This article was downloaded by: [National Chiao Tung University 國立交通大學] On: 28 April 2014, At: 01:31 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Communications in Statistics - Theory and Methods

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/lsta20</u>

Estimating capability index c_{pk} for processes with asymmetric tolerances

W. L. Pearn^a & G. H. Lin^b

^a Department of Industrial Engineering & Management, National Chiao Tung University, Hsinchu, Taiwan, ROC

^b Department of Telecommunication Engineering , National Penghu Institute of Technology , Penghu, Taiwan, ROC Published online: 23 Jul 2008.

To cite this article: W. L. Pearn & G. H. Lin (2000) Estimating capability index c_{pk} for processes with asymmetric tolerances, Communications in Statistics - Theory and Methods, 29:11, 2593-2604, DOI: <u>10.1080/03610920008832625</u>

To link to this article: http://dx.doi.org/10.1080/03610920008832625

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

ESTIMATING CAPABILITY INDEX C_{pk} FOR PROCESSES WITH ASYMMETRIC TOLERANCES

W. L. Pearn Department of Industrial Engineering & Management National Chiao Tung University Hsinchu, Taiwan ROC

G. H. Lin Department of Telecommunication Engineering National Penghu Institute of Technology Penghu, Taiwan ROC

Keywords: process capability index; specification limit; process mean; process standard deviation.

ABSTRACT

Pearn and Chen (1996) considered the process capability index C_{pk} , and investigated the statistical properties of its natural estimator under various process conditions. Their investigation, however, was restricted to processes with symmetric tolerances. Recently, Pearn and Chen (1998) considered a generalization of C_{pk} , referred to as C_{pk}^{*} , to cover processes with asymmetric tolerances. They investigated the statistical properties of the natural estimator of C_{pk}^{*} , and obtained the exact formulae for the expected value and variance. In this paper, we consider a new estimator of C_{pk}^{*} , assuming the knowledge on $P(\mu \ge T) = p$ is available, where $0 \le p \le 1$, which can be obtained from historical information of a stable process. We obtain the exact distribution of the

2593

Copyright © 2000 by Marcel Dekker, Inc.

www.dekker.com

new estimator assuming the process characteristic follows the normal distribution. We show that the new estimator is consistent, asymptotically unbiased, which converges to a mixture of two normal distributions. We also show that by adding suitable correction factors to the new estimator, we may obtain the UMVUE and the MLE of the generalization C^*_{pk} .

1. INTRODUCTION

Process capability indices C_p and C_{pk} , have been widely used in the manufacturing industry providing numerical measures on process potential and performance. Application examples include the manufacturing of semiconductor products (Hoskins *et al.* (1988)), head/gimbals assembly for memory storage systems (Rado (1989)), jet-turbine engine components (Hubele *et al.* (1991)), flip-chips and chip-on-boards (Noguera and Nielson (1992)), rubber surrounds (Pearn and Kotz (1994)), wood products (Lyth and Rabiej (1995)), audio-speaker drivers (Chen and Pearn (1997)) electrolytic capacitors (Pearn and Chen (1997)) and many others. The two indices C_p and C_{pk} have been defined as the following (Kane (1986)):

$$\begin{split} C_{p} &= \frac{\text{USL} - \text{LSL}}{6\sigma}, \\ C_{pk} &= \min \bigg\{ \frac{\text{USL} - \mu}{3\sigma}, \frac{\mu - \text{LSL}}{3\sigma} \bigg\}, \end{split}$$

where USL and LSL are the upper and the lower specification limits, μ and σ are the process mean and the process standard deviation. The natural estimators of the two indices can be expressed as:

$$\hat{C}_{p} = \frac{USL - LSL}{6S},$$
$$\hat{C}_{pk} = \min\left\{\frac{USL - \overline{X}}{3S}, \frac{\overline{X} - LSL}{3S}\right\},$$

where $\overline{X} = (\sum_{i=1}^{n} X_i)/n$ and $S = \{(n-1)^{-1} \sum_{i=1}^{n} (X_i - \overline{X})^2\}^{1/2}$ are conventional estimators of μ and σ . We note that C_{pk} can be rewritten as

$$\begin{split} C_{pk} = \{d-\mu-m|\}/3\sigma \ , \ where \ \ d = (USL-LSL)/2 \ , \ and \ \ m = (USL+LSL)/2 \ . \end{split}$$
 Thus, \hat{C}_p and \hat{C}_{pk} may be expressed as:

$$\hat{C}_{p} = \frac{d}{3S}$$
, and $\hat{C}_{pk} = \frac{d - |\overline{X} - m|}{3S} = \left\{1 - \left|\frac{\overline{X} - m}{d}\right|\right\} \hat{C}_{p}$.

Under normality assumption, \hat{C}_p is distributed as $(n-1)^{1/2}C_p(\chi_{n-1}^{-1})$, and $n^{1/2}|\overline{X}-m|/\sigma$ is distributed as the folded normal distribution with parameter $n^{1/2}|\mu-m|/\sigma$. Thus, \hat{C}_{pk} is a convolution of χ_{n-1}^{-1} and the folded normal distributions (Pearn *et al.* (1992)). If the knowledge on $P(\mu \ge m) = p$ is available, where $0 \le p \le 1$, Pearn and Chen (1996) proposed a Bayesian-like estimator which is more reliable (with smaller variance) than the natural estimator.

2. THE GENERALIZATION C_{pk}^{*}

The indices C_p and C_{pk} are appropriate for processes with symmetric tolerances, but have been shown to be inappropriate for processes with asymmetric tolerances. For processes with asymmetric tolerances, Pearn and Chen (1998) considered a generalization of C_{pk} , referred to as C_{pk}^{*} , which is defined as :

$$C^*_{pk} = \frac{d^* - A^*}{3\sigma} \,, \label{eq:constraint}$$

where $d^* = \min \{d_u, d_l\}$, $A^* = \max \{d^*(\mu - T)/d_u, d^*(T - \mu)/d_l\}$, $d_u = USL - T$, and $d_l = T - LSL$. Clearly, if T = m (symmetric case) then $d^* = d$, $A^* = |\mu - m|$ and the generalization C_{pk}^* reduces to the original index C_{pk} . The factors d^* and A^* ensure that the generalization C_{pk}^* obtain its maximal value at T (process is on-target in this case) regardless of whether the tolerances are symmetric or asymmetric.

The natural estimator of C_{pk}^* can be obtained by replacing μ and σ by \overline{X} and S as defined earlier. Thus the natural estimator can be expressed as the following, where $\hat{A}^* = \max \{ d^*(\overline{X} - T)/d_{\mu}, d^*(T - \overline{X})/d_l \}$. Pearn and Chen (1998)

investigated the statistical properties of the natural estimator of C_{pk} , and obtained the exact formulae for the expected value and variance.

$$\hat{C}^{\star}_{pk} = \frac{d^{\star} - \hat{A}^{\star}}{3S} \,. \label{eq:constraint}$$

3. A NEW ESTIMATOR OF C_{pk}^{*}

If the knowledge on $P(\mu \ge T) = p$ is available, where $0 \le p \le 1$, then we consider the following new estimator \widetilde{C}_{pk}^{*} . The knowledge on the probability $P(\mu \ge T) = p$ may be obtained from historical information of a process that is demonstrably stable.

$$\widetilde{C}_{pk}^* = \frac{d^* - \widetilde{A}^*}{3S},$$

where $\widetilde{A}^* = \max \{ (\overline{X} - T)I_{B^*}(\mu)d^*/d_{\mu}, (\overline{X} - T)I_{B^*}(\mu)d^*/d_{\ell} \}$, $I_{B^*}(.)$ is the indicator function defined as $I_{B^*}(\mu) = 1$ if $\mu \in B^*$, and $I_{B^*}(\mu) = -1$ if $\mu \notin B^*$, with $B^* = \{\mu \mid \mu \ge T\}$. In the following, we show that if the process characteristic follows the normal distribution $N(\mu, \sigma^2)$ then the new estimator \widetilde{C}^*_{pk} is distributed as $t_{n-1}(\delta^*)$, a non-central *t* distribution with n -1 degrees of freedom and non-centrality parameter $\delta^* = 3\sqrt{n}C^*_{pk}$.

Theorem 1. If the process characteristic follows the normal distribution, then $3n^{1/2}\widetilde{C}_{pk}^*$ is distributed as $t_{n-1}(\delta^*)$, a non-central *t* distribution with n - 1 degrees of freedom and non-centrality parameter $\delta^* = 3\sqrt{n}C_{pk}^*$.

Proof: Case 1: If USL - T > T - LSL, then $\widetilde{C}_{pk}^{*} = \{d_{l} - (\overline{X} - T)I_{B}, (\mu)\}/(3S),$ $\widetilde{C}_{pk}^{*} \frac{S}{\sigma} - C_{pk}^{*} = \frac{\{d_{l} - (\overline{X} - T)I_{B}, (\mu)\}S}{3S \sigma} - \frac{\{d_{l} - (\mu - T)I_{B}, (\mu)\}}{3\sigma} = -\frac{(\overline{X} - \mu)I_{B}, (\mu)}{3\sigma}.$ Case 2: If USL - T < T - LSL, then $\widetilde{C}_{pk}^{*} = \{d_{u} - (\overline{X} - T)I_{B}, (\mu)\}/(3S),$ $\widetilde{C}_{pk}^{*} \frac{S}{\sigma} - C_{pk}^{*} = \frac{\{d_{u} - (\overline{X} - T)I_{B}, (\mu)\}S}{3S \sigma} - \frac{\{d_{u} - (\mu - T)I_{B}, (\mu)\}}{3\sigma} = -\frac{(\overline{X} - \mu)I_{B}, (\mu)}{3\sigma}.$

Case 3: If USL - T = T - LSL, then C_{pk}^* , reduces to C_{pk} ,

PROCESS CAPABILITY INDEX Cpk

$$\widetilde{C}_{pk}^{\bullet} = \{d - (\overline{X} - m)I_{B}^{\bullet}(\mu)\}/(3S), \text{ and}$$

$$\widetilde{C}_{pk}^{\bullet} \frac{S}{\sigma} - C_{pk}^{\bullet} = \frac{\{d - (\overline{X} - m)I_{B}^{\bullet}(\mu)\}}{3S} \frac{S}{\sigma} - \frac{\{d - (\mu - m)I_{B}^{\bullet}(\mu)\}}{3\sigma} = -\frac{(\overline{X} - \mu)I_{B}^{\bullet}(\mu)}{3\sigma}$$

Thus, for all three cases, and for all $x \in R$,

$$\begin{split} & P\left\{3\sqrt{n}\left(\widetilde{C}_{pk}^{\star}\frac{S}{\sigma}-C_{pk}^{\star}\right)\leq x\right\}\\ &=P\left\{3\sqrt{n}\left(\widetilde{C}_{pk}^{\star}\frac{S}{\sigma}-C_{pk}^{\star}\right)\leq x|I_{B^{\star}}(\mu)=1\right\}\times P\{I_{B^{\star}}(\mu)=1\}\\ &+P\left\{3\sqrt{n}\left(\widetilde{C}_{pk}^{\star}\frac{S}{\sigma}-C_{pk}^{\star}\right)\leq x|I_{B^{\star}}(\mu)=-1\right\}\times P\{I_{B^{\star}}(\mu)=-1\}\\ &=P\left\{\sqrt{n}\left(\frac{\overline{X}-\mu}{\sigma}\right)\geq -x\right\}\times P\{I_{B^{\star}}(\mu)=1\}\\ &+P\left\{\sqrt{n}\left(\frac{\overline{X}-\mu}{\sigma}\right)\leq x\right\}\times P\{I_{B^{\star}}(\mu)=-1\}\\ &=P\left\{\sqrt{n}\left(\frac{\overline{X}-\mu}{\sigma}\right)\leq x\right\}\times P\{I_{B^{\star}}(\mu)=-1\}\\ &=P\left\{\sqrt{n}\left(\frac{\overline{X}-\mu}{\sigma}\right)\leq x\right\}=\Phi(x)\,. \end{split}$$

Under normality assumption, \overline{X} and S^2 are mutually independent. Therefore, $Z = 3n^{1/2}\widetilde{C}^*_{pk}S/\sigma$ and $W = (n-1)S^2/\sigma^2$ are also mutually independent, with Z distributed as $N(\delta^*, 1)$, a normal distribution with mean $\delta^* = 3\sqrt{n}C^*_{pk}$, and W distributed as χ^2_{n-1} , a chi-squared distribution with n - 1 degrees of freedom. Thus $3n^{1/2}\widetilde{C}^*_{pk} = Z/\sqrt{W/(n-1)}$ is distributed as $t_{n-1}(\delta^*)$, a non-central *t* distribution with n - 1 degrees of freedom and non-centrality parameter $\delta^* = 3\sqrt{n}C^*_{pk}$.

The r-th moment (about zero), therefore, is:

$$\mathbb{E}[\widetilde{C}_{pk}^{*}]^{r} = \left(\frac{1}{3\sqrt{n}}\right)^{r} \mathbb{E}\{t_{n-1}(\delta^{*})\}^{r}.$$

By setting r = 1, and r = 2, we may obtain the expected value $E(\tilde{C}_{pk}^{\star})$, and the variance $Var(\tilde{C}_{pk}^{\star})$,

$$E[\widetilde{C}_{pk}^{*}] = \left(\frac{1}{3\sqrt{n}}\right) E\{t_{n-1}(\delta^{*})\} = \frac{1}{-3\sqrt{n}} \frac{\delta^{*}}{b_{n-1}} = \frac{C_{pk}^{*}}{b_{n-1}},$$

Sample size	MSE	Sample size	MSE
5	0.538	55	0.012
10	0.112	60	0.011
15	0.060	65	0.010
20	0.040	70	0.009
25	0.030	75	0.009
30	0.024	80	0.008
35	0.020	85	0.008
40	0.017	90	0.007
45	0.015	95	0.007
50	0.014	100	0.006

$$\label{eq:able 1. Values of MSE} \begin{split} & \text{Table 1. Values of MSE}(\widetilde{C}_{pk}^{\star}) \text{ for } n = 5(5)100 \text{ with } C_{pk}^{\star} = 1. \end{split}$$

$$E[\widetilde{C}_{pk}^{*}]^{2} = \left(\frac{1}{3\sqrt{n}}\right)^{2} E\{t_{n-1}(\delta^{*})\}^{2} = \frac{n-1}{n-3}\left\{[C_{pk}^{*}]^{2} + \frac{1}{9n}\right\},$$

$$b_{n-1} = \frac{\Gamma[(n-1)/2]}{\Gamma[(n-2)/2]}\sqrt{\frac{2}{n-1}},$$

Therefore, the mean-squared error $MSE(\widetilde{C}_{pk}^{*})$ can be obtained as:

$$\begin{split} \text{MSE}(\widetilde{C}_{pk}^{\star}) &= \text{E}[\widetilde{C}_{pk}^{\star} - C_{pk}^{\star}]^2 = \text{E}[\widetilde{C}_{pk}^{\star}]^2 - 2C_{pk}^{\star}\text{E}[\widetilde{C}_{pk}^{\star}] + [C_{pk}^{\star}]^2 \\ &= 2\left(\frac{n-2}{n-3} - \frac{1}{b_{n-1}}\right) [C_{pk}^{\star}]^2 + \frac{n-1}{n-3} \times \frac{1}{9n} \,. \end{split}$$

It can be shown that the coefficient of $E(\widetilde{C}_{pk}^*)$, $b_{n-1} = [2/(n-1)]^{1/2} \times \Gamma[(n-1)/2]/\Gamma[(n-2)/2] < 1$ for all n, which in fact converges to 1 as n approaches to infinity. Thus, the estimator \widetilde{C}_{pk}^* is biased, which over-estimates the actual value of C_{pk}^* . Table 1 displays various values of $MSE(\widetilde{C}_{pk}^*)$ for sample sizes n = 5(5)100 under the condition of $C_{pk}^* = 1$. For sample size n > 65, the mean-squared error is negligibly small (less than 0.01).

PROCESS CAPABILITY INDEX Cpk

Theorem 2. If the process characteristic follows the normal distribution, then (a) \tilde{C}_{pk}^{*} is asymptotically unbiased, (b) \tilde{C}_{pk}^{*} is consistent.

Proof: (a) By Stirling's formula, it is easy to show that b_{n-1} converges to 1. Therefore, $E(\widetilde{C}_{pk}^{\star}) = C_{pk}^{\star}/b_{n-1}$ converges to C_{pk}^{\star} . Hence, the estimator $\widetilde{C}_{pk}^{\star}$ is asymptotically unbiased. (b) Since \overline{X} converges to μ in probability, and S converges to σ in probability, then $\widetilde{C}_{pk}^{\star}$ must converges to C_{pk}^{\star} in probability. Therefore, the estimator $\widetilde{C}_{pk}^{\star}$ is consistent.

Theorem 3. If the process characteristic follows the normal distribution, then $n^{1/2}(\widetilde{C}_{pk}^{*} - C_{pk}^{*})$ converges to the following in distribution:

(a) $p \cdot N(0, [\sigma_{l_1}^*]^2) + (1-p) \cdot N(0, [\sigma_{l_2}^*]^2)$, if USL - T > T - LSL, (b) $p \cdot N(0, [\sigma_{u_1}^*]^2) + (1-p) \cdot N(0, [\sigma_{u_2}^*]^2)$, if USL - T < T - LSL, (c) $p \cdot N(0, [\sigma_{m_1}^*]^2) + (1-p) \cdot N(0, [\sigma_{m_2}^*]^2)$, if USL - T = T - LSL, where $1 - 1 (d - (u - T))^2$

$$[\sigma_{l_{1}}^{*}]^{2} = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d_{l} - (\mu - 1)}{3\sigma} \right\}, \quad [\sigma_{l_{2}}^{*}]^{2} = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d_{l} + (\mu - 1)}{3\sigma} \right\},$$

$$[\sigma_{u_{1}}^{*}]^{2} = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d_{u} - (\mu - T)}{3\sigma} \right\}^{2}, \quad [\sigma_{u_{2}}^{*}]^{2} = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d_{u} + (\mu - T)}{3\sigma} \right\}^{2},$$

$$[\sigma_{m_{1}}^{*}]^{2} = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d - (\mu - m)}{3\sigma} \right\}^{2}, \quad [\sigma_{m_{2}}^{*}]^{2} = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d + (\mu - m)}{3\sigma} \right\}^{2}.$$

Proof: See Appendix.

Theorem 4. If the process characteristic follows the normal distribution, then (a) $b_{n-1}\widetilde{C}_{pk}^{*}$ is the UMVUE of C_{pk}^{*} , (b) $c_{n-1}\widetilde{C}_{pk}^{*}$ is the MLE of C_{pk}^{*} , where $b_{n-1} = \Gamma[(n-1)/2] \{ \Gamma[(n-2)/2] \}^{-1} [2/(n-1)]^{1/2}$, and $c_{n-1} = [n/(n-1)]^{1/2}$.

Proof: (a) Since $E[\widetilde{C}_{pk}^{\star}] = C_{pk}^{\star}/b_{n-1}$, then $b_{n-1}\widetilde{C}_{pk}^{\star}$ is an unbiased estimator of C_{pk}^{\star} . Since the unbiased estimator $b_{n-1}\widetilde{C}_{pk}^{\star}$ is based on the complete and sufficient statistics (\overline{X}, S^2) only, then by Lehmann-Scheffe's theorem, $b_{n-1}\widetilde{C}_{pk}^{\star}$ is the UMVUE of C_{0k}^{\star} .

(b) We first note that the statistic $(\overline{X}, [(n-1)/n]S^2)$ is the MLE of (μ, σ^2) . By the invariance property of the MLE, $c_{n-1}\widetilde{C}_{pk}^*$ is the MLE of C_{pk}^* , where $c_{n-1} = [n/(n-1)]^{1/2}$.

Applying the Slutsky's theorem (Arnold (1990)), it is straightforward to show that the UMVUE $b_{n-1}\tilde{C}_{pk}^{\bullet}$, and the MLE $c_{n-1}\tilde{C}_{pk}^{\bullet}$ both converge to the mixture of two normal distributions as stated in Theorem 3.

4. CONCLUSIONS

Pearn and Chen (1998) proposed a generalization of C_{pk} , referred to as C_{pk}^{*} , for processes with asymmetric tolerances. They investigated the statistical properties of the natural estimator of C_{pk}^{*} , and obtained the exact formulae for the expected value and variance. In this paper, we considered a new estimator of C_{pk}^{*} , assuming the knowledge on $P(\mu \ge T) = p$ is available, where $0 \le p \le 1$, which can be obtained from historical information of a stable process. We showed that under normality assumption the new estimator is distributed as $t_{n-1}(\delta^{*})$, a non-central *t* distribution with n - 1 degrees of freedom and noncentrality parameter $\delta^{*} = 3\sqrt{n}C_{pk}^{*}$. We also showed that the new estimator is consistent, asymptotically unbiased, which converges to a mixture of two normal distributions. In addition, we showed that by adding suitable correction factors to the new estimator, we may obtain the UMVUE and the MLE of the generalization C_{pk}^{*} .

APPENDIX

Theorem 3. If the process characteristic follows the normal distribution, then $\sqrt{n}(\widetilde{C}_{pk}^* - C_{pk}^*)$ converges to the following in distribution:

- (a) $p \cdot N(0, [\sigma_{11}^*]^2) + (1-p) \cdot N(0, [\sigma_{12}^*]^2)$, if USL T > T LSL,
- (b) $p \cdot N(0, [\sigma_{u_1}^*]^2) + (1-p) \cdot N(0, [\sigma_{u_2}^*]^2)$, if USL -T < T LSL,
- (c) $\mathbf{p} \cdot \mathbf{N}(0, \ [\sigma_{m1}^*]^2) + (1-\mathbf{p}) \cdot \mathbf{N}(0, \ [\sigma_{m2}^*]^2)$, if USL T = T LSL, with

$$[\sigma_{I_1}^*]^2 = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d_I - (\mu - T)}{3\sigma} \right\}^2, \ [\sigma_{I_2}^*]^2 = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d_I + (\mu - T)}{3\sigma} \right\}^2,$$

$$[\sigma_{u_1}^*]^2 = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d_u - (\mu - T)}{3\sigma} \right\}^2, \ [\sigma_{u_2}^*]^2 = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d_u + (\mu - T)}{3\sigma} \right\}^2,$$

$$[\sigma_{m_1}^*]^2 = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d - (\mu - m)}{3\sigma} \right\}^2, \ [\sigma_{m_2}^*]^2 = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d + (\mu - m)}{3\sigma} \right\}^2.$$

PROCESS CAPABILITY INDEX Cpk

Proof: (a) If USL - T > T - LSL, then $\widetilde{C}_{pk}^{*} = \frac{d_{1} - (\overline{X} - T)}{3S}, \text{ for } \mu \ge T \text{ and } \widetilde{C}_{pk}^{*} = \frac{d_{1} + (\overline{X} - T)}{3S}, \text{ for } \mu < T.$ (1) For $\mu > T$, we define $g_{l1}(x, y) = \frac{d_{l} - (x - T)}{3\sqrt{y}}, x > T, y > 0$. Then, $\sqrt{n}(\widetilde{C}_{pk}^{*} - C_{pk}^{*}) = \sqrt{n} \{g_{11}(\overline{X}, S^{2}) - g_{11}(\mu, \sigma^{2})\}$ converges to N(0, $[\sigma_{l1}^{*}]^{2})$ in distribution, with $\left[\sigma_{l1}^{*}\right]^{2} = \left[\frac{\partial g_{l1}}{\partial x}\Big|_{(\mu,\sigma^{2})}, \frac{\partial g_{l1}}{\partial y}\Big|_{(\mu,\sigma^{2})}\right] \left[\sigma^{2} - 0 \\ 0 - 2\sigma^{4}\right] \left[\frac{\partial g_{l1}}{\partial x}\Big|_{(\mu,\sigma^{2})}\right]$ $= \left[-\frac{1}{3\sigma}, -\frac{C_{pk}^{*}}{2\sigma^{2}}\right] \left[\sigma^{2} - 0 \\ 0 - 2\sigma^{4}\right] \left[-\frac{1}{3\sigma}, -\frac{C_{pk}^{*}}{2\sigma^{2}}\right] \left[\sigma^{2} - 0 \\ 0 - 2\sigma^{4}\right] \left[-\frac{1}{3\sigma}, -\frac{C_{pk}^{*}}{2\sigma^{2}}\right] \left[\sigma^{2} - 0 \\ 0 - 2\sigma^{4}\right] \left[-\frac{1}{3\sigma}, -\frac{C_{pk}^{*}}{2\sigma^{2}}\right] = \frac{1}{9} + \frac{C_{pk}^{*}}{2} = \frac{1}{9} + \frac{1}{2} \left\{\frac{d_{l} - (\mu - T)}{3\sigma}\right\}^{2}.$ (2) For $\mu < T$, we define $g_{l2}(x, y) = \frac{d_{l} + (x - T)}{3\sqrt{y}}, x < T, y > 0$. Then,

$$\begin{split} &\sqrt{n}(\widetilde{C}_{pk}^{\star}-C_{pk}^{\star})=\sqrt{n}\{g_{l2}(\overline{X},\ S^2)-g_{l2}(\mu,\ \sigma^2)\} \text{ converges to } N(0,\ [\sigma_{l2}^{\star}]^2) \\ &\text{ in distribution, with } \end{split}$$

$$\begin{bmatrix} \sigma_{12}^{*} \end{bmatrix}^{2} = \begin{bmatrix} \frac{\partial g_{12}}{\partial x} \Big|_{(\mu,\sigma^{2})} &, \quad \frac{\partial g_{12}}{\partial y} \Big|_{(\mu,\sigma^{2})} \end{bmatrix} \begin{bmatrix} \sigma^{2} & 0 \\ 0 & 2\sigma^{4} \end{bmatrix} \begin{bmatrix} \frac{\partial g_{12}}{\partial x} \Big|_{(\mu,\sigma^{2})} \\ \frac{\partial g_{12}}{\partial y} \Big|_{(\mu,\sigma^{2})} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{3\sigma} &, \quad -\frac{C_{pk}^{*}}{2\sigma^{2}} \end{bmatrix} \begin{bmatrix} \sigma^{2} & 0 \\ 0 & 2\sigma^{4} \end{bmatrix} \begin{bmatrix} \frac{1}{3\sigma} \\ -\frac{C_{pk}^{*}}{2\sigma^{2}} \end{bmatrix} = \frac{1}{9} + \frac{C_{pk}^{*}}{2} = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d_{1} + (\mu - T)}{3\sigma} \right\}^{2}.$$
$$(3) \text{ For } \mu = T, \text{ we have } \sqrt{n} (\widetilde{C}_{pk}^{*} - C_{pk}^{*}) = -\frac{\sqrt{n} (\overline{X} - \mu)}{3S} - \frac{d_{1} \sqrt{n} (S^{2} - \sigma^{2})}{3\sigma (\sigma + S)S}.$$
Since $\sqrt{n} (\overline{X} - \mu, S^{2} - \sigma^{2}) \text{ converges in distribution to } (V, W), \text{ a bivariate}$

normal distribution $N((0, 0), \Sigma)$, with variance-covariance matrix

$$\Sigma = \begin{bmatrix} \sigma^2 & 0 \\ 0 & 2\sigma^4 \end{bmatrix}, \text{ and } \left(-\frac{1}{3S}, -\frac{d_i}{3\sigma(\sigma+S)S} \right) \text{ converges to } \left(-\frac{1}{3\sigma}, -\frac{d_i}{6\sigma^3} \right)$$

2602

in probability, then $\sqrt{n}(\widetilde{C}_{pk}^* - C_{pk}^*)$ converges to Y_i in distribution, where $Y_i = -\frac{1}{3\sigma}V - \frac{d_i}{6\sigma^3}W$ is distributed as a normal distribution with mean $EY_{i} = -\frac{1}{2\pi}EV - \frac{d_{i}}{6\pi^{3}}EW = 0$, and variance $\operatorname{Var}(Y_{i}) = \left(-\frac{1}{3\sigma}\right)^{2} \operatorname{Var}(V) + \left(-\frac{d_{i}}{6\sigma^{3}}\right)^{2} \operatorname{Var}(W) = \frac{1}{9} + \frac{1}{2} \left(\frac{d_{i}}{3\sigma}\right)^{2}.$ We note that for all $z \in \mathbb{R}$, $P\left\{\sqrt{n}(\widetilde{C}_{\mathsf{pk}}^* - C_{\mathsf{pk}}^*) \le z\right\} = P\left\{\mu \ge T\right\} \cdot P\left\{\sqrt{n}(\widetilde{C}_{\mathsf{pk}}^* - C_{\mathsf{pk}}^*) \le z\right\} \ \mu \ge T\right\}$ $+ P\{\mu < T\} \cdot P\{\sqrt{n}(\widetilde{C}^*_{nk} - C^*_{nk}) \le z \mid \mu < T\}.$ Hence, if USL - T > T - LSL, then $\sqrt{n}(\widetilde{C}_{pk}^* - C_{pk}^*)$ converges to $P\{\mu \ge T\} \cdot N(0, \ [\sigma_n^*]^2) + P\{\mu < T\} \cdot N(0, \ [\sigma_{12}^*]^2) \text{ in distribution, where}$ $[\sigma_{l_1}^*]^2 = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d_l - (\mu - T)}{3\sigma} \right\}^2 \text{ and } [\sigma_{l_2}^*]^2 = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d_l + (\mu - T)}{3\sigma} \right\}^2.$ (b) If USL - T < T - LSL, then $\widetilde{C}_{pk}^{*} = \frac{d_u - (\overline{X} - T)}{2S}$, for $\mu \ge T$ and $\widetilde{C}_{pk}^{*} = \frac{d_u + (\overline{X} - T)}{2S}$, for $\mu < T$ Applying the same technique used in (a) with $g_{u1}(x,y) = \frac{d_u - (x-T)}{3\sqrt{y}}$ for $\mu > T$, $g_{u2}(x,y) = \frac{d_u + (x - T)}{3\sqrt{y}}$ for $\mu < T$, and $Y_u = -\frac{1}{3\sigma}V - \frac{d_u}{6\sigma^3}W$ for $\mu = T$. Then, $\sqrt{n}(\widetilde{C}_{pk}^* - C_{pk}^*)$ converges to N(0, $[\sigma_{u1}^*]^2$) and N(0, $[\sigma_{u^2}^*]^2$) in distribution for $\mu \ge T$ and $\mu < T$ respectively Therefore, if USL – T < T – LSL , then $\sqrt{n}(\widetilde{C}_{pk}^* - C_{pk}^*)$ converges to $P\{\mu \ge T\} \cdot N(0, [\sigma_{\mu 1}^*]^2) + P\{\mu < T\} \cdot N(0, [\sigma_{\mu 2}^*]^2) \text{ in distribution, where}$ $[\sigma_{u_1}^*]^2 = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d_u - (\mu - T)}{3\sigma} \right\}^2, \ [\sigma_{u_2}^*]^2 = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d_u + (\mu - T)}{3\sigma} \right\}^2.$

(c) If USL - T = T - LSL (T = m in this case), then

PROCESS CAPABILITY INDEX C_{pk}

$$\begin{split} \widetilde{C}_{pk}^{\star} &= \frac{d - (\overline{X} - m)}{3S}, \text{ for } \mu \geq m \text{ and } \widetilde{C}_{pk}^{\star} &= \frac{d + (\overline{X} - m)}{3S}, \text{ for } \mu < m \,. \\ \text{Applying the same technique used in (a) with } g_{m1}(x, y) &= \frac{d - (x - m)}{3\sqrt{y}} \text{ for } \\ \mu > m \,, g_{m2}(x, y) &= \frac{d + (x - m)}{3\sqrt{y}} \text{ for } \mu < m \,, \text{ and } Y_m = -\frac{1}{3\sigma} V - \frac{d}{6\sigma^3} W \\ \text{for } \mu = m \,. \text{ Then, } \sqrt{n}(\widetilde{C}_{pk}^{\star} - C_{pk}^{\star}) \text{ converges to } N(0, [\sigma_{m1}^{\star}]^2) \text{ and } \\ N(0, [\sigma_{m2}^{\star}]^2) \text{ in distribution for } \mu \geq m \text{ and } \mu < m \text{ respectively.} \\ \text{Therefore, if } USL - T = T - LSL \,, \text{ we have } \sqrt{n}(\widetilde{C}_{pk}^{\star} - C_{pk}^{\star}) \text{ converges to } \\ P\{\mu \geq m\} \cdot N(0, [\sigma_{m1}^{\star}]^2) + P\{\mu < m\} \cdot N(0, [\sigma_{m2}^{\star}]^2) \text{ in distribution, where } \\ [\sigma_{m1}^{\star}]^2 &= \frac{1}{9} + \frac{1}{2} \left\{ \frac{d - (\mu - m)}{3\sigma} \right\}^2, \ [\sigma_{m2}^{\star}]^2 = \frac{1}{9} + \frac{1}{2} \left\{ \frac{d + (\mu - m)}{3\sigma} \right\}^2. \end{split}$$

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referees for their careful reading and helpful comments which improved the paper. The authors would also like to thank the editor Professor William Smith for his time and patience on editing the paper.

BIBLIOGRAPHY

Arnold, S. F. (1990). Mathematical Statistics. Prentice Hall.

- Chen, K. S. and Pearn, W. L. (1997). An application of the non-normal process capability indices. *Quality & Reliability Engineering International*, 13, 355-360.
- Hoskins, J., Stuart, B. and Taylor, J. (1988). A Motorola Commitment: A six sigma mandate. The Motorola Guide to Statistical Process Control for Continuous Improvement Towards Six Sigma Quality.
- Hubele, N. F., Montgomery, D. C. and Chin, W. H. (1991). An application of statistical process control in jet-turbine engine component manufacturing. *Quality Engineering*, 4(2), 197-210.

- Kane, V. E. (1986). Process capability indices. *Journal of Quality Technology*, 18(1), 41-52.
- Lyth, D. M. and Rabiej, R. J. (1995). Critical variables in wood manufacturing's process capability: species, structure, and moisture content. *Quality Engineering*, 8(2), 275-281.
- Noguera, J. and Nielsen, T. (1992). Implementing six sigma for interconnect technology. ASQC Quality Congress Transactions, Nashville, 538-544.
- Pearn, W. L., Kotz, S. and Johnson, N. L. (1992). Distributional and inferential properties of process capability indices. *Journal of Quality Technology*, 24(4), 216-233.
- Pearn, W. L. and Kotz, S. (1994). Application of Clements' method for calculating second and third generation process capability indices for nonnormal Pearsonian populations. *Quality Engineering*, 7(1), 139-145.
- Pearn, W. L. and Chen, K. S. (1996). A Bayesian-like estimator of C_{pk}. Communications in Statistics: Simulation & Computation, 25(2), 321-329.
- Pearn, W. L. and Chen, K. S. (1997). Capability indices for non-normal distributions with application in electrolytic capacitor manufacturing. *Microelectronics and Reliability*, 37(12), 1853-1858.
- Pearn, W. L. and Chen, K. S. (1998). New generalization of the process capability index C_{pk}. Journal of Applied Statistics, 25(6), 801-810.
- Rado, L. G. (1989). Enhance product development by using capability indexes. *Quality Progress*, April, 22(4), 38-41.

Received May, 1998; Revised May, 2000.