0� > cw�0�,
which together with the continuity of c implies that cp�f �e�; e� > cw�e� must hold for all e in some
0-neigborhood, Bp � D. Hence it follows from the ®nite cardinality of P ÿ P �0� that the set,
B0 � \p2PÿP�0�Bp, de®nes a 0-neighborhood in D with the desired property. �

(In the above proof, and throughout the analysis to follow, we make constant use of the fact
that each ®nite intersection of 0-neighborhoods is also a 0-neighborhood.) Next, to construct a
reduced version of X�e�, we now let q0 � jP�0�j6 q, and let D0 and K0 denote the reductions of D
and K obtained by eliminating all columns corresponding to paths, p 2 P ÿ P�0�. Then, by letting

H0�f ; e� � fh 2 Rq0� : D0h � f and K0h � T �e�g �16�
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denote the corresponding reduced version of H�f ; e� in Eq. (7) for each e 2 D and f 2 X�e�, we
now show that X�e� in Eq. (8) can be replaced by the corresponding smaller set of arc-¯ows

X0�e� � ff 2 Ra: H0�f ; e� 6� /g �17�
for all e su�ciently close to zero:

Lemma 3.3. For any perturbation system, �D; F ; T ; c�, satisfying C1, there exists a 0-neighborhood,
B � D, such that for all e 2 B

VI�c��; e�;X0�e�� \ F � ff �e�g: �18�

Proof. Observe ®rst that given any e 2 D and f 2 X�e�, it follows by de®nition that each h 2
H0�f ; e� can be uniquely extended to an element ĥ 2 H�f ; e�, by setting ĥp � hp for all p 2 P �0� and
ĥp � 0 otherwise. Hence, f 2 X0�e� ) H0�f ; e� 6� / ) H�f ; e� 6� /) f 2 X�e�, so that we must
have X0�e� � X�e�. Moreover, for f �e� in particular, it follows that each element, h 2 H �f �e�; e�, is
by de®nition an equilibrium path-¯ow vector, and hence satis®es hp � 0 for each p 62 P �e�. But, by
Lemma 3.2, e 2 B0 ) P �e� � P �0� ) hp � 0 for each p 62 P�0�, so that each element h 2 H �f �e�; e�,
yields a unique element of H0�f �e�; e�, obtained by removing all components p 62 P�0�. Hence for
each e 2 B0, we must also have H �f �e�; e� 6� /) H0�f �e�; e� 6� /) f �e� 2 X0�e� and may conclude
that f �e� 2 X0�e� � X�e� for all e 2 B0. Finally, by letting B � Bs \ B0, we may conclude from
Lemma 3.1 that Eq. (18) must hold for all e 2 B. �

We are now ready to develop the minimum-distance construction. To do so, we begin by
observing from the positivity of Pw that each set, Pw�0� in Eq. (13) for the unperturbed state, e � 0,
is nonempty. But since each column, K0

p of K0 with p 2 Pw is by de®nition an identity basis vector
with 1 in the w position, it follows that this �x� q0�-matrix contains x linearly independent
columns, and hence is of full row rank, x. Given this observation, we next select from D0 a

maximal set of rows, says D0
1, for which the combined matrix

D0
1

K0

� �
is of full row rank. Here, there

are two cases to consider. First suppose that D0
1 is empty, i.e., that every row of D0 lies in the row

span of K0. Then by de®nition there exists a matrix, M0, such that D0 � M0K0, so that by sub-
stituting this relation into Eq. (16), we see that H0�f ; e� 6� 0() f � M0T �e�, and hence from
Eq. (17) that X0�e� contains the unique element M0T �e�. But since f �e� 2 X0�e� by Lemma 3.2, we
may conclude that

f �e� � M0T �e�: �19�
Hence, for this case, sensitivity analysis of equilibrium arc-¯ows, f �e�, is trivially determined by
the travel demands, T �e�, and we need proceed no further. It is thus assumed throughout the rest
of the analysis that D0 is not contained in the row span of K0, so that D0

1 is well de®ned. With this
in mind, we now partition D0 as

D0 � D0
1

D0
2

� �
; �20�
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where D0
1 is chosen to be a maximal set of say, a1, rows of D0 such that

D0
1

K0

� �
is of full row rank,

and where D0
2 is de®ned by the set of a2 � aÿ a1 remaining rows of D0. As is shown following

expression (22) below, a2 is always positive, so that D0
2 is always de®ned. Moreover, D0

2 by con-

struction must be contained in the row span of
D0

1

K0

� �
, so that there must exist matrices M1 and M2

such that

D0
2 � M1D

0
1 �M2K

0: �21�
In particular this implies that if we partition each arc-¯ow vector, f 2 X0�e�, in a manner com-

patible with Eq. (20) as f � f1

f2

� �
then it follows at once from Eqs. (16) and (21) that for any

choice of h 2 H0�f ; e� we must have

f2 � D0
2h � M1D

0
1h�M2K

0h � M1f1 �M2T �e�: �22�
These relations, which we henceforth designate as the ¯ow-conservation conditions, will play a
fundamental role in our subsequent analysis. For the moment it su�ces to observe that this set of
a equations must by de®nition summarize all ¯ow-conservation relations at each node in the
network, and hence must always be nonempty. In particular, if for any node, i 2 N , we let A�i; �� �
�A��; i�� denote the sets of arcs in A which originate (terminate) at i, and set W �i; �� � fj 2
N : �i; j� 2 W g and W ��; i� � fj 2 N : �j; i� 2 W g, then for each travel demand vector, T �e�, and arc-
¯ow vector, f , with H �f ; T �e�� 6� /, it must be true thatX

w2W �i;��
Tw�e� �

X
a2A��;i�

fa �
X

w2W ��;i�
Tw�e� �

X
a2A�i;��

fa:

Hence, for any network there must always be linear dependencies of the form (22), and we may
conclude that a2 > 0.

Given these preliminary observations, we now consider the following minimum-distance prob-
lem, de®ned for any ®xed e 2 D, f1 2 Ra1 and h0 2 Rq0 by:

min: hk ÿ h0k2 � �hÿ h0�T�hÿ h0� �23�

s:t:: h 2 Rq0 and
D0

1

K0

" #
h � f1

T �e�
� �

: �24�

Since the matrix
D0

1

K0

h i
is of full row rank, it follows at once that for each choice of �e; f1; h0�, a

unique solution, h�e; f1; h0�, to problem [(23), (24)] exists, and is given by

h�e; f1; h0� � h0 � D0
1

K0

� �T
D0

1D
0T

1 D0
1K

0T

K0D0T

1 K0K0T

" #ÿ1

f1

T �e�
� ��

ÿ D0
1

K0

� �
h0

�
: �25�

Moreover, if we let

D0
1D

0T

1 D0
1K

0T

K0D0T

1 K0K0T

" #ÿ1

� M11 M12

M21 M22

� �
; �26�
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where

M11 � D0
1D

0T

1

h
ÿ D0

1K
0T�K0K0T�ÿ1K0D0T

1

iÿ1

; �27�

M12 � ÿ D0
1D

0T

1

� �ÿ1

D0
1K

0T

K0K0T

�
ÿ K0D0T

1 D0
1D

0T

1

� �ÿ1

D0
1K

0T

�ÿ1

; �28�

M21 � ÿ K0K0T

�
ÿ K0D0T

1 D0
1D

0T

1

� �ÿ1

D0
1K

0T

�ÿ1

K0D0T

1 D0
1D

0T

1

� �ÿ1

; �29�

M22 � K0K0T

�
ÿ K0D0T

1 D0
1D

0T

1

� �ÿ1

D0
1K

0T

�ÿ1

; �30�

then we may write Eq. (25) in compact form as

h�e; f1; h0� � N0h0 � N1f1 � N2T �e� �31�
where

N0 � I
I

� �
ÿ D0

1

K0

� �T
D0

1D
0T

1 D0
1K

0T

K0D0T

1 K0K0T

" #
D0

1

K0

� �
; �32�

N1 � D0T

1 M11 � K0T

M21 �33�
N2 � D0T

1 M12 � K0T

M22: �34�
Observe ®rst from the full row rank condition on

D0
1

K0

� �
that one may employ Eqs. (21) and (26) to

solve for M1 and M2 as follows.

D0
2 � M1D

0
1 �M2K

0 � �M1;M2� D0
1

K0

" #

) �M1;M2� � D0
2

D0
1

K0

" #T

D0
1

K0

" #
D0

1

K0

" #T
0@ 1Aÿ1

� D0
2

D0
1

K0

" #T
M11 M12

M21 M22

� �
:

Hence, M1 and M2 can be expressed explicitly in terms of D0
2, and the matrices N1 and N2 in

Eqs. (33) and (34) as M1 � D0
2N1 and M2 � D0

2N2, and we may conclude that the ¯ow-conservation
conditions in Eq. (22) can now be written explicitly as

D0
2N1f1 ÿ f2 � D0

2N2T �e� � 0: �35�
Given the minimum-distance solution in Eq. (31), observe next that if we de®ne f2 2 Raÿa1 by

Eq. (22) and set f � f1

f2

� �
, then it follows at once from the constraint Eq. (24) together with

Eqs. (21) and (22) that

D0h�e; f1; h0� � f ; �36�
K0h�e; f1; h0� � T �e�: �37�
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Thus, we see that for each f with h�e; f1; h0� 2 Rq0� , it must be true by de®nition that,
h�e; f1; h0� 2 H0�f ; e�, and hence from Eq. (17) that f 2 X0�e�. In other words, if we now write this
nonnegativity condition in terms of Eq. (31) as

N0h0 � N1f1 � N2T �e�P 0; �38�
then these observations imply that the reduced feasible arc-¯ow set de®ned by

Xe�h0� � ff 2 Ra
�: �35� and �38� holdg �39�

must always satisfy Xe�h0� � X0�e�. Moreover, since the equilibrium arc-¯ow vector,

f �e� � f1�e�
f2�e

� �
, by de®nition satis®es Eq. (35), it follows that if it were true that N0h0 � N1f1�e� �

N2T �e�P 0 then we would have f �e� 2 Xe�h0� � X0�e� and could employ Lemma 3.1 to charac-
terize f �e� in terms of the VI-problem for Xe�h0�. Moreover, since Eqs. (35) and (38) are free of
path-¯ow variables, this would in turn allow a direct application of the results of Section 2.

3.2. Locally regular perturbation systems

Now, our present approach is to impose an additional regularity condition on the perturbation
system, �D; F ; T ; c�, which will ensure the existence of choices for h0 in Eq. (23) which guarantee
positivity of h�e; f1; h0� for all e su�ciently close to zero, and all f1�e� su�ciently close to the
equilibrium arc-¯ow vector, f �e� 2 X0�e�. To do so, it su�ces to require that in the unperturbed
network equilibrium problem, there exist at least one equilibrium path-¯ow vector in which all
minimum-cost paths are used. Hence, if we now let

H��e� � H0�f �e�; e� \ Rq0�� �40�
denote the set of positive ¯ow vectors in H0�f �e�; e�, then the desired local positivity condition can
be stated concisely as follows.

C2 (Local positivity). H��0� 6� /:

Given these two regularity conditions, we are now ready to formalize the class of perturbation
systems for which our reduction method is applicable:

De®nition 3.3. For any perturbation domain, D, continuous functions, c : Ra
� � D! Ra

�;
T : D! Rx

��, and open set, F � Ra, the ordered collection �D; F ; T ; c� is designated as a locally
regular perturbation system i� �D; F ; T ; c� satis®es C1 and C2 together with the following local
existence condition:

C3 (Local existence). For all perturbation vectors, e 2 D;VI�c��; e�;X�e�� \ F 6� /.

Note that conditions C1 and C3 together imply the local uniqueness condition (C), by the ar-
gument in Lemma 3.1 above. Hence each locally regular system �D; F ; T ; c�, is indeed a pertur-
bation system in the sense of De®nition 3.2. Given this class of perturbation systems, our ®rst
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result is to show that for any choice of h0 2 H��0�, the solution to Eqs. (23) and (24) obtained by
setting f1 equal to the equilibrium arc ¯ow vector, f1�e�, is positive for all e su�ciently close to
zero.

Lemma 3.4. For each locally regular perturbation system, �D; F ; T ; c�, and vector, h0 2 H��0�, there
exists a 0-neighborhood, B � D, such that for all e 2 B,

h�e; f1�e�; h0� 2 Rq0��: �41�

Proof. First observe from Eq. (40) that h0 2 H��0� ) h0 2 Rq0�� ) B�h0� � Rq0�� for some h0-
neighborhood, B�h0�, in R. Hence, it su�ces to show that there is some 0-neighborhood, B � D,
such that for all e 2 D,

h�e; f �e�; h0� 2 B�h0�: �42�
To do so, suppose to the contrary that Eq. (42) fails for each 0-neighborhood,
Bn � fe 2 Rk: jek < 1=ng. Then for each n there is some en 2 Bn with h�en; f1�en�; h0� 6� B�h0�. But

since f �e� � f1�e
f2�e
� �

, is continuous in e by Theorem 3.1, and since T �e� is continuous in e by

hypothesis, it follows that

en ! 0) �f1�en�; T �en�� ! �f1�0�; T �0��
) N0h0 � N1f1�en� � N2T �en� ! N0h0 � N1f1�0� � N2T �0�
) h�en; f1�en�; h0� ! h�0; f1�0�; h0�:

�43�

Finally, since h0 2 H��0� � H0�f �0�; 0� implies that h0 satis®es Eq. (24) with f1 � f1�0� and e � 0,
it follows from Eq. (25) that h0 � h�0; f1; h0�, and hence from Eq. (43) that h�en; f1�en�; h0� 2 B�h0�
for all n su�ciently large. Thus we obtain a contradiction, and may conclude that Eq. (42) must
hold. �

As a direct consequence of this result, we now have the following local characterization of
equilibrium arc-¯ows in terms of the reduced feasible arc-¯ow sets in Eq. (39) above

Theorem 3.2 [Reduction Theorem] For each locally regular perturbation system, �D; F ; T ; c� and
choice of h0 2 H��0�, there exists a 0-neighborhood, B0 � D, such that for all e 2 B

VI�c��; e�;Xe�h0�� \ F � ff �e�g: �44�

Proof. By Lemmas 3.1 and 3.3 it su�ces to show that there exists some 0-neighborhood, B0 � Bs

(as in condition C1) such that for all e 2 B0,

f �e� 2 Xe�h0� � X0�e� �45�
To do so, let B � D be any 0-neighborhood as in Lemma 3.4 and set B0 � B \ Bs. Then
e 2 B) h�e; f1�e�; h0� � N0h0 � N1f1�e� � N2T �e� > 0, which together with (22), (35), (38) and (39)
implies that f �e� 2 Xe�h0�. Finally, since f 2 Xe�h0� ) h�e; f1; h0� � N0h0 � N1f1 � N2T �e�P
0) h�e; f1; h0� 2 H0�f ; e� 6� /) f 2 X0�e�, it also follows that Xe�h0� � X0�e�, and we may con-
clude that Eq. (45) holds. �
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4. Local sensitivity analysis of equilibrium arc-¯ow functions

Given this reduced arc-¯ow characterization of the equilibrium arc-¯ow function, f : D! Ra
�,

near zero, we are now ready to analyze the local properties of perturbed arc-¯ows in this region.

Lemma 4.1. For each locally regular perturbation system, �D; F ; T ; c�, there exists a 0-neighborhood,
B � D, such that for all e 2 B and a 2 A,

fa�e� � 0() fa�0� � 0 �46�

Proof. If we consider the 0-neighborhood, B0, in Lemma 3.4 above for any ®xed choice of h0, and
for each e 2 B let h�e� 2 H �f �e�; e� be de®ned by hp�e� � hp�e; f1�e�; h0� all p 2 P �0�, and hp�e� � 0
for all p 2 P ÿ P�0�, then by Lemma 3.4 and condition C2 it follows that
hp�e� > 0() p 2 P �0� () hp�0� > 0. Hence for each a 2 A it must be true that

fa�e� > 0() Dap � 1 for some p with hp�e� > 0

() Dap � 1 for some p with hp�0� > 0

() fa�0�
�47�

and Eq. (46) must hold. �

Hence for purposes of local sensitivity analysis, we may eliminate all arcs, a 2 A, with fa�0� � 0
and focus only on the subset

A0 � a 2 A:
X

p2P �0�
Dap

(
> 0

)
: �48�

For notational simplicity we may simply eliminate all rows in Eq. (38) corresponding to arcs in
Aÿ A0, and rede®ne A to be A0. With this in mind, we henceforth assume that

f �0� 2 Ra
��: �49�

4.1. Locally smooth perturbation systems

Up to this point, none of our results have required di�erentiability assumptions. But in order to
exploit the Reduction Theorem for local analysis of equilibrium arc-¯ow functions near zero, it is
convenient to focus on perturbation systems which satisfy local di�erentiability assumptions. For
any open set, S � Rn, and di�erentiable function, G : S ! Rm, let the �m� n�-matrix of partial
derivatives (i.e., the Jacobian matrix of G), evaluated at the point x0 � �x01; . . . ; x0n� 2 S be de-
noted by

rG�x0� � @

@xj
Gi�x0� : i

�
� 1; . . . ;m; j � 1; . . . ; n

�
: �50�

Then G is by de®nition continuously di�erentiable i� the function, rG : S ! Rm, is continuous. We
denote the partial derivative of G with respect to its y-components evaluated at x0 � �y0; z0� by
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ryG�y0; z0� � @

@xj
Gi�x0� : i

�
� 1; . . . ;m; j � 1; . . . ; k

�
: �51�

Finally, if we designate a square �m� n�-matrix, M , as positive de®nite i� for all u 2 Rm,

u 6� 0) uTMu > 0; �52�
then we may now de®ne the relevant class of di�erentiable systems for our purposes as follows:

De®nition 4.1. A locally regular perturbation system, �D; F ; T ; c� is said to be locally smooth i�
there exists a 0-neighborhood, B�0� � D, and an f �0�-neighborhood, F �0� � F \ Re

��, such that
the restricted functions, c : F �0� � B�0� ! Ra

� and T : B�0� ! Rx
��, are continuously di�erentiable,

and the following additional condition is satis®ed:

C4. (Local positive de®niteness). rf c�f �0�; 0� is positive de®nite.

We may assume without loss of generality that both of the following conditions hold for all
e 2 B�0�:

f �e� 2 F �0�: �53�
c��; e� is strictly monotone on X�e� \ F �0�: �54�

Moreover, if we ®x any choice of h0 2 H��0�, then by Lemma 3.4 and Theorem 3.2, it may also be
assumed that the following two additional conditions hold for all e 2 B�0�:

h�e; f1�e�; h0� 2 Rq0��; �55�
VI�c��; e�;Xe�h0�� \ F �0� � ff �e�g: �56�

Hence, it follows in particular from Eq. (56) that for each e 2 B�0�; f �e� is the unique element of
Xe�h0� \ F �0� satisfying

c�f �e�; e�T�f ÿ f �e��P 0 for all f 2 Xe�h0�: �57�
Moreover, by Eqs. (35), (38) and (39), Xe�h0� is de®ned to be the set of all f � f1

f2

� �
2 Ra, sat-

isfying the inequalities

N0h0 � N1f1 � N2T �e�P 0; �58�
f P 0; �59�

together with the ¯ow-conservation equalities

Mf � D0
2N2T �e� � 0; �60�

where

M � �D0
2N1;ÿI� �61�

4.2. Di�erentiation of equilibrium arc-¯ow functions

First we establish the existence of unique Lagrange multipliers, l�e�, for a linear programming
characterization of VI�c��; e�;Xe�h0��.
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Lemma 4.2 [Lagrange multipliers] For each locally regular perturbation system, �D; F ; T ; c� and
0-neighborhood, B�0�, satisfying Eqs. (53), (55) and (56), there exists a unique function,
l : B�0� ! Ra�a2 , such that for all e 2 B�0�,

c�f �e�; e� ÿMTl�e� � 0: �62�

Proof. Observe from Eq. (56) that f �e� satis®es Eq. (57), and hence is by de®nition a solution to
the linear programming problem:

min c�f �e�; e�Tf �63�
subject to f 2 Xe�h0�, i.e., subject to Eqs. (58)±(60). Moreover, since f �e� 2 F �0� � Ra

�� by
Eq. (53) and since N0h0 � N1f1�e� � N2T �e� 2 Rq0�� by Eqs. (31) and (55), it follows that no com-
ponent of the inequality constraint system (Eqs. (58) and (59)) is binding at the solution point,
f �e�. Hence, by the Lagrange multiplier theorem (see for example Theorem 28.3 in Rockafellar
(1970)), there exists a vector, l�e� 2 Ra2 , satisfying Eq. (62). Moreover, since the �a2 � a�-matrix,
M , in Eq. (61), has a2 linearly independent columns (given by the columns of ÿI), it follows that
M is of full row rank. Hence, l�e� is unique (and, in particular, is given for all e 2 B�0� by l�e� �
�MMT�ÿ1 Mc�f �e�; e�). �

We now designate the function, l : B�0� ! Ra2 , as the multiplier function for the system. We
begin by considering the open set, S � P�0� � Ra2 � B�0� � Ra�a2�k, and let the function,
G : S ! Ra�a2 , be de®ned for all �f ; l; e� 2 S by

G�f ;l; e� � c�f ; e� ÿMTl
Mf � D0

2N2T �e�
� �

: �64�

Then it follows at once from the properties of smooth systems that G is continuously di�erentiable
on all of S. Hence for each ®xed element, �f0;l0; e0� 2 S, the �a� a2�-square Jacobian matrix

r�f ;l�G�f0; l0; e0� � rf c�f0; e0� ÿMT

M 0

� �
�65�

is well de®ned. Similarly, the �a� a2� � a Jacobian matrix,

reG�f0; l0; e0� � rec�f0; e0�
D0

2N2reT �e0�
� �

�66�

is also well de®ned. By employing this function, G, we now show that:

Theorem 4.1 [Di�erentiation Theorem] For each locally smooth system, �D; F ; T ; c� there exists a 0-
neighborhood, B0 � B�0� � D, such that the restrictions of the multiplier function, l : B0 ! Ra2 ,
and the equilibrium arc-¯ow function, f : B0 ! Ra

�, are both continuously di�erentiable, and in
particular

rf �0�
rl�0�
� �

� rf c�f �0�; 0� ÿMT

M 0

� �ÿ1 ÿrec�f �0�; 0�
ÿD0

2N2rT �0�
� �

: �67�
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Proof. Since 0 2 B�0�, it follows at once from the de®nition of G, together with Eqs. (60) and (62)
that G�f �0�;l�0�; 0� � 0. Moreover, the Jacobian matrix in Eq. (65) is nonsingular at the point
�f0; l0; e0� � �f �0�; l�0�; 0�. To see this, observe ®rst that the matrix,

C � rf c�f �0�; 0�: �68�
is positive de®nite by C4, and hence must be nonsingular (since x 6� 0) xTCx > 0) Cx 6� 0).
Next observe that each (possibly nonsymmetric) positive de®nite matrix, C, has a positive de®nite
inverse (since x 6� 0) Cÿ1x 6� 0) 0 < �Cÿ1x�TC�Cÿ1x� � �Cÿ1x�Tx � xTCÿ1x). But the full row
rankness of M then implies that MCÿ1MT must also be positive de®nite (since
x 6� 0) Mx 6� 0) xT�MCÿ1MT�x � �MTx�TCÿ1�MTx� > 0), and hence nonsingular. Thus the
determinants, det�C� and det�MCÿ1MT� are each nonzero, and we may conclude from Eq. (65)
(together with standard determinantal identities for partitioned matrices) that

det�r�f ;l�G�f �0�;l�0�; 0�� � det
C ÿMT

M 0

� �
� det�C� � det�MCÿ1MT� 6� 0; �69�

so that the Jacobian matrix r�f ;l�G�f �0�; l�0�; 0� is seen to be nonsingular. This in turn implies
from the Implicit Function Theorem (as for example in Bartle (1964), Theorem 21.11)) that there
exists a 0-neighborhood, B0 � B�0�, and continuously di�erentiable functions, f0: B�0� ! Ra

� and
l0: B�0� ! Ra2 , such that for each e 2 B�0�, the point �f0�e�; l0�e�; e� is the unique solution to the
equation, G�f ; l; e� � 0. But since Eqs. (60), (62) and (64) also imply that G�f �e�;l�e�; e� � 0 for all
e 2 B0 � B�0�, we may thus conclude that f � f0 and l � l0 on B0, so that in particular, f and l
must be continuously di�erentiable on B0. Finally, it then follows from the standard corollary to
the Implicit Function Theorem (as for example in Bartle (1964) Corollary 21.12)) that for the
point, 0 2 B0,

rf �0�
rl�0�
� �

� r�f ;l�G�f �0�; l�0�; 0�
� �ÿ1� ÿ reG�f �0�;l�0�; 0��; �70�

so that Eq. (67) follows by combining Eq. (70) with Eqs. (65) and (66) evaluated at �f �0�; l�0�; 0�.
In particular, it can be shown by direct calculation that if we employ Eq. (68) to write

M�0� � Cÿ1 ÿ Cÿ1MT�MCÿ1MT�ÿ1MCÿ1; �71�
then rf �0� can be expressed in terms of Eqs. (67) and (71) as

rf �0� � ÿM�0�rec�f �0�; 0� ÿMT�MMT�ÿ1D0
2N2rT �0�: �72�

Hence, expression (72) yields a direct evaluation of the rates of change of the equilibrium arc-
¯ows, f , with respect to the perturbation parameters, e, at the unperturbed equilibrium point,
e � 0. Finally, this implies that for all e su�ciently close to zero, the local linearization,

f �e� � f �0� � rf �0�e �73�
of f yields a good approximation to f �e� in the sense that for each d > 0 there is a 0-neighbor-
hood, B � B0 such that for all e 2 B

kf �e� ÿ f �e�k6 dkek: �74�
Finally, it should be emphasized that the simplicity of the above result depends critically on

the positivity condition (C2), which eliminates the complications of binding inequalities. As
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mentioned in the introduction, this condition is almost always met in practice (and indeed is a
generic property of arc-¯ow equilibria for any choice of reasonably behaved functions). More-
over, any exceptional cases violating C2 can in practice be handled by the auxiliary linear pro-
gramming procedure of Tobin and Friesz (1988) mentioned in the introduction. However, from a
theoretical viewpoint, the general di�erentiability results of Kyparisis (1987, 1988) and Pang
(1990) (based on the ``generalized equation'' approach of Robinson (1979, 1980)) should allow a
more uni®ed approach to this problem, and will be explored in a subsequent paper. �

Table 1

Arc costs, travel demand, and equilibrium ¯ows

ARC cost function Unperturbed

Equilibrium arc ¯ow

c1 � 4� ea
1 � �1� eb

1�f 4
1 f1�0� � 6

c2 � 20� ea
2 � �5� eb

2�f 4
2 f2�0� � 4

c3 � 1� ea
3 � �30� eb

3�f 4
3 f3�0� � 3

c4 � 30� ea
4 � �1� eb

4�f 4
4 f4�0� � 7

c5 � 10� ea
5 � �3� eb

5�f 4
1 f5�0� � 5

c6 � 10� ea
6 � �3� eb

6�f 4
1 f6�0� � 5

O/D Travel demand

TAD � 10� eD

Path de®nitions Positive equilibrium

Path-¯ow

PATH 1 � f�1�; �3�; �5�g h1�0� � 1:0
PATH 2 � f�1�; �3�; �6�g h2�0� � 1:0
PATH 3 � f�1�; �4�; �5�g h3�0� � 2:0
PATH 4 � f�1�; �4�; �6�g h4�0� � 2:0
PATH 5 � f�2�; �3�; �5�g h5�0� � 0:5
PATH 6 � f�2�; �3�; �6�g h6�0� � 0:5
PATH 7 � f�2�; �4�; �5�g h7�0� � 1:5
PATH 8 � f�2�; �4�; �6�g h8�0� � 1:5

Fig. 1. Example network.
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5. Numerical example

In this section we provide a simple numerical example involving an extension of the network
employed by Tobin and Friesz (1988). This network, which is illustrated in Fig. 1 involves a set of
four nodes, N � fn1; n2; n3; n4g together with a set of six arcs, A � fa1; . . . ; a6g, yielding a set of
eight possible paths, P � fp1; . . . ; p8g, between the single origin±destination pair �n1; n4� shown in
Table 1. The arc-cost function, c : R6

� � D! R6
� and travel-demand function, T : D! R�, are also

depicted in Table 1, where each component arc-cost function, ci : R6
� � D! R� involves an in-

tercept perturbation parameter, ea
i , and slope perturbation parameter, eb

i , where the travel demand
between n1 and n4 involves a single perturbation parameter, ed . Hence the relevant perturbation
domain, D, is taken to consist of a (closed) zero neighborhood in R13 which is su�ciently small to

Table 2

Arc-path incidence matrix and its partition
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ensure that each perturbation vector e � �ea
1; . . . ; ea

6; e
b
1; . . . ; eb

6; ed� 2 D yields positive travel de-
mands, T �e� and positive increasing arc-cost functions, c��; e�. By de®nition, c and T are con-
tinuously di�erentiable functions. Moreover, the strictly increasing separable forms of the
component arc-cost functions ensures global strict monotonicity of c. Thus VI�c��; e�;X�e��j j � 1
for all e 2 D, and it follows by setting F � R6, that we obtain a well-de®ned perturbation system,
�D; F ; T ; c� which satis®es C1 and C3. Moreover, it may readily be veri®ed that the unique un-
perturbed equilibrium arc-¯ow vector, f �0�, shown in Table 1 is consistent with the positive
equilibrium path-¯ow vector, h�0�, shown in Table 1, so that �D; F ; T ; c� also satis®es the local
positivity condition, C2, and must be locally regular. Finally, since the Jacobian matrix,
rf c�f �0�; 0�, in Table 3 is a positive diagonal matrix, and hence is positive de®nite, we may
conclude that �D; F ; T ; c� satis®es all the conditions for a locally smooth perturbation system.

This implies from Theorem 4.1 that the local linearization, f �e�, of the equilibrium arc-¯ow
vector, f �e�, for each e su�ciently close to zero is given by Eq. (73) together with Eq. (72). To
compute this local linearization, we have chosen the maximal row-rank partition of D0�� D�
shown in Table 2. By employing this partition, one may compute the relevant Jacobian matrices
for expression (67) as in Table 3, and hence evaluate the local linearization, f �e�, in Eq. (73).

Within this general computational framework, a number of speci®c sensitivity estimates are
computed in Tables 4±6. For example, Table 6 illustrates a case involving simultaneous pertur-
bations of the travel demand, and slopes of the arc-cost functions on arcs a1; a2, and a3. These
calculations (which involve only columns 1, 2, 3, and 13 of the matrices rec�f �0�; 0� and

Table 3

Jacobian matrices for Eq. (67)

rf c�f �0�; 0� �

864 0 0 0 0 0
0 1280 0 0 0 0
0 0 3240 0 0 0
0 0 0 1372 0 0
0 0 0 0 1500 0
0 0 0 0 0 1500

26666664

37777775

M � �D0
2N1 ÿ I � �

ÿ1 ÿ 1 0 0 0 0
0 0 ÿ 1 ÿ 1 0 0
0 0 0 0 ÿ 1 ÿ 1

24 35

rec�f �0�; f � �

ÿ1 0 0 0 0 0 ÿ 1296 0 0 0 0 0 0
0 ÿ 1 0 0 0 0 0 ÿ 256 0 0 0 0 0
0 0 ÿ 1 0 0 0 0 0 ÿ 81 0 0 0 0
0 0 0 ÿ 1 0 0 0 0 0 ÿ 2401 0 0 0
0 0 0 0 ÿ 1 0 0 0 0 0 ÿ 625 0 0
0 0 0 0 0 ÿ 1 0 0 0 0 0 ÿ 625 0

26666664

37777775

D0
2r2T �0� �

0 0 0 0 0 0 0 0 0 0 0 0 ÿ 1
0 0 0 0 0 0 0 0 0 0 0 0 ÿ 1
0 0 0 0 0 0 0 0 0 0 0 0 ÿ 1

24 35
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D0
2N2rT �0� in Table 3) show that even for reasonably large perturbations, the local linear ap-

proximations are quite good. Note ®nally that while the present network is of course very simple,
it nonetheless illustrates a case in which the number of paths in the unperturbed equilibrium can
exceed the number of arcs plus origin±destination pairs, and hence in which the path restrictions
of Dafermos and Nagurney (1984c) are violated. Moreover, while there do exist equilibrium path-
¯ow vectors which meet these conditions such as h�0� � �0; 2; 4; 0; 1; 0; 0; 3�, the determination of
such vectors can require lengthy search procedures in more complex networks. Hence, this simple

Table 5

Comparison of estimated solutions with actual solutions for eb
1 � 0:2 and eb

1 � 0:4

Solutions with e � 0 Solutions with eb
1 � 0:2 Solutions with ea

1 � 0:4

Actual Estimated Actual Estimated

f1 6 5.88935 5.8791045 5.79516 5.758209

f2 4 4.11065 4.1209855 4.20484 4.241791

f3 3 3 3 3 3

f4 7 7 7 7 7

f5 5 5 5 5 5

f6 5 5 5 5 5

Table 6

Comparison of estimated solutions with actual solutions for eb
1 � 0:2; eb

3 � 0:2; eb
5 � 0:2; eD � 2 and eD � 4

Solutions with e � 0 Solutions with

eb
1 � 0:2 eb

3 ; eb
5 � 0:2 � 0:2; eD � 2

Solutions with

eb
1 � 0:2 eb

3 � 0:2; eb
5 � 0:2; eD � 4

Actual Estimated Actual Estimated

f1 6 7.06303 7.07313 8.23813 8.26716

f2 4 4.93697 4.92687 5.76187 5.73284

f3 3 3.5919 3.59146 4.1886 4.18643

f4 7 8.4081 8.40854 9.8114 9.81357

f5 5 5.9516 5.9583 6.94353 6.9583

f6 5 6.0484 6.0417 7.05647 7.0417

Table 4

Comparison of estimated solutions with actual solutions for ea
1 � 0:2 and ea

1 � 0:4

Solutions with e � 0 Solutions with ea
1 � 0:2 Solutions with ea

1 � 0:4

Actual Estimated Actual Estimated

f1 6 5.99991 5.99991 5.99981 5.99981

f2 4 4.00009 4.00009 4.00019 4.00019

f3 3 3 3 3 3

f4 7 7 7 7 7

f5 5 5 5 5 5

f6 5 5 5 5 5
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example serves to illustrate the potential usefulness of the present reduction methods for sensi-
tivity analyses.

6. Further Reading

Berge (1963), Dugundji (1966), Friesz (1985), Harker and Pang (1987, 1988) and Hildenbrand
(1974).
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