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ABSTRACT 

A double diffusive natural convection in a rectangular enclosure filled with porous medium 

is investigated numerically. The distribution of porosity is based upon the random porosity 

model The Darcy-Brinkman-Forchheimer model is used and the factors of heat flux, mean 

porosity and standard deviation are taken into consideration. The SIMPLEC method with 

iterative processes is adopted to solve the governing equations. 

The effects of the random porosity model on the distributions of local Nusselt number are 

remarkable and the variations of the local Nusselt number become disordered. The 

contribution of latent heat transfer to the total heat transfer of the high Rayleigh number is 

larger than that of the low Rayleigh number and the variations of the latent heat transfer are 

not in order. © x000 Elsevier Science Ltd 

lalraflltC.ti~ 

Porous structures are very often applied to enhance heat transfer rate. For analyzing heat 

transfer in porous medium, a simplified model of constant porsity was first proposed in the past 

to analyze the phenomena of flow and thermal fields in the porous. However, the porosity 

which varied significantly in the near wall region was observed by Roblee et al. [1] and 
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Benenati and Brosilow [2] in their experimental results. Further, Cheng et al. [3] indicated that 

the distribution of porosity could be simulated as a damped oscillatory function of the distance 

from the wall. Georgiads et al.[4, 5, 6] studied the unidirectional transport phenomena of flow 

and heat transfer in porous medium with the stochastic model and indicated that the results 

obtained by the random porosity were larger than those ottained by the Forchheimer model 

with the constant porosity model. Saito et al. [7] studied the effects of the porosity and void 

distributions on the permeability by Direct Simulation Monte Carlo method. The results 

showed that the characteristics of the porosity distribution were disordered and random. 

Recently, Fu and Huang [8] developed a random porosity model to investigate the forced 

convection in the porous medium. The variations of distributions of heat transfer rate on the 

heated wall were no longer smooth and varied apparently. As for the results of the natural 

convection accompanying with evaporation in porous medium under the random porosity 

model are seldom investigated in detail. The aim of this study i~ to use a random porosity 

model to investigate double diffusive natural convection phenomena in an enclosure filled with 

porous medium numerically. The distribution of the random porosity is generated by 

Kinderman-Ramage procedure [9] to follow the normal (Gaussian) distribution criteria. The 

Darcy-Brinkman-Forchheimer model of the porous medium is taken into consideration. The 

SIMPLEC numerical method is adopted to solve the governing equations with the iterative 

computing processes. 

aaal.v~ 

A physical model of a two-dimensional rectangular porous medium enclosure is shown in FIG. 1. 

The random porosity model proposed by Fu and Huang [8] is adopted, and the distributions of the 

porosity are disordered and random. 
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FIG. 1 

Physical model and porous medium with the random porosity distribution. 

The width and length of  the enclosure are H and L (=H), respectively. Two horizontal walls of  the 

enclosure are adiabatic and the gravity is downward. The left wall is subject to a uniform heat flux qw 

and low temperature, concentration, and relative humidity conditions of  the fight wall are 

T R = 293K, C a and ~ R = 30%, respectively. In order to enhance heat transfer rate of  the left wall, the left 

wall surface is wetted with water film in this study. The thickness of  the water film is assumed to be 

extremely thin and evaporated immediately on the wall, then the water film neither penetrates into the 

porous medium region nor flows downward. The water film is evaporated by the heat flux imposed on the 

left wall, and the condition of  relative humidity of  the left wall surface is saturated. Consequently, the 

sensible and latent heat transfers of  natural convection occur in the enclosure simultaneously, and the 

temperature TL(y ) and concentration CL(y) on the left wall are no longer regarded as presumably constant 

in advance and affect mutually. The working fluid in the enclosure becomes air-moist fluid. 

For facilitating the analysis, some following assumptions are made. (1). The porous medium is made 

of  non-deformable pure copper spherical beads (k  s = 386 W m l  o C-I ) which are not chemically reactive 

with the fluid. (2). The flow in the enclosure is laminar, steady and two-dimensional. Corresponding to 

the thermal and concentration boundary conditions selected, the condensation does not occur in the 
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enclosure. (3). The effects of Soret and Dufour induced by mass transfer are neglected, and Boussinesq 

approximation is held. (4). Except the left wall region, the properties of the air-moist fluid medium are 

constant and based on the temperature of the right wall. The properties of the air-moist fluid on the left 

wall which are calculated by [10] are based on the temperature of the left wall under a saturated condition. 

(5) The form of the effective thermal conductivity l%fr are defined as kefr / kf = 4 ln(k s / kf ) - 11 which 

is proposed by Shonnard and Whitaker [ 11 ] for high thermal conductivity ratio. (6). The permeability K = 

g3d2p/[150(1- s)2] and inertia factor F = 1 . 7 5 / ( ~  5) refer to [12]. Based on the above assumptions 

and with the following characteristic scales of H, T R , q w, v R, k ~ ,  the governing equations adopted in 

[13], geometry dimensions and boundary conditions are normalized as follows. The porosity s in the 

following equations is random and obtained from [8]. In the meantime Darcy-Brinkman-Forchheimer 

model is used in the momentum equations. 

Governing equations: 

~U ~V 
- - + - -  = 0 (1)  
8X 0Y 

ffX-t,-~) ~ - I , - ~ - ) = - ~  - t,~--~T ~--~T) Da - ~ a  sU (2) 

U 0 C V ~ + v  c~ (V~  _¢gP+["~92V 02V'~ 1 sV FIOI (3) 

1 ¢ a 0) 
U O0 + V 6~0 = P r  (~--~- + ~ - )  c~X 0Y (4) 

u O W + v  C3w - - / ~  = _ l  f"O2W O2W'~ 

0x  ov  -- ScC 0x~ + 0 y  ~ ) 
(5) 

Where' X = ~ ' Y = y H '  U =--,UHvR V = vH, P - p H 2 v R  - - - o r  2 , 0 -  kes (T - T R ) q w  H , W - (eL (y) _ CR ) ( C  - CR) , 

_ g~tqw H4 g[3c(C - C  R)H 3 _ vlt v R _ keff K ,Pr - - - ,  Sc = - - ,  ct Da : I01 =,/~ + v2 Ca- t Grc 
' V2 ff'R DR -- ~ - P '  ' ' kerr 

1 M a 
[St = ~ ,  fie = (-:'7--= - 1) (6) 

rvl~ 
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Boundary conditions: 

~0 aW = 0 (7) On OP (top wall) U = 0,V = 0, ~ = 0, 0~f 

On PQ (right wall) UR = 0,VR = 0, Or( = 0, W R = 0 (8) 

0 aW On QR (bottom wall) U = 0,V = 0, ~-~ = , ~ -  = 0 (9) 

OnRO (lef t  wal l )  U L =0, V L =0, 0 L =0L(Y),  W L =WL(Y) (10) 

The other important values of evaporation mass flow rate riaL(y ) , sensible heat flux qs (Y) and 

latent heat flux q e (Y) are calculated by the following equations, respectively. 

pLDL 0 C  = 

thE(Y)= (l_CL(y))0X[x=0 
pLDL (CE(XI,Y)-CL(Y)) 

(1 -CL(Y)) _ldx 1 
2 

(11) 

q w = q s ( y ) + q e ( y )  (12) 

q s ( Y ) = - k e f f - ~ x = 0  =-keff  (TE(Xl 'Y)-TL(y))  
~dx~ 
2 

(13) 

PLDLhfg ~ x = 0  = pLDLhfg (CE(Xl 'y) -CL(Y))  (14) 
qe(Y) = rhL(Y)hfg = (I_CL(Y)) (1-CL(Y)) l d x  1 

2 

Based on the experimental results of Fu and Huang [8], in this study the mean porosity ~ is 

conveniently regarded as 0.5 and the standard deviation tse is 0.05 which is 10% of the mean porosity. 

h 

The mean diameter dp is selected as a characteristic bead diameter and equal to 1.0 mm. For the 

necessity of computing procedures, the theoretic form of the porosity distribution of the random porosity 

model is generated by the Kinderman-Ramage procedure in [8] and the distribution of the general 

random variable e is regarded as the porosity distribution of the random porosity model in this study. 

~Ialae, lJ.catm~aml 

The SIMPLEC algorithm [14] with TDMA solver [15] is used to solve the governing equations (1)- 

(4). Under-relaxation factors are 0.1-4).5 for all the variables of velocity, temperature, and concentration 

in the cases, respectively. The staggered mesh is used, the finer meshes are set near the solid wall regions 
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and the meshes are expanded outward from the boundary wall with a scale ratio 1.03. The conservation 

residues of the governing equations and the relative errors of all variables are used to examine the 

convergence criteria defined as follows : 

2 /2 
[Residue of ¢ equation c v 1 -<10-4' ~=  U, V, 0 and W. (15) 

L Cn+' ¢°V 
- / i q ~ , . i i  _< 1 0 - 3 , ~ = U , V , P ,  0, Wandq .  (16) 

The accuray of the similar numerical method is validated in Fu et al. [16, 17, 18]. The comparison 

between the results obtained from the present methos and those from Goyeau et al. [19] are indicated in 

Table 1. for the conditions of double diffusive natural convection in a porous cavity with aspect ratio 

A=I and Darcy number Da=10 -7 . The deviations between these two results are less than 40/60. 

TABLE 1 

The comparison of the results of [20] under the constant porosity model with the present study. 

Ra* Le Nu 
(Goyeau et al.) 

50 1 1.98 
10 

100 
100 1 

10 
100 

1.98 1.9984 
1.98 1.9984 
3.11 3.1558 
3.11 3.1558 
3.11 3.1558 

Nu Error 
(present (%) 
study) 
1.9984 0.92 

0.92 
0.92 
1.45 
1.45 
1.45 

Sh 
(Goyeau et al.) 

1.98 
8.79 8.9514 

27.97 28.754 
3.11 3.1558 
13.25 13.660 
41.53 42.358 

Sh Error 
(present (%) 
study) 
1.9984 0.92 

1.8 
2.73 
1.45 
3.00 
1.95 

Results and Discussion 

The distributions of porosity are generated by the random porosity model [8] with a given mean 

porosity g and a standard deviationo~. However, it is difficult to solve all of the patterns. Therefore, in 

the present study only ten patterns with each mean porosity (~ =0.5, 0.7) are presented to investigate the 

effects of the random porosity model on the flow, thermal and concentration fields. The parameters of two 
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mean porosities, three standard deviations and eight random variables tabulated in TABLE 2 are adopted. 

The results of the grid tests for computation are listed in TABLE 3 and the grids of 74× 74 are selected for 

the following calculation processes with Ax I = Ay I = 0.0075 and Axi+l /Axi=l .03 which are 

symmetric to central lines of the computing domain. In this study, the range of Rayleigh numbers Ra 

[=(gl3tqwH4)/(kegVR~tR)] from 1.839x106 to 2 .963x106,  the Prandtl number Pr is 0.02583 and 

Schmidt number Sc is 0.5425. 

TABLE 2 
The main porosity ~, standard deviation o and random variable ~ adopted for the cases. 

Case ~ ~c (%) ~ Case 8 o'~ (%) 
(Ra= 3.678 x 106 ) 

RUN1 0.5 0.7 10 ~ RUN6 0.5 0.7 10 ~6 

RUN2 0.5 0.7 15 ~l RUN7 0.5 0.7 10 ~7 

RUN3 0.5 0.7 5 ~l RUN8 0.5 0.7 10 ~8 

RUN4 0.5 0.7 I0 ~4 RUN9 0.5 0.7 I0 ~9 

RUN5 0.5 0.7 10 ~5 RUN10 0.5 0.7 10 ~10 

Grid tests forRa = 3.678 

Ax1, AYl lRatio(AXi+l__ ) 
/xX i 

0.005 

0.005 

0.0075 

0.075 

1.03 

1.05 

1.03 

1.05 

Grids " N---u 
(Nx  x N y )  

94 × 94 1.863868 0.0075 

74 × 74 1.864367 0.01 

74 × 74 1.864232 0.15 

60 × 60 1.864193 0.15 

TABLE 3 
x 106,8=0.5, o'r,=lO% and 

Axl,AYl 

Op--o.oo5. 
Ratio( Ax i+l 

Ax i 
1.1 

1.03 

1.03 

1.05 

Grids " N--u " 
) (Nx  x N y )  

42 x 42 1.865727 

62 × 62 1.862837 

46x 46 1.863325 

40 x 40 1.864103 

There are two selected cases (RUNs 2 and 3) shown in FIGs. 2(a)-(d). The global porosity 

distribution maps and the near wall local porosity e v distributions along the Y direction at X=0.00375 

are illustrated. In the global porosity distribution maps, the total area are divided into several main 

porosity regions with different grey scale, and the darker scale represents the smaller porosity. The 
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porosity distributions are not in order, then sparse and dense structures are generated at random. The 

variations of porosity in most region are from ~ - ~c to ~ + c r  which are consistent with the results of 

normal distribution. As the standard deviation is smaller, the variation of the distribution of porosity is 

smaller, too. 

08 ~ 070 j ~ i 

0.6 0,60 ~ , 

v 0.50 y 0.5 ~ t 

04 I °'~° ~ ~ ~ 1  
0.30 ! 

0.2 =0,20 0 . 0  I ~ i 

0.0 0.3 0.5 0.7 
O0 0.2 0 4  0.6 08  1.0 

x (a) RUN2 ~;Y 

I , 1 
~057 

0.53 

Y 0.49 y 0 . 5  

0.45 

041 0.0 ~ - - 

0.0 0.3 0.5 0.7 
0.0 0.2 0 4 0,6 0.8 I 0 

x (c) RUN3 ~Y 

(b) RUN2 

(d) RUN3 

FIG. 2 
The global porosity distribution maps (a) and (c) and the local porosity ey  distributions 
(b) and (d) at X=0.00375 along the Y direction under Ra = 3.678 x 106 and ~ = 0.5.  

The distributions of streamlines, isotherms and isosolutal lines are illustrated in FIG. 3. For the same 

reason, as the standard deviation is larger, the distribution or deformation of the above different lines 

becomes apparent. The isothermal lines are almost vertical as approaching the right wall, which means 

the heat conduction mode to be dominant. Since the distributions of porosity are random, the streamlines 

are no longer smooth. 
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In TABLEs 4 and 5, the local Nusselt number Nu(Y) at different locations of Y-axis for ~=0.5 

and ~ --0.7 are presented, respectively. 

TABLE 4 
The local Nusselt number at different locations of Y-axis under Ra = 3.678 x l 06 and 

=0.5. ( RUN11 : constant poros[ty mod d ) 
I I NaVY ~ I,]RUNI RUN2 RUN3 RUN4 RUN5 RUN6 RUN7 RUNSIRUN91 RUN10 RUNll 
Y=0.00375 i 1.942 1.950 1.937 1.943 1.941 1.942 1.944 1.9431 1.944i 1 . 941  1.943 
Y=0.2083 1.922 1.928 1.919 1.923 1.922 1.923 1.923 1.9221 1.924 1 . 9 2 2  1.923 
Y=0.4034 1.885 1.$88 1.883 1.886 1.884 1.885 1.885 1.8841 1.8861 1 .885  1.885 
Y=0.5966 i 1.843 1.841 1.845 1.843 1.844 1.843 1.843 1.8441 1.843 i 1 . 844  1.843 
Y=0.8050 1.807:1.802 1.81(1 1.80,* 1.806 1.806 1.'806 1.8071 1.805 1 . 8 0 7  11805 
Y--0.9963 1.792 ~ 1.786 1.795 1.785 1.790 1.7911 1.790 1.791] 1.789 1.79(] 1.789 

TABLE 5 
The local Nusselt number at different locations of Y-axis under Ra = 3.678 x 106 and e =0.7. 

N~Y) ;RUN1 
Y=0.00375 2.426 
Y=0.2083 , 2.306 
Y=0.4034 2.114 
Y=0.5966 1.903 
Y=0.8050 1.735 
Y=0.9963 1.665 

RUN2 IRUN3 IRUN4 [RUN5 IRUN6 IRUN7 IRUN8 IRUN9 

I~ ~II] IP4II~J~ kl I P I [ I ~ |  I l l 'J(1/;11~It i  I~'~ I P J I I ~ ]  IP4g[l l  I IPJII{I !, 

RUN10 1RUNll 
2.4231 2.363 
2.301 2.25i 

2.1041 2.074 
1.9161 1.891 
1.7411 1.722 
116531 1.65(1 

The local Nusselt number is defined as follows. 

Nu(Y)= ht(y)H =Nus(Y)+Nut (Y ) 
ke~ qw 

,where ht(y ) - (17) 
_ qs 1 +  qe 1 (TL(y)-Tg) 

qw 0L(Y) qw 0L(Y) 

Due to the random distribution of porosity, even at the same locations the values of the local Nusselt 

number of each run are slightly different. The average local Nusselt number of the RUN1 and RUN4-10 

which are under g = 0.5 and o'e =10% is about 1.8653, and the standard deviation of the local Nusselt 
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numbers is about 3.11% which is smaller than that ( t ~  =10%) of porosity distributions of the RUN1 and 

RUN4-10. The effect of the standard deviation of porosity distribution on the standard deviation of the 

average local Nusselt numbers is not very apparent. 

Streamlines Isothermal lines Isosolutal lines 

-' ~- -;,,,/!, , .... , 

, ~ ~- ',I, . . . .  " ' ' ' i  

l', i,~i ; ~' ";',~ll , ,' ,, I : 

a) 

i i i , !  ~b) 

FIG. 3 

The distributions of streamlines, isothermal lines and constant concentration lines. 

(a) RUN2 (b) RUN3 for Ra = 3.678 x 106 and e =0.7. 

In FIGs. 4(a) and (b), there are the distributions of local sensible and latent Nusselt numbers, 

N u s ( Y  ) and Nu e (Y  ) , respectively. Similar to the results shown in TABLE 5, the local sensible and 

latent Nusselt numbers are different for each case. The cold fluids reach the left (hot) wall at the lower 

region first, then the strong convection enhances the latent heat transfer and theNue(Y ) is larger 

t hanNus (Y  ) in the lower region. Oppositely, in the upper region, the value o f t h e N u s ( Y  ) is larger than 

that of the N u  e (Y)-  In general, the larger the g is, the stronger the evaporation is. As a result the local 

Nusselt numbers on the left wall becomes larger. Besides, the larger the standard deviation ~ (RUN2), 

the variation of the porosity distribution becomes more apparent, then the fluctuations of the local Nusselt 

numbers of Nue (Y  ) and N u s ( Y  ) along the left wall increase as the standard deviation c~ increases. 
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FIG. 4 

The dislributions o f (a )  local sensible Nusselt number N u s ( Y ) ,  (b) local latent Nusselt number Nut (Y)  
o f  ~ =0.7 for the selected cases (RUNs 1-4 ) on the left wall for Ra = 3 .678  x 106 . 

R~ 

1.0 

f l  ; s  r r 
0.8 0.2 

F" . . . . .  " . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . .  . _  _ _ . . . . . .  : 
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FIG. 5 

The distributions o f  R e and R s on the left wall for different Ra situations (a)for ~ =0.5 and a~=10% 

in RUN1. (b)for ~ =0.7 and 6~ =10% in RUN1. 

. . . . .  R a = 9 . 1 9 5 × 1 0 6 , - . . - R a = 7 . 3 5 6 x 1 0 6 ,  _ . - .  R a = 5 . 5 1 7 × 1 0 6 ,  

- - -  Ra = 3.678 × 1 0 6 , - -  Ra = 1.839 × 106 and e e e  Ra = 3.678× 106(~) 

Shown in FIG. 5, the values o f  R e and R s indicate the ratios o f  latent heat flux qe and sensible 

heat flux qs  to the total heat flux q w -  The value o f  the ratio R means the contribution o f  the above 

individual heat flux to the total heat flux. The dot symbol indicates the results o f  the constant porosity 

model. As  the value o f  Ra is smaller, the driving force o f  fluid f low becomes small which results in 
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weakening of  the convection and the evaporation simultaneously. The value of R e is then smaller under 

the smaller Ra case shown in FIG. 5(a) . Oppositely, as the value of Ra is larger, based on the reason 

mentioned above, the evaporation becomes dominant and the value of R e becomes larger. Besides, as 

the ~ is larger, which means the variation of porosity to be more drastic, the fluctuations of the 

distribution of  R e and R s become more apparent as shown in FIG. 5(b). 

A double diffusive natural convection in a square enclosure filled with porous medium under 

evaporation situation is investigated with the random porosity model numerically. The effects of  Rayleigh 

number Ra, mean porosity e and deviation ~e on heat and mass transfer are examined and can be 

summarized as follows: 

(1). The standard deviation is larger, the variation of the distribution of porosity is more chaotic which 

causes the flow pattern to be distorted apparently. 

(2). The effect of  the random porosity model on the distributions of  local Nusselt number is remarkable. 

(3). The latent heat flux plays an important role in heat transfer mechanism under high Rayleigh number. 

As the mean porosity is larger, the contribution of latent heat flux becomes more important. 

~lame, n d a t l l ~  

C mass or concentration fraction 

Cp specific heat of  fluid 

dp mean porous bead diameter 

D binary diffusion coefficient 

Da darcy number 

Dp dimensionless bead diameter, dp / H 

F inertial factor; Forchheimer factor 

g gravitational acceleration 

Gr¢ Grashof number for mass diffusion 

Gr t Grashofnumber for thermaldiffusion 

h c concentration transfer coefficient along the 
vertical wall 
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hfg vaporization enthalpy 

h t thermal heat transfer coefficient along the 
vertical wall 

H dimensional width 

keff effective thermal conductivity 

kf  thermal conductivity of  the fluid 

k s thermal conductivity of  solid phase 

K permeability 

L dimensional length 

rfi evaporation mass flow rate 

M molecular weight 

Nu local Nusselt number along the vertical wall 

Nu  mean Nusselt number 

p dimensional pressure 

P dimensionless pressure 

Pr Prandtl number, v R/ct R 

q heat flux 

Ra Rayleighnumber, (gl3tqwH4)/(k~frvRctR) 

Ra ° Darcy-Rayleigh number, 

(gl3tqwH2K)/(k~ VR~t R ) 

R e ratio of latent heat flux in the left wall to 
total heat flux in the left wall, q~/qw 

R s ratio of  sensible heat flux in the left wall to 
total heat flux in the left wal qs /qw 

Sc Schmidt number, v ~ / D  R 

T temperature 

u,v dimensional velocity 

U,V dimensionless velocity 

x, y dimensional Cartesian coordinate 

X, Y dimensionless Cartesian coordinate 

GREEK SYMBOLS 

a thermal diffusivity 

[3 t coefficient of  volumetric expansion with 
temperature 

13c coefficient of volumetric expansion with 
mass fi:action 

porosity, e = ~ + ~ x o~ 

ev near wall local porosity at X=0.00375 

computational variable 

~t viscosity 

v kinematic viscosity 

random variable 

0 dimensionless temperature 

0* modified dimension temperature, 0/kee r 

p fluid density 

eye standard deviation 

relative humidity 

u/ dimensionless stream function, 
u = 0 v / 0 Y  

SUBSCRIPTS 

a air 

C.V. control volume 

eft effective value 

E enclosure 

f fluid phase 

i index 

latent heat 

L left wall 

p porous medium 

R fight wall 

s solid phase 

S sensible heat 

v vapor 

W solid wall 

SUPERSCRIPTS 

n the nth iteration index 

- -  mean value 

--~ velocity vector 

OTHER 

I I magnitude of  velocity vector 
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