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Abstract-Based on the testable design techniques proposed 
in [12], [13], we first derive a testability measure named UCP 
(Entestability Cube-number Product) which can accurately in- 
dicate the extra logic needed in testable PLA. Using UCP as a 
cost function, we have developed two new algorithms. The first 
one is a restructuring algorithm named REST, and the other is 
a logic minimizer for testable PLA named LMTPLA. 

REST can not only restructure a minimized PLA and im- 
prove its UCP, but also preserve the same logic function and 
almost the same chip area simultaneously. Thus, we can make 
the restructured PLA testable by taking less extra hardware. 
In order to get a minimum UCP, two new techniques are pro- 
posed: 1) Cube-Reduction, and 2) Cube-Partition. Using 
Cube-Reduction, we can make cubes far from the primes and 
increases the testability. By Cube-Partition, we may find out 
those hard-to-test cubes and partition them into smaller but 
easier-to-test cubes. 

LMTPLA is principally based on ESPRESSO-I1 and REST. 
Different from other logic minimizers, it can consider the test- 
ability at the logic minimization process. In order to minimize 
UCP as well as the number of product terms, four strategies 
are developed: 1) deleting the cubes with poor testability and 
reserving the cubes with good testability, 2) giving up the 
primes, 3) if necessary, partitioning the more untestable cubes 
into smaller cubes, and 4) deleting the procedures which are 
useless in LMTPLA. 

REST and LMTPLA have been implemented on SUN4/260 
in C language. For 40 benchmark circuits, the hardware over- 
heads required are reduced by about 30-40%. 

I. INTRODUCTION 
ROGRAMMABLE Logic Array (PLA) [ l ]  is a good P element for combinational and sequential logic cir- 

cuits in VLSI for its simplicity, regularity and flexibility. 
However, besides the classical stuck-at and bridging 
faults, PLA has another important class of faults called 
crosspoint faults [2], [3]. In the past, many powerful al- 
gorithms were proposed for PLA test pattern generation 
[2]-[7]. Complete fault coverage (detecting all testable 
faults and identifying all redundant faults) can be guar- 
anteed in PLATYPUS [6] and PLANET [7]. However, 
these algorithms are based on the single-fault assumption 
(i.e., single stuck-at or single extra/missing device). As 
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for multiple faults such as multiple stuck-at faults, mul- 
tiple extra and multiple missing faults, the testable design 
is a good choice. In this paper, testable design techniques 
are emphasized on the multiple faults. 

In the past, many structured design-for-testability tech- 
niques have been suggested [8]-(151. These techniques 
require extra hardware to increase the controllability and/ 
or the observability of the product lines to make it fully 
testable. Some of these techniques [SI-[ 111 utilize shift- 
registers to control the product lines. They are considered 
as scan-type design. Since a shift register cell is wider 
than a product line, it causes a pitch mismatch problem. 
Although the mismatch problem can be solved by multi- 
plexing, the area overhead is still too high. Other tech- 
niques as shown in Fig. 1 [ 121, [ 131 require extra inputs 
on the extended AND plane, and are considered as de- 
coded-type design. Because there is no pitch mismatch 
problem and less area overhead is used, we choose de- 
coded-type as our testable PLA design method. In this 
way, a PLA restructuring algorithm (REST) and a new 
logic minimizer (LMTPLA: Logic Minimization for 
Testable U) are developed to reduce the hardware 
overhead in decoded-type design. Recently, some tech- 
niques combining scan-type and decoded-type are pro- 
posed [14], [ 1.51. We refer to them as mixed-type design. 
This technique partitions a PLA into several parts and use 
a shift-register to control each part. Thus a shorter shift 
register and fewer extra inputs are used to make each part 
fully testable. Our REST and LMTPLA can also be ap- 
plied to mixed-type design. 

In [ 121, a fully testable design technique was presented. 
If the Hamming distance between any two product terms 
is larger than or equals to 2, the PLA is fully testable, 
i .e.,  no redundant fault. Furthermore, using this tech- 
nique, all multiple stuck-at faults, as well as all multiple 
extra and multiple missing device faults, are detected. The 
test set is a byproduct when the testable design is finished. 
Hence, test pattern generation is unnecessary and redun- 
dant faults do not exist. However, if the initial Hamming 
distance of any two product lines is smaller than 2 ,  then 
we must add some extra inputs to increase the Hamming 
distance until all distances are larger than or equal to 2 .  

Fig. 2 shows the conventional approach of testable PLA 
design. The logic minimizers can reduce the chip area of 
PLA's to a minimum, but the testable design algorithm 
may enlarge it very much due to the poor testability of the 
minimized PLA's. Given a PLA specification, there may 
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Fig. 2 .  Conventional approaches of testable PLA design 
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Fig. 3 .  New approaches of testable PLA design. (a) Using restructuring 

for testability. (b) Using logic minimization for testability. 

exist many different PLA logic structures that are equiv- 
alent in logic function and chip area. But, the extra over- 
heads are different when applying testable design tech- 
niques. Therefore, how to choose a PLA with the least 
extra overhead becomes an important issue in testable de- 
sign. In Fig. 3, we suggest two new approaches to design 
the testable PLA. One new idea as shown in Fig. 3(a) is 
to enhance the testability of the minimized PLA's by re- 
structuring them. Here, restructuring means changing the 
structure of PLA's while keeping the same logic func- 
tions. The structure means the position of devices or con- 
tacts in AND plane and OR plane. Then we can map the 
restructured PLA into a testable PLA by adding less extra 
hardware, i.e.,  less extra inputs as shown in Fig. 1 .  The 
other approach as shown in Fig. 3(b) is to combine the 
restructuring algorithm and the logic minimization algo- 
rithm to form a new logic minimization algorithm which 
considers both the testability and the number of product 
terms. The objective too, is to reduce the extra inputs of 
testable design. 

In Section 11, some basic definitions and techniques of 
testable PLA are presented [12], [13]. Section I11 de- 
scribes the testability analysis of PLA's. The cost func- 
tion, UCP (gntestability Cube-number Product), is also 
defined in this section. In Section IV, the restructuring 
algorithm, REST, is proposed. In Section V,  we combine 
REST and ESPRESSO-I1 to be LMTPLA. In Section VI, 
we show the simulation results of REST and LMTPLA, 

and compare them to that of conventional approach with- 
out restructuring. Finally, we offer some concluding re- 
marks in Section VII. 

11. PRELIMINARIES 
First, we define some terms that will be used later. Then 

the techniques of testable PLA which had been proposed 
by Bozorgui-Nesbat [ 121 and Khakbaz [ 13 1 are demon- 
strated by an example. 

2.1. Basic Definitions 
Fig. 4(a) shows a small NOR-NOR PLA. Now, we as- 

sume that a PLA has n input lines, p product lines, and m 
output lines. For simplicity, we use the characteristic ma- 
trix to describe a PLA. 

Definition-Characteristic Mutrix of a PLA: The char- 
acteristic matrix of a PLA is a p-by-(n + m )  matrix de- 
noted by M whose entries are defined as follows: M(i, .j ) 
= 0, if a device exists on the intersection of the i th prod- 
uct line and the true bit line of the j t h  input. M ( i ,  j ) = 
I ,  if a device exists on the intersection of the ith product 
line and the complement bit line of the; th input. M(i, j ) 
= 2, if no device exists on the intersection of the i th prod- 
uct line with either the true or the complement bit line of 
j th input. M(i, j ) = 3, if no device exists on the inter- 
section of the ith product line and the (j-n)th output line. 
M ( i ,  j ) = 4,  if a device exists on the intersection of the 
ith product line and the (j-n)th output line. 

The characteristic matrix of the PLA of Fig. 4(a) is 
shown in Fig. 4(b). 

Dejinition-Cube: The i th cube of a PLA is a row vet- 
tor ci = [c ; ,  c; ,  * * , c;, c ,+, ,  I . . .  , ck + ,,,I, where c)  
= M ( i ,  j ). 

Dejinition-Input Purt ofc ' :  The input part of ci is a 
row vector Z(c') = [c',, c;,  . . . , c:,1 

Dejinition-Select Set of Pi 1121: The select set of the 
ith product line Pi is S I ,  which is a set of input vectors. 
Any member of Si,  when applied to the inputs of PLA, 
activates Pi. In fact, the description of SI in  cubic form is 
the same as I ( c i ) .  

Definition-Test Set of P, [ 121: Any nonempty subset 
of Si is called a test set of P,. A test set of Pi is denoted 
as T,. 

Definition-Distunce Mutrix of U PLA [ 1 2 ( :  Given the 
select set SI and a test set 7; for each product line Pi, the 
distance matrix D is a p by p matrix whose entries are 
defined as follows. 
If i = j ,  then D(i ,  j )  = 2. 
If i # j ,  then D ( i ,  j ) = the minimal Hamming distance 
between any member of Ti and any member of Sj. 

Definition-MD-mutrix of U PLA: The MD-matrix of 
a PLA is a p by p matrix whose entries are derived from 
the D matrix and are modified by two procedures: 1) Test 
set selection, 2) OR plane consideration. The two proce- 
dures are proposed by [ 121 and [ 131, respectively, and are 
demonstrated in Section 2.2. The entries of MD-matrix 
larger than 2 should be set to 2.  
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we hold all minterms in the test set so that 

TI  = 0212 

T2 = 1122 

T3 = 2120 0 2 1 2  4 4 3  
1 1 2 2 3 3 4  

1 0 1 2  4 4 3  2 1 2 0 4 3 4  T4 = 1012. I 
From the initial test set TI and the select set S,, we can 

easily derive the initial D-matrix from the definition of 
D,, as follows: 

(b) 

El XI x2 x3 x4 fl 0 f! 

(C) 
(a) A small NOR-NOR PLA (b) Characteristic matrix of a PLA Fig. 4 For example, D,, is 0. It means that there exists a test 

(c) Testable structure of a PLA 
pattern 01 10 in T3 which may activate both P3 and P I  con- 
currently. So, 01 10 is not a good test pattern for P 3 .  Now, 
the problem becomes how to assign “1” or “0” to all 
2’s in Tl’s and select a test set such that the entries of the 

proposed a heuristic algorithm to find out the optimal so- 
lution. The resultant test set is 

2.2. Testable PLA Technique 

[ 131. If all the entries of D matrix are larger than or equal 
to 2, the PLA is fully testable. Otherwise, it is not fully 
testable. There are three procedures to increase the entries 

The design method is based On and D-matrix are maximized. Bozorgui-Nesbat et al. [12] had 

of D matrix: 1) by judiciously selecting among many in- 
put patterns available in T, [12], 2) by considering the 
output part of the characteristic matrix, i.e., OR plane 
Characteristic [13], and 3) by assigning additional test in- 
puts to the PLA to change its characteristic matrix. Here, 
we use an example to demonstrate the techniques. 

TI = 0011 

TI = 1101 

T3 = 0100 

T4 = 1011 

The corresponding D-matrix is 
Example 1: Modifjt the PLA in Fig. 4(a) to be fu l ly  
testable. 

The characteristic matrix of the PLA is 

cl = 0212443 

c2 = 1122334 

c3 = 2120434 

c4 = 1012443. 

The select set can be derived from the characteristic 
matrix. In fact, the input part of each cube forms the se- 
lect set of the corresponding cube as follows: 

SI = Z(C’) = 0212 

s, = Z(c2) = 1122 

s3 = Z(C3) = 2120 

s, = Z(C4) = 1012. 

For instance, it is obvious that four minterms can ac- 
tivate product line P I ,  i.e., 0010, 001 1, 01 10, and 01 11. 
Of course, each minterm can be chosen as a test. Initially, 

We find that there still exists six entries less than 2. In 
[ 131, it is suggested that we can take the OR plane condi- 
tions into consideration. For example, originally D31 = 1 
and, for the third output of the PLA, there exists a 4 on 
c3 but a 3 on c1. In other words, when we reverse any bit 
of T3 to detect the crosspoint faults on P,, the fault effect 
will not be masked by c1. Hence, D3, can be increased to 
2. Similarly, we have D32 = 2 and D4* = 2. So, after 
considering the OR plane characteristic, we obtain the 
MD-matrix as follows: 

2 2  

2 2  :I 
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Since there still exists three non-2’s entries in the 
MD-matrix, so we need to add extra inputs to further in- 
crease the entries of the MD-matrix [ 121. Here, the prob- 
lem is “How to design a minimum number of extra inputs 
such that all the entries of the MD-matrix are 2?” In [ 121, 
some heuristics have been developed that use local opti- 
mization to assign these inputs in an effective manner. 
The solution is 

Extra Input Initial PLA New PLA 
1 0212 443 10212 443 

1122 334 11 122 334 1 
- - + 

0 2120 434 02120 434 ’ 

0 1012 443 01012 443 
By adding this extra input, the final MD-matrix be- 

comes 
Increasing Initial 

Distance MD-matrix 
Final 

MD-matrix 

2 2 2 2  

2 2 2 2  

2 2 2 2  

.2 2 2 2 

Fig. 4(c) shows the testable structure of the addition of 
one extra input. The control signal, TEST, is set to be 0 
in testing mode and 1 in normal mode. Since the extra 
area overhead introduced by the TEST is very little, so 
the total area overhead is proportional to the number of 
extra inputs (not including the TEST). 

111. TESTABILITY ANALYSIS OF PLA 
Given a PLA, we begin the testability analysis from the 

MD-matrix as defined in Section 11. As demonstrated by 
Example 1, it is clear that the PLA with larger entries 
needs fewer extra inputs. In other words, the larger the 
entries, the higher the testability. However, testability 
analysis requires a testability measure by which the test- 
ability of a circuit can be quantified as accurately as pos- 
sible. It seems that the summation of all entries of the 
MD-matrix can be viewed as a testability measure. From 
the definition of MD-matrix, the diagonal entries are al- 
ways 2 and the other entries vary between 0 and 2. If we 
ignore the diagonal entries, the summation is between 0 
and 2p ( p  - 1). To reflect the ease or the difficulty of 
applying testable design technique, this measure is nor- 
malized between 0 and 1. Now, we can define the test- 
ability (T) and untestability (U) of a PLA from the 
MD-matrix as follows: 

Dejinition-Testability of a PLA: The testability of a 
PLA is denoted by T and defined as 

T = C C MD,, - 2p (,:, ,” 
where p is the number of cubes. 

Definition-Untestubility of a PLA: The untestability 
of a PLA is denoted by U and defined as U = 1 - T. 

From the above definitions, it is clear that both the test- 
ability and untestability of PLA’s vary between 0 and 1. 
If T = 1 ,  then the PLA is fully testable without any extra 
inputs. Otherwise, it’s necessary to add some extra in- 
puts. In general, PLA’s with more cubes need more extra 
inputs to form a testable PLA. Similarly, PLAs with larger 
untestability need more extra inputs too. By combining 
these two facts, we define a value called UCP as follows: 

Definition-Untestability-Cube-number Product: The 
untestability cube-number product is denoted by UCP and 
defined as UCP = U * p ,  where p is the number of cubes 
and U is the untestability of the PLA. 

From this definition, we see that UCP can be used to 
evaluate approximately the number of extra inputs needed. 

Definition-Estimated Number of Extra Inputs: The 
estimated number of extra inputs needed by testable PLA 
is denoted by E and defined as E = 10g2(2 * UCP + 1). 

In fact, we can estimate the number of extra inputs as 
above. There are three special cases matching the esti- 
mation as ( forp >> 1): 

1) If all the entries of MD-matrix are 2, it is obvious 
that the number of extra input is 0. In this special case, 
we find T = 1 and U = 0. This implies UCP = 0 and so 
the estimated number of extra inputs, E = logz(l) = 0. 

2) If all the entries of the MD-matrix are 1, then extra 
inputs are assigned until the entries are increased to 2. 
This can be done by adding [log, ( p ) 1  extra inputs and 
forming a binary code in the extended AND plane. In this 
special case, we find T = U = 0.5 and UCP = p / 2 ,  and 
thus E = l o g z ( p  + 1). F o r p  >> 1, E is close to the 
value of [log, ( p ) 1  . 

3) If all the entries of the MD-matrix are 0, we can add 
[log, ( p ) 1  extra inputs and form a binary code in the 

extended AND plane as that of special case (2). This makes 
all the entries of the MD-matrix 1 or 2. Then, we can 
easily add a new extra input and assign a parity code with 
those of r l o g 2 ( p ) l  inputs such that all the entries are 
increased to 2. Therefore, the number of extra inputs is 
[log, ( p ) 1  + 1. In this special case, we find T = 0 and 

U = 1. This implies UCP = p and E = 10gz(2p + 1). 
F o r p  >> 1, E is close to the value of [ log2(p)l  + 1. 

From the above testability analysis, we know that a PLA 
with smaller UCP needs less extra inputs. Hence, UCP is 
used as the cost function in REST and LMTPLA. 

Example 2: For the PLA shown in Fig. 4, estimate the 
number of extra inputs. 

From example 1, the MD-matrix is as follows: 

2 2  

2 2  :1 
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According to the definition, the values of T ,  U ,  UCP, 
and E are: 

T = 21/24 = 0.875 

U = 1 - T = 0.125 

UCP = U * p = 0.125 * 4 = 0.5 

E = logZ(2 * UCP + 1) = 1. 

The estimated number of extra inputs matches the real 
number of extra inputs in Example 1. 

IV . RESTRUCTURING ALGORITHM 
In this section, we describe a PLA restructuring algo- 

rithm REST. Fig. 5 shows the procedure for REST. It 
consists of two subroutines: Cube-Reduction and 
Cube-Partition. The objective is to optimize UCP of the 
minimized PLA’s as shown in Fig. 3(a). 

4.1. Cube-Reduction 
For a minimized PLA, if cubes are all primes, the 

entries of the MD-matrix are usually small. This im- 
plies that the PLA has poor testability. For this reason, 
we must make all cubes as small as possible. Using 
Cube-Reduction, we can transform a prime cover into a 
new (in general, not prime) cover, by replacing each cube 
with a (usually smaller) cube contained in it. This method 
makes cubes far from prime and thus increases the testa- 
bility. Cube-Reduction is similar to the Reduce of ES- 
PRESSO-I1 [ 161. In order to enhance the effect of increas- 
ing testability, the order of cubes to be reduced must be 
considered carefully. In Reduce [16], it is suggested that 
cubes are reduced from the largest one to the smallest. In 
Cube-Reduction, the order is much the same as Reduce 
except when cubes are of equal size. In this case, the cube 
with poor testability will be reduced first. So we need a 
testability measure of a cube. Recall that if the entries of 
the ith row of the MD-matrix are all 2’s, the ith cube is 
fully testable. It seems that the sum of the entries of the 
i th row in the MD-matrix can be considered as a measure 
of the testability for the ith cube. So, we define a value 
called distance weight as the testability of a cube. 

DeJnition-fie Distance Weight of the ith cube: The 
distance weight of the ith cube is denoted by W(i) and 
defined as W(i) = MDiI + MDi2 + . * + IVD,~, where 
p is the number of cubes. 

If W(i) = 2p,  then the ith cube is fully testable. Note 
that the minimal value of W(i) is 2 since the diagonal of 
the MD-matrix is always 2.  

Fig. 6 shows the flowchart of Cube-Reduction, the or- 
der of cubes to be reduced are as follows: 

1) reduce the cubes from the largest one to the smallest; 
2) if cubes are of equal size, the one with smaller dis- 

The following example demonstrates the algorithm of 
tance weight is reduced first. 

Cube-Reduction. 

& 
Fig. 5 .  Flowchart of REST. 

Reduce each L U ~ W  ~n q u e n c e  

Fig. 6.  Flowchart of CUBE-REDUCTION. 

Example 3: For the PLA shown in Fig. 4, determine the 
order of cubes. 

First, we compute the distance weight of each cube. 

W(1) = 2 + 2 + 2 + 1 = 7 

W(2) = 2 + 2 + 1 + 2 = 7 

W(3) = 2 + 2 + 2 + 2 = 8 

W ( 4 ) =  1 + 2 + 2 + 2 = 7 .  

The third cube (1 122334) is fully testable because W(3) 

Now, we can determine the order of cubes: 
Step I :  Sort all cubes from the largest one to the small- 

est one. (The largest one is defined as the cube 
that has the greatest number of 2’s or 4’s) 

= 2 p  = 8 .  

c’ = 0212443 The number of 2’s or 4’s is 4 

c3 = 2120434 The number of 2’s or 4’s is 4. 

c2 = 1122334 The number of 2’s or 4’s is 3. 

c4 = 1012443 The number of 2’s or 4’s is 3. 

Step 2: For cubes of equal size, compare the distance 
weight. c’ and c3 are of equal size. But, W(3) 
is larger than W(1). Thus c1 must be reduced 
first. 

4 .2 .  Cube-Partition 
In PLA’s, there may exist some hard-to-test cubes. 

These cubes usually produce many 0 entries in the 
MD-matrix. Cube-Partition can find out the hardest-to- 
test cube, called P-cube, which is defined as the cube that 
adjoins the most of other cubes. Then, we can partition 
the P-cube into two half cubes by a P-variable. In this 
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c 
cumpuce New UCP 

Give Up the h r  C u k  Panmon 

Fig. 7. Flowchart of CUBE-PARTITION. 

way, the untestability U is decreased, but the number of 
cubes is increased by one. Usually, this may generate a 
smaller UCP. Thus we have an opportunity to trade one 
extra input to one extra product line. The flowchart of 
Cube-Partition is shown in Fig. 7 and described as fol- 
lows: 

1) Find a row with the greatest number of zeros in the 
MD-matrix. The corresponding cube is called the P-cube. 

2) For each don’t care variable in the P-cube, say the 
ith variable, count the number of cubes that satisfy the 
following two conditions 

1) The distance between the cube and the P-cube is 
0. 

2) The ith variable of the cube is not don’t-care. 

This variable is called the P-variable. 
Then, find the variable with maximal counting. 

3) Partition the P-cube into two cubes with respect to 
the P-variable. 

As an example, consider a P-cube 2210 and its P-vari- 
able (the first variable), the P-cube will be partitioned 
into two half cubes, 0210 and 1210. Note that any don’t- 
care variable in the P-cube used for partition will keep 
the total number of zeros the same. However, after this 
step, the number of cubes will be increase by one. So, the 
testability is improved. 

4) Perform Cube-Reduction on this PLA. 

A PLA may be reduced again when a cube is par- 
titioned into two half cubes. Hence, running 
Cube-Reduction after partition is necessary in order to 
keep cubes of the PLA as small as possible. 

5 )  If the UCP of the new PLA is smaller than the old 
one, then we accept it and go to Step 1). Otherwise, give 
up the last partition and stop. 

As mentioned previously, the cost function, UCP, may 

be increased or decreased. If the new UCP is smaller than 
the old one, it seems that the partition is worthy. Other- 
wise, we give up the last partition and terminate the 
Cube-Partition procedure. 

V. LOGIC MINIMIZATION FOR TESTABLE PLA 
In this section, we combine the logic minimization al- 

gorithm and restructured algorithm into a new algorithm 
called LMTPLA (Logic Minimization for Testable U). 
The main body of logic minimization algorithm is based 
on ESPRESSO-I1 which is described in [16] in detail. Fig. 
8 shows the flowchart of ESPRESSO-11. As compared to 
ESPRESSO-11, the flowchart of LMTPLA is shown in 
Fig. 9. The objective of LMTPLA is to minimize UCP 
during the logic minimization process. In order to get a 
highly testable PLA, the following four strategies are used 
in LMTPLA. 

1) Delete the cubes with poor testability and reserve the 
cubes with good testability. 

The results of Reduce and Expand in ESPRESSO-I1 de- 
pend on the order in which the cubes are processed. The 
cube which has the largest size should be reduced or ex- 
panded first in the Reduce and Expand, respectively. As 
discussed in Section IV, when cubes are of equal size, a 
cube with the smallest distance weight will be reduced 
first. However, on the other hand, a cube with the largest 
distance weight is expanded first in the Expand proce- 
dure. The reason behind this strategy is that the cube re- 
duced first would be deleted most easily and the cube ex- 
panded first would be conserved most easily. This strategy 
is embodied in the Reduce and Expand, the resultant pro- 
cedures are called Cube-Reduction and Cube-Expand, 
respectively. The other modified procedure based on this 
strategy is the Irredundant procedure, which consists of 
three subroutines: Redundant, Partially-Redundant, and 
Minimal-Irredundant. The Redundant subroutine can find 
out all the redundant cubes. The redundant cubes can be 
partitioned into the totally redundant cubes and the par- 
tially redundant cubes. The totally redundant cubes are 
covered by the union of the non-redundant cubes and 
the don’t-care set, so they are deleted. The Par- 
tially-Redundant subroutine can delete the totally redun- 
dant cubes and get the partially redundant cubes. From 
the partially redundant cubes, the Minimal-Irredundant 
subroutine finds the minimal irredundant cover by delet- 
ing nearly the greatest number of cubes [16]. In 
LMTPLA, we rewrite the Minimal-Irredundant to delete 
the cube one by one with the least distance weight first 
until the cover becomes irredundant. In other words, the 
cubes with poor testability are deleted first. We call the 
new Irredundant procedure the Cube-Irredundant . 

2) Give up the primes. 

Conventional logic minimizers always make all cubes 
primes. This usually introduces larger U. As discussed in 
Section IV, the procedure Cube-Reduction is added after 
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BEGlN P Complement 

Last-Gasp 

Make-Sparse 

I...) 
Fig. 8. Flowchart of ESPRESSO-I1 
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Fig. 9. Flowchart of LMTPLA 

the Make-Sparse procedure to reduce the size of the cubes 
and thus increase the testability of the PLA’s. 

3) If necessary, partition the more untestable cubes into 
smaller cubes. 

Similar to REST, we add Cube-Partition followed by 
Cube-Reduction in LMTPLA to partition the hard-to-test 
cube into smaller cubes but easier to test. 

4) Delete the procedures which are useless in 

Because of different cost functions between ES- 
PRESSO-I1 and LMTPLA, some procedures in ES- 
PRESSO-I1 become useless in LMTPLA. In ESPRESSO- 
11, there is a procedure called Last-Gasp which has very 
little effect on the minimization but spends much CPU 
time. So, we remove this procedure. In addition, ES- 
PRESSO-I1 has an important procedure called Make- 

LMTPLA. 
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Sparse. As the name suggested, it attempts to make the 
PLA as sparse as possible. Make-Sparse consists of two 
subroutines: Lower-Outs and Rise-In. In general, 
Lower-Outs reduces the number of 4’s in the OR plane. 
This allows us to make better use of the OR plane to im- 
prove T ,  i .e.,  convert more 0’s and 1’s to 2’s in the 
MD-matrix. Hence, U is decreased. On the other hand, 
Rise-In increases the number of 2’s and the AND plane. 
According to the definition of distance matrix, this 
introduces more 0’s in the MD-matrix. S O ,  U is in- 
creased. Moreover, its effect will be cancelled by 
Cube-Reduction. Therefore, Rise-In in Make-Sparse is 
eliminated. In LMTPLA, only Lower-Outs is included in 
the Partial-Make-Sparse procedure. 

Now, we can compare ESPRESSO-I1 with LMTPLA 
as follows: 

1) Complement and Essential are the same in ES- 
PRESSO-I1 and LMTPLA. 

2) Expand, Reduce, Irredundant and Make-Sparse 
in ESPRESSO-I1 are modified to be Cube- 
Expand, Cube-Reduction, Cube-Irredundant and 
Partial-Make-Sparse in LMTPLA, respectively. 

3) Last-Gasp in ESPRESSO-I1 is removed in 
LMTPLA. 

4) Cube-Reduction and Cube-Partition are added as 
the final steps in LMTPLA. 

VI. EXPERIMENTAL RESULTS A N D  COMPARISONS 
REST and LMTPLA have been implemented on SUN 

workstation in C language. We have applied REST to the 
40 benchmark circuits [ 161 where ESPRESSO-MV is em- 
ployed as the front end minimization tool. Table I sum- 
marizes the experimental results obtained with ES- 
PRESSO-MV and REST. Columns 1-3 lists the names of 
the PLA’s and the numbers of input and output variables. 
Column 4 shows the number of product terms obtained 
with ESPRESSO-MV. The total number of cubes is 273 1. 
After the application of testable design technique as de- 
scribed in section 11, extra inputs are added to obtain 100% 
testability of multiple struck-at faults, as well as multiple 
extra and multiple missing device faults. Column 6 indi- 
cates the number of extra inputs needed for each PLA. 
The total number of extra input is 168. However, if we 
run REST after ESPRESSO-MV, the total number of 
cubes is slightly increased from 273 1 to 275 1. The in- 
creasing rate is approximately 0.7 %. The results are listed 
in column 5 .  Column 7 shows the number of extra inputs 
needed after running the REST algorithm. The total num- 
ber of extra inputs is reduced dramatically from 168 to 
105. The average reduction ratio is approximately 37%.  
The PLA “mish”, for example, can be minimized to as 
94 input variables, 43 output variables, 82 product terms, 
and 6 extra inputs with ESPRESSO-MV. After running 
REST, the number of product terms remains the same. 
However, the number of extra inputs is decreased to 3, 
which means a 50% reduction. The area overhead which 
is defined as the percentage of extra area over the original 
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TABLE I 
REDUCTION OF EXTRA INPUTS BY REST 

U 0  C v k r  Extra Inpvu 

TABLE 11 
REDUCTION OF EXTRA INPUTS B Y  LMTPLA 

U 0  C U k S  Exua lnpuls 

PLA m our ESP REST ESP REST PLA 111 out GHH LMTPLA GHH LMTPLA 
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56 23 
94 43 
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6 2  
4 3  
4 3  
4 3  
5 3  4 4  
7 3  
3 2  
4 3  
8 5  
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8 2  
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1 3  
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140 141 
14 14 
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39 43 
123 I25 
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I 0 6  107 
136 136 
74 74 
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75 75 
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29 XI  57 57 38 39 
49 49 

110 110 
9 9  

110 110 
82 82 

120 120 
59 59 
65 67 
86 81 

82 82 

40 2731 2751 168 10s 

area of the PLA is 5 .2% (= [(2 * 6) * 82]/[(2 * 94 + 
43) * 821). The CPU time of REST is very little as com- 
pared to that of the testable design technique proposed by 
[ 121 and [ 131. Since the CPU time for the testable design 
technique is heavily dependent on the number of extra in- 
puts needed, so REST also reduces the CPU time of the 
testable design technique. 

Based on the most of algorithms in ESPRESSO-I1 [ 161, 
we implement a logic minimization program named GHH. 
Then, followed by the strategies described in Section V, 
LMTPLA is implemented by combining GHH and re- 
structuring algorithm. For the same 40 benchmark cir- 
cuits, we have applied GHH and LMTPLA to these ex- 
amples, and the results are summarized in Table 11. 
Columns 1-3 are the same as that in Table I. Columns 4 
shows the number of product terms obtained with GHH. 
The total number of cubes is 2788. Column 6 denotes the 
number of extra inputs required in testable design. The 
total number of extra inputs is 146. However, if we run 
LMTPLA instead of GHH, the total number of cubes is 
increased from 2788 to 2803, as shown in column 5 .  The 
increasing rate is approximately 0.5 % . In this case, the 
total number of extra inputs is reduced dramatically from 
146 to 101, as shown in column 7. The reduction ratio is 
approximately 30%. However, the total CPU time is 
slightly increased from 1063.6 s (GHH) to 1230.2 s 
(LMTPLA). 

Tables I and I1 show that ESPRESSO-MV is better than 
GHH in logic minimization, i.e. 2731 cubes versus 2788 
cubes. But GHH needs fewer extra inputs than ES- 
PRESSO-MV, i.e. 146 inputs versus 168 inputs. Because 
it is based on GHH, the minimization effect of LMTPLA 
is not so good as compared with ESPRESSO-MV. If we 
modify ESPRESSO-MV to LMTPLA, the results should 
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be better than the old LMTPLA in the total number of 
cubes. However, REST, can be used after logic minimi- 
zation by any logic minimizer. 

VII. CONCLUSIONS 
Synthesis-for-testability is a popular research area re- 

cently. We categorize it into four different viewpoints. 
The first one is synthesis for full testability, i.e., remov- 
ing all redundant faults in synthesis process. The second 
one is synthesis for easy generating tests, i.e., reducing 
the cost of test pattern generation. The third one is syn- 
thesis for shortening test length, i.e., reducing the cost of 
test application. The last one is synthesis for testable de- 
sign, i.e.,  reducing the extra cost induced by testable de- 
sign technique. In this paper, synthesis-for-testability is 
emphasized on the last viewpoint. 

The fully testable PLA design technique proposed in 
[12], [13] can guarantee that all multiple stuck-at faults, 
as well as all multiple extra and multiple missing device 
faults, are detected. Furthermore, the test set is a byprod- 
uct when the testable design is finished. Hence, test pat- 
tern generation is unnecessary and redundant faults do not 
exist. To reflect the ease or the difficulty of applying test- 
able design technique, an accurate method for measuring 
testability is important. In Section 111, we first derive a 
simple testability measure called UCP. Based on UCP, 
we have developed two PLA synthesis algorithms. The 
objective of these algorithms is to optimize UCP such that 
the added extra logic is minimized. From experimental 
results, it is found that UCP is very accurate and effective. 
The first one is a restructuring algorithm named REST, 
and the other is a new logic minimizer named LMTPLA. 
For a minimized PLA, REST can enhance its testability 
and preserve the same logic function and almost the same 
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chip area for the PLA simultaneously. Thus we can make 
the restructured PLA testable by taking less extra hard- 
ware. In REST, with UCP as a cost function, two new 
procedures are proposed: 1) Cube-Reduction and 2) 
Cube-Partition. From experimental results, it is found that 
REST is very efficient not only on its performance but 
also the CPU time. LMTPLA is principally based on ES- 
PRESSO-I1 and REST. In order to get a minimum UCP, 
four strategies are developed: 1) deleting the cubes with 
poor testability and reserving the cubes with good test- 
ability, 2) giving up the primes, 3) if necessary, partition- 
ing the more untestable cubes into smaller cubes, and 4) 
deleting the procedures which are useless in LMTPLA. 
For 40 benchmark circuits, the hardware overheads re- 
quired are reduced by about 30-40%. The CPU time of 
REST and LMTPLA is very little as compared to that of 
the testable design technique. 

In fact, the concept of restructuring-for-testability and 
logic-minimization-for-testability can also be applied to 
many other logic circuits. When we get a high testability 
circuit, we can reduce the cost of testable designs. REST 
has been used in LOPET (Low Overhead Pseudoexhaus- 
tive Testable PLA) [19] and gets a good result. 
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