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ABSTRACT 

Pearn and Chen (1996) considered the process capability index C,,, and 

investigated the statistical properties of its natural estimator under various process 

conditions. Their investigation, however, was restricted to processes with 

symmetric tolerances. Recently, Pearn and Chen (1998) considered a 

generalization of C,,, referred to as c i k ,  to cover processes with asymmetric 

tolerances. They investigated the statistical properties of the natural estimator of 

Cik , and obtained the exact formulae for the expected value and variance. In 

this paper, we consider a new estimator of c;,, assuming the knowledge on 

P(p 2 T) = p is available, where 0 5 p 2 1 ,  which can be obtained from 
historical information of a stable process. We obtain the exact distribution of the 
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2594 PEARN AND LIN 

new estimator assuming the process characteristic follows the normal distribution. 

We show that the new estimator is consistent, asymptotically unbiased, which 

converges to a mixture of two normal distributions. We also show that by 

adding suitable correction factors to the new estimator, we may obtain the 

UMVUE and the MLE of the generalization cik . 

1. INTRODUCTION 

Process capability indices C, and C,,,, have been widely used in the 

manufacturing industry providing numerical measures on process potential and 

performance. Application examples include the manufacturing of semiconductor 

products (Hoskins et al. (1988)), headtgimbals assembly for memory storage 

systems (Rado (1989)), jet-turbine engine components (Hubele et a/. (1991)), flip- 

chips and chip-on-boards (Noguera and Nielson (1992)), rubber surrounds (Pearn 

and Kotz (1994)), wood products (Lyth and Rabiej (1995)), audio-speaker drivers 

(Chen and Pearn (1997)) electrolytic capacitors (Pearn and Chen (1997)) and 

many others. The two indices C, and C,, have been defined as the following 

(Kane (1 986)): 

C, = 
USL - LSL 

6s 

where USL and LSL are the upper and the lower specification limits, p and o 

are the process mean and the process standard deviation. The natural estimators 

of the two indices can be expressed as: 

- USL-LSL 
C, = 

6 s  

- 
where X = (C:=,X,) /n and S = {(n - I)-IC''',(X, - X)'J''~ are conventional 

estimators of p and (3. We note that C,, can be rewritten as 
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PROCESS CAPABILITY INDEX Cpk 2595 

Cpk ={d-b-m1}/3o, where d=(USL-LSL)/2 ,  and m=(USL+LSL) /2 .  

Thus, e, and ep, may be expressed as: 

A d - I - {  i F ; m i h p  
C = - and Cpk = - 

3 s '  3 s  

Under normality assumption, kp is distributed as (n-1)'12Cp(X,!,), and 

n1l2lX-mllo is distributed as the folded normal distribution with parameter 

n " 2 1 p - m / / ~ .  Thus, tPh is a convolution of xi!, and the folded normal 

distributions (Peam et al. (1992)). If the knowledge on P(p 2 m) = p is 

available, where 0 5 p 2 1 , Peam and Chen (1 996) proposed a Bayesian-like 

estimator which is more reliable (with smaller variance) than the natural 

estimator. 

2. Tl3X GENERALIZATION c*, 

The indices C, and Cpk are appropriate for processes with symmetric 

tolerances, but have been shown to be inappropriate for processes with 

asymmetric tolerances. For processes with asymmetric tolerances, Peam and 

Chen (1998) considered a generalization of Cpk, referred to as c ; ~ ,  which is 

defined as : 

where d' = min {d,, d,}, A' = max {d*(p - T)/d,, d * ( ~  - p  )/dl }, d, = USL - T, 

and dl = T - LSL. Clearly, if T = m (symmetric case) then d' = d, A*= ( p - m 1 
and the generalization cIpk reduces to the original index Cpk. The factors d* and 

A* ensure that the generalization c ; ~  obtain its maximal value at T (process is 

on-target in this case) regardless of whether the tolerances are symmetric or 

asymmetric. 

The natural estimator of c',~ can be obtained by replacing p and o by X 
and S as defined earlier. Thus the natural estimator can be expressed as the 

following, where A' = max {da(X -~)/d, ,  d * ( ~ -  X )/dl). Pearn and Chen (1 998) 
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2596 PEARN AND L N  

investigated the statistical properties of the natural estimator of C;k, and obtained 

the exact formulae for the expected value and variance. 

3. A NEW ESTIMATOR OF Ck 

If the knowledge on P(p 2 T) = p is available, where 0 < p 21,  then we 

consider the following new estimator e*,, . The knowledge on the probability 

P(p 2 T j  = p may be obtained from historical information of a process that is 

demonstrably stable. 

where x* = max { ( X  -~j~, ,(p)d' /d, ,  ( 2  -T)I,,(p)d*/d, }, I,,(.) is the indicator 

function defined as I,,(p) = 1 if p E B*, and I,,(p) = -1 if p E B*, with 

B* = { p / p 2 T } . In the following, we show that if the process characteristic 

follows the normal distribution N(p ,  o') then the new estimator C;, is 

distributed as t,_, (6 ') , a non-central t distribution with n -1 degrees of freedom 

and non-centrality parameter 6 ' = 3 m i k  . 

Theorem 1. If the process characteristic follows the normal distribution, 

then 3n1"Eik is distributed as t,-,(6 * )  , a non-central t distribution with n - 1 

degrees of freedom and non-centrality parameter 6 * = 3 j n c i k  . 

Proof: Case 1 : If USL - T > T - LSL, then E',k ={d, - (X -T) I,. (P) }/(3Sj, 

Case 2: If USL - T < T - LSL, then E * , k  ={d, - (X -T) I ~ .  (p) )1(3S), 

-* s " - - 1 P s " - p - 1 .  P (X - PY,. (p) 
Cpk--C = -- = - 

(3 pk 3s (3 30 30 

Case 3: If USL - T = T - LSL, then CIpk reduces to Cpk , 
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PROCESS CAPABILITY INDEX Cpk 2597 

C I p k  = {d - (X - m)IB. (p)}/(3S), and 

Thus, for all three cases, and for all x E R , 

Under normality assumption, and S2 are mutually independent. Therefore, 

Z = 3 n 1 i 2 ~ ~ a ~ / o  and W = (n -1)s' lo2 are also mutually independent, with Z 

distributed as ~ ( 6 * ,  I), a normal distribution with mean 6 * = 3 k ; k ,  and W 

distributed as Xi_, , a chi-squared distribution with n - 1 degrees of freedom. Thus 

3n1'2Eik = ZI is distributed as t,-I (6 * )  , a non-central t distribution 

with n - 1 degrees of freedom and non-centrality parameter 6 ' = 3&ciL. 

The r-th moment (about zero), therefore, is: 

By setting r = 1, and r = 2 ,  we may obtain the expected value E(?;~), and the 

variance var(?;,), 
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2598 PEARN AND LIN 

Table 1. Values of MSE(E;,) for n = 5 ( 5 )  100 with c;, = 1. 

Sample 
size MSE Sample size MSE 

Therefore, the mean-squared error MSE(~; , )  can be obtained as: 

It can be shown that the coefficient of E(C;~), bn-, = [2/(n - l)]li2 x T[ (n- 

1),/2]/T[(n - 2)/2]< 1 for all n, which in fact converges to 1 as n approaches to 

infinity. Thus, the estimator Eik is biased, which over-estimates the actual 

value of C;, . Table 1 displays various values of MSE(~;,) for sample sizes n 

= 5(5)100 under the condition of ~ i k  = 1. For sample size n > 65, the mean- 

squared error is negligibly small (less than 0.01). 
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PROCESS CAPABILITY INDEX Cllk 2599 

Theorem 2. If the process characteristic follows the normal distribution, 

then (a) eik is asymptotically unbiased, (b) eik is consistent. 

Proof (a) By Stirling's formula, it is easy to show that b,-I converges to 1. 

Therefore, E(?;~) = cik/bn-] converges to Cik. Hence, the estimator E',, is 

asymptotically unbiased. (b) Since X converges to p in probability, and S 

converges to o in probability, then E i k  must converges to cik in probability. 

Therefore, the estimator Eik is consistent. 

Theorem 3. If the process characteristic follows the normal distribution, 

then nIi2 (EiA - c ; ~ )  converges to the following in distribution: 

(a) p . N(0, [a;,12) + (1 - p) . N(0, [o;,J2), if USL - T > T - LSL , 

(b) p . N(0, [o:,l2) + (1 - p) . N(0, [o:,]') , if USL - T < T - LSL , 

(c) p . N(0, [o:,~]~) + (1 - p) . N(0, [oi212), if USL - T = T - LSL , where 

Proof: See Appendix. 

Theorem 4. If the process characteristic follows the normal distribution, 

then (a) b,.,e6L is the UMVUE of c i k ,  (b) c , . ~ E ~ ~  is the MLE of Cik, where 

b,_, = r [(n - 1)/2]{ r [(n -2)/2])-'[2/(n -I)]'/~ , and c,., = [d(n - 1)]'/* . 

Proof: (a) Since E[E& = ~ i ~ / b , - ~ ,  then b,.& is an unbiased estimator of c ; ~ .  

Since the unbiased estimator b,.,?; is based on the complete and sufficient 

statistics (x S2)  only, then by Lehrnann-Scheffe's theorem, b,.,E',, is the 

UMVUE of c',, . 

(b) We first note that the statistic (x [(n -l)/n]S2) is the MLE of@, 0 2 ) .  By 

the invariance property of the MLE, c,.,EiA is the MLE of c i k ,  where c,., = 

[n/(n - 1)]1'2 . 
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2600 PEARN AND LIN 

Applying the Slutsky's theorem (Arnold (1990)), it is straightforward to 

show that the UMVUE bn.,Eik, and the MLE c,.,Ei, both converge to the 

mixture of two normal distributions as stated in Theorem 3. 

4. CONCLUSIONS 

Pearn and Chen (1998) proposed a generalization of C,k, referred to as Cik, 

for processes with asymmetric tolerances. They investigated the statistical 

properties of the natural estimator of c i k ,  and obtained the exact formulae for the 

expected value and variance. In this paper, we considered a new estimator of 

Cikr assuming the knowledge on P(p 2 T) = p is available, where 0 r p 5 1 ,  

which can be obtained from historical information of a stable process. We 

showed that under normality assumption the new estimator is distributed as 

t,_i(6 *),  a non-central t distribution with n - 1 degrees of freedom and non- 

centrality parameter 6 * = 3&cik. We also showed that the new estimator is 

consistent, asymptotically unbiased, which converges to a mixture of two normal 

distributions. In addition, we showed that by adding suitable correction factors 

to the new estimator, we may obtain the UMVUE and the MLE of the 

generalization c*,~ . 

APPENDIX 

Theorem 3. If the process characteristic follows the normal distribution, 

then &(Eik - cBk) converges to the following in distribution: 

(a) p.N(O, [ O ; , ] ' ) + ( ~ - ~ ) . N ( O ,  [u;,12),if USL-T>T-LSL,  

(b) p,N(O, [o l1 l2)  + (1 - p ) . ~ ( O ,  [o:,12), if USL - T < T - LSL , 

(c) p .N(O, [oil] ' )  + (1 -p) .N(O, [o:,l2), if USL - T  = T - LSL , with 

1 1 d-(p-m) D
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PROCESS CAPABILITY INDEX Cpk 

Proof (a) If USL - T > T - LSL , then 

p* - d t - ( Z - ~ )  
, for p > T and E',, = 

d, + (TT-T) 
pk - ,for p < T .  3 s  3 S 

dl -(x-T) 
(1) For . p > T , we define gll (x, y) = , x > T, y > 0 .  Then, 

3JS; 

&(Eik - c;t) = l/;;{gll(X, s*) - gtl(p, 02)} converges to N(O, [o;,12) 

in distribution. with 

d, + (x -T)  
(2) For p < T , we define g,, (x, y) = , x < T, y > 0 .  Then, 

3 f i  

Z/;;(Eik - c;~) = I/f;{gi2(X, s*) - gi2 (p, 0 *)) converges to N(0, [o;,12) 

in distribution, with 

(3) For p = T , we have &(eiI. - c',~) = - l/;;(T(- p ) - dl&(s2 -0 2, 

3 s  30 ( 0  +S)S 

Since &(X - p, s2 - 0 2 )  converges in distribution to (V, W) , a bivariate 

normal distribution N((0, 0), C) , with variance-covariance matrix 

2=[0'  0 2~~ 0 1 , a n d  /-l 3s ' - 30(o + S)S converges to (- --, 1 - &) D
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2602 PEARN AND LM 

in probability, then &(Cik - c ; ~ )  converges to Y, in distribution, where 

1 d 
Y, = --V -1 W is distributed as a normal distribution with mean 

30 603 

1 d 
EY, = -- EV - 4 EW = 0 ,  and variance 

30 60' 

Hence, if USL - T > T - LSL , then &(eik - c i k )  converges to 

~ { p  2 T) . N(O; [o; ,J2) -t ~ ( p  < T). N(0, [0;,J2) in distribution, where 

(b) If USL - T < T - LSL , then 

-. d, -(X-T) - d ,+(X-T)  
Cpk = , for p r T and C;, = .for p < T .  

3s  3 s  ' 

d u  - (x-T)  
Applying the same technique used in (a) with g,, (x, y) = f o ~  

3 h  

d, +(x-T)  1 d 
p > T ,  gU2(x,y)= for p < T , a n d  Y, =--V-+W 

3 5  30 60' 

for p = T . Then, &(e',k - C;k) converges to N(0, [o:, J 2 )  and 

N(0, [ c / ~  J 2 )  in distribution for p 2 T and p < T respectively. 

Therefore, if USL - T < T - LSL , then A(?> - c;~) converges to 

~ ( p  2 T}.N(O, [ o t , l 2 ) +  ~ { p  < T}.N(O, [0:,J2) in distribution, where 

(c) If USL - T = T - LSL ( T  = m in this case), then 
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PROCESS CAPABILITY INDEX CDk 

-d - (X-m)  - d+(X-m)  
pk - , for p 2 m and Cpk = , for p < m 

3 s  3 s  
d-(x-m) 

Applying the same technique used in (a) with g,, (x, y) = for 
3 h  

d + ( x - m )  1 d 
p > m ,  gm2(x,y)= for p < m , a n d  Y,,, =--V--W 

3& 30 60' 

for p = m .  Then, &(e;k -Cik)  converges to N(0, [0',,,12) and 

N(0, [cY:,,]~) in distribution for p 2 m and p < m respectively. 

Therefore, if USL - T = T - LSL , we have &(?ik - c i k )  converges to 

P ( ~ > ~ ) . N ( O ,  [ o ; , , l 2 ) + ~ { p  <m}.N(O, [0*,,12) indistribution, where 
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