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Abstract. We derive the nonlinear paraxial wave equation for the propagation of an optical
beam in nonlinear anisotropic media with centrosymmetry. As an application of the equation,
we obtain the nonlinear refractive index (NRI) in three uniaxial crystals belonging to the
symmetry classes 6/mmm of the hexagonal system, 4/mmm of the tetragonal system, and3̄m
of the trigonal system, respectively, and consider the self-trapping and self-focusing of the
beam propagating in any direction in these crystals. We conclude that NRI, critical power and
self-focusing length are all anisotropic (dependent upon the propagation direction) for an
extraordinary light but isotropic for an ordinary light, and that there exists an elliptical
self-trapping beam for the extraordinary light.

Keywords: Nonlinear refractive index, optical beam, self-focusing, self-trapping, uniaxial
crystal

1. Introduction

A variety of nonlinear optical effects such as optical
Kerr effects, ellipse rotations, self-focusings, self-phase
modulations, and optical solitons, are related to the nonlinear
refractive index (NRI) [1, 2], a phenomenon that refers to
the intensity dependence on the refractive index, i.e. the
refractive indexn̄ becomes

n̄ = n + n2|E|2,

wheren is its linear part,E is an electric field, andn2 is a
NRI. The fundamental physical origin of the NRI is made
clear via the formalism of nonlinear optical susceptibilities.
The NRI n2 is derived from the real part of a Fourier-
transformed third-order susceptibility tensorχ(3), and the
specific linear combination ofχ(3) components which defines
n2 is dependent on the geometry. For linearly and circularly
polarized light beams in isotropic materials,n2 is related to
only one component ofχ(3) [1, 2], but for beams linearly
polarized at an angle relative to [100] and circularly polarized
beams in the cubic crystals it becomes a little more complex,
and is not isotropic as in the case of the linear refractive
index [2, 3]. We can expect that, for crystals of lower
symmetry, the linear combinations ofχ(3) components are
generally more complex.

Being effects that result from the NRI, self-trapping
and self-focusing of a light beam in isotropic Kerr media
have been studied extensively for over three decades

[4–9]. The circularly symmetric self-trapping beam in three
dimensions was found as early as 1964 [4]. However,
it is rather unstable. A small amount of deviation from
the self-trapping solution will lead to either divergence or
collapse [5, 6]. Moreover, if the power of the beam exceeds
some critical power, the symmetric beam will self-focus to
a point catastrophically [5–9]. Although a large amount of
literature is available on the theory of self-trapping and self-
focusing problems in isotropic media, few attempts have been
made to deal with the case in anisotropic media because the
latter is much more complicated than the former. To our
knowledge, the first attempt to deal with the problem related
to the optical Kerr effect in anisotropic media was made
by Yumoto and Otsuka [10], but their paper was intended
for a quasi-monochromatic plane wave propagating along a
special direction (the major axes of the crystals) rather than
the optical beam because the second-order spatial derivative
of the field amplitude was not considered in their discussion.
Karpman and Shagalov [11] considered self-focusing of the
optical beam propagating parallel to an optic axis (c-axis)
in uniaxial anisotropic gyrotropic media. In this paper we
discuss the self-trapping and self-focusing of the light beam
propagating along any direction in the uniaxial anisotropic
media. In the following we will assume that the optical
frequencies are small compared with the frequency of the
fundamental electronic absorption of the material, but still
large in relation to infrared vibrational frequencies. In this
‘long-wavelength’ limit, linear and nonlinear absorptions are
negligible and Reχ(3) � Im χ(3).
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Structurally, the paper develops the thesis in the
following way: in section 2 we shall obtain the expression
of the light beam through the Taylor series expansion for
the Fourier integral of an electric-field plane-wave spectrum
vector about the transverse wavevector under the paraxial
approximation condition, and derive the evolution equation
of the beam, i.e. the nonlinear paraxial wave equation. The
propagation coordinate system, defined as itsz-coordinate
axis coincident with the central wavevector of the beam,
facilitates the derivation of the nonlinear paraxial wave
equation. In section 3 we shall investigate the nature of
χ(3) under the coordinate transformation from the principal
coordinate system to the propagation coordinate system,
and obtain the nonlinear refractive index for three uniaxial
crystals belonging to the symmetry classes 6/mmm of the
hexagonal system, 4/mmm of the tetragonal system, and
3̄m of the trigonal system, respectively. In section 4 we
shall consider the self-trapping and self-focusing of the beam
propagating in any direction in these three crystals. Section 5,
the final section, is set aside for conclusions. Appendix A
deals with the proof of neglecting the terms that come from
∇ · E, and appendix B presents the calculations of the
χ(3) components under the transformation from the principal
coordinate system to the propagation coordinate system.

2. Optical beam equation in anisotropic media

Assume that only one of the two mutually orthogonal
eigenmodes is propagating in the transparent crystals, and
under rather general conditions, a time-harmonic field
propagating in the media is

E(r, t) = 1
2E(r) exp(−iωt) + c.c.,

whereE(r) can be represented in a homogeneous half-space
z > 0 by its plane-wave spectrum [12]

E(r) =
∫ ∫ ∞
−∞

E0(p) exp[i(K ·R + kz)] dK, (1)

whereE0 represents the field of the normal wave, i.e. the
plane wave, propagating along the wavevectorp, p = K +
kez, andr = R + zez (ez is the unit vector along thez-
coordinate,K andR represent transverse wavevector and
coordinate vector perpendicular toez, respectively,K =
Kxex + Kyey , |ex | = |ey | = 1). E0 and p, sometimes
refered to in the literature as the eigenfunction and eigenvalue,
respectively, satisfy the eigenvalue equation [12,13](

pp− p2Î +
ω2

c2

ε̂

ε0

)
·E0 = 0, (2)

where Î and ε̂ are unit and dielectric tensors of rank 2,
respectively.k as a function ofK can be derived from the
dispersion equation

det

(
pp− p2Î +

ω2

c2

ε̂

ε0

)
= 0, (3)

whereω remains unchangeable.
Consider now the special case of a paraxial beam, which

is a group of plane waves with the same frequency but slightly

different directions of propagation. The wavevectorsp of
the component waves fill a solid angle around a central
wavevector, that is the ‘mean wavevector’. If we define the
coordinate system, termed the propagation coordinate system
hereinafter, such that itsz-coordinate axis coincides with
the central wavevector of the light beam, under the paraxial
approximation which meansK/k � 1,E0(p) andk can be
expanded in a Taylor series in the vicinity of the pointK = 0:

E0(p) = E(0)
0 (k0) + · · · , (4a)

k(K) = k0 +∇Kk0 ·K + 1
2∇K∇Kk0 : KK + · · · , (4b)

whereE(0)
0 = E0(p)|K=0, k0 = k(K)|K=0 which is the

magnitude of the central wavevector,∇Kk0 = ∇Kk(K)|K=0,
and so on, and∇K = ∂/∂Kxex + ∂/∂Kyey . Substitution of
the above expansion into equation (1) gives

E(r) = A(R, z)e0 exp(ik0z) + O(K), (5)

where

A(R, z) = E(0)0

∫ ∫ ∞
−∞

exp[iϕ(K,R, z)] dK, (6)

is the optical beam which is a scalar function, a phase factor
ϕ reads

ϕ(K,R, z) = (∇Kk0 ·K + 1
2∇K∇Kk0 : KK)z +K ·R,

and e0 is a unit vector ofE(0)
0 that is the first-order

approximation of the eigenfunctionE0. Also, E(0)
0 should

comply with equation (2) provided that expansion (4a) is
only retained in the first term, that is,

(KK −K ·K Î ) ·E(0)
0 + k(Kez + ezK) ·E(0)

0

+k2(ezez − Î ) ·E(0)
0 +

ω2

c2ε0
ε̂ ·E(0)

0 = 0. (7)

In the following, we will discuss the evolution of
the light beam (5) when a perturbed cubic nonlinearity
appears in the media. Without loss of generality, we can
assume that the media possess a centre of symmetry, some
examples of which are [14] the ones belonging to the crystal
classes 6m and 6/mmm in the hexagonal system,3̄ and
3̄m in the trigonal system, and 4/m and 4/mmm in the
tetragonal system. For these crystals, the lowest-order non-
zero nonlinear susceptibility should beχ(3) rather thanχ(2),
therefore, the time-harmonic Maxwell equation in the mks
system of units reads [13,15,16]

∇ × (∇ ×E)− ω2

c2ε0
(ε̂ ·E +PNL) = 0, (8)

wherePNL(r) expressed as

PNL(r) = 3ε0

4
χ(3)(ω = ω+ω−ω) : E(r)E(r)E∗(r) (9)

is the third-order nonlinear polarization [14–16], and the
fourth-rank tensorχ(3)(ω = ω1 + ω2 + ω3) is the Fourier
transform of the third-order nonlinear susceptibility.

In order to obtain the wave equation for the slowly
varying amplitudeA(R, z), the first step is to introduce
equation (5) into (8) with the help of equation (7), and
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neglecting the second derivative∂2A/∂z2 in the intermediate
result. In this way, equation (8) can be deduced as∫ ∫ ∞
−∞
(k − k0)(Kez + ezK) ·E(0)

0 exp(iϕ) dK

+(∇⊥ez + ez∇⊥) · e0∂A

∂z
+ (ezez − Î )

·
[
2ik0e

0∂A

∂z
+E(0)

0

∫ ∫ ∞
−∞
(k2 − k2

0) exp(iϕ) dK

]
− ω2

c2ε0
PNL exp(−ik0z) = 0, (10)

where a subscript⊥ represents the transverse part of a vector
perpendicular toez. The first two terms of the above equation
result from∇ · E, and as proved in appendix A, can be
neglected. Retaining the first three terms of expansion (4b),
we have

k2− k2
0 ≈ 2k0(k− k0) = 2k0∇Kk0 ·K + k0∇K∇Kk0 : KK.

(11)
Finally, substituting equation (11) into (10) whose first two
terms are neglected, we derive the optical beam equation in
anisotropic media, i.e., the nonlinear paraxial wave equation:

i

(
∂A

∂z
−∇Kk0 · ∇⊥A

)
− 1

2
∇K∇Kk0 : ∇⊥∇⊥A

+
ωn2

cα1
|A|2A = 0, (12)

where
α1 = e0 · (Î − ezez) · e0 = |e0|⊥, (13)

and where the NRIn2 is defined as

n2 = 3ω

8ck0
χ(3) : e0e0e0e0. (14)

At this point it is important to emphasize the following.
First, the field is determined by equation (5) in the lowest-
order approximation. SinceE(r) is proportional toA(R, z),
the vectorial field is completely specified when the scalar
equation (12) is solved forA(R, z). The reason why it
is possible to describe the field as consisting of vectorial
properties with the scalar equation can be readily elucidated
through the physical background of the problem. As already
pointed out, in this paper we limit ourselves to the discussion
of the evolution of the light field under the influence of the
perturbable nonlinearity. It is because the nonlinearity is
perturbed that it can alter nothing more than the magnitude
of the field rather than the direction of the field, which is
governed by the dominant linear part of the field equation, i.e.
equation (2) or equivalently equation (7). Moreover, because
the nonlinearity has the property of a tensor, the vectorial
property (polarization) of the field can, in turn, have an effect
on the magnitude through the NICn2 within the last term
of equation (12), and the NICs are different for the different
kinds of polarization. Secondly, equation (12) is a general
form of the evolution equation for the beam in nonlinear
crystals. To find its concrete expression for the different
modes, we should first obtainE(0)

0 and its accompanying
functionk(K) by making use of the eigenvalue equation (7)
and the dispersion equation (3), and then obtaink0, ∇Kk0,
∇K∇Kk0, α1 andn2. For example, in isotropic media with

the linear refractive indexn = n0, the eigenfunctionE(0)
0

is a linearly polarized vector field orthogonal to the wave
propagation direction, and the dispersion equation becomes
K2+k2 = ω2n2

0/c
2 such thatα1 = 1,k0 = ωn0/c,∇Kk0 = 0,

and∇K∇Kk0 = −Î /k0. SupposeE(0)
0 is polarized along the

x-axis; therefore, the NRI becomes

n2 = 3

8n0
χ(3)xxxx, (15)

and the nonlinear paraxial wave equation is reduced to the
previously derived(1+2)-dimensional nonlinear Schrödinger
equation [5,7–9]:

i
∂A

∂z
+

1

2ko

(
∂2A

∂x2
+
∂2A

∂y2

)
+
ωn2

c
|A|2A = 0. (16)

3. NRI in uniaxial crystals

For crystals, the problem becomes much more complicated
than the case for the isotropic media because of the anisotropy
of the linear refractive index and the fourth-rank tensorχ(3).
The nonlinear paraxial wave equation (12) is only derived
under the condition of one-mode propagation. To ensure this
condition is satisfied, we must investigate the nature ofχ(3)

under coordinate transformation.
As mentioned above, equation (12) is obtained in the

propagation coordinate system, but the allowed form of
the third-order nonlinear susceptibilityχ(3) is determined
in the principal coordinate system [13]. Therefore,χ(3)

should be transformed from the principal coordinate system
(x ′, y ′, z′), where a prime represents the quantity in the
principal coordinate system, to the propagation coordinate
system(x, y, z). The corresponding new componentsχ(3)ijkl
of the tensorχ(3) can be computed in terms of the old ones
χ
(3)
i ′j ′k′l′ by writing [17]

χ
(3)
ijkl =

∑
i ′,j ′,k′,l′

χ
(3)′
i ′j ′k′l′gi ′igj ′j gk′kgl′l (17)

wheregi ′i = ei · e′i ′ represents the direction cosine of the
angle between the direction of the old base vectore′i ′ and
the new base vectorei . Becausex ′ and y ′ directions are
equivalent for the uniaxial crystals [13], we can thus choose
the propagation coordinate system such that thez–x plane is
within thez′–x ′ plane without loss of generality, as shown in
figure 1. In this way, we can have

gx ′x = cos(θ), gx ′z = sin(θ), gz′x = − sin(θ),

gz′z = cos(θ), gy ′y = 1, gx ′y = gy ′x = gy ′z = gz′y = 0,
(18)

where θ is the angle between thec-axis and the central
wavevector of the beam, varying in a closed interval [0, π ].
There are six classes of crystals with centrosymmetry: 6m
and 6/mmm in the hexagonal system,3̄ and 3̄m in the
trigonal system, and 4/m and 4/mmm in the tetragonal
system, respectively. Three of these crystals, 6/mmm,3̄m
and 4/mmm, whoseχ(3) form in the principal coordinate
system can be found from table 1.5.2 of [14], can be easily
demonstrated by the transformation above to have

χ(3)xyyy = χ(3)yxxx = χ(3)zyyy = χ(3)yzzz = 0 (19)
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Figure 1. Coordinate systems and the central wavevector of the
beamk0 that makes an angleθ with the optic axis(06 θ 6 π).
The propagation coordinate system(x, y, z) is introduced by a
counterclockwise rotation throughθ about they ′ axis of the
principal coordinate system(x ′, y ′, z′).

in the propagation coordinate system for anyθ in the closed
interval [0, π ]. This means that if the field structure atz = 0
excites only one of the two orthogonal eigenmodes, there will
not be a nonlinear couple between the o-light polarized along
they-axis and the e-light polarized in thez–x plane no matter
which direction it propagates along: the mode merely keeps
propagating in these three class crystals. But the other three
centrosymmetric crystals belonging to crystal classes 6/m,3̄
and 4/m can be proved not to have this feature.

It is this nonlinear couple-free feature of the o-light
and the e-light at any direction that makes the discussion
possible and simpler. Then, we can respectively deal with
the evolution of the o-light and the e-light in the three class
of crystals:3̄m, 6/mmm and 4/mmm.

For the o-light propagating along any direction except
the one parallel to thec-axis (θ = 0 or π ), the case is the
same as that of isotropic media, as discussed at the end of
section 2, andn2 for the o-light is

n
(o)
2 =

3χ(3)
′

x ′x ′x ′x ′

8no
. (20)

When the central wavevector is along the direction parallel
to the c-axis, there will be a special situation, which is
a double mode with two eigenmodes, o-light and e-light,
sharing the same dispersion properties, and the propagation
becomes more complicated because of the singularity in this
direction [13, 18]. This situation is not considered in this
paper.

The propagation of the e-light is more complex than the
case of the o-light.

The dispersion equation (3) for the e-light reads

K ′2x ′ +K ′2y ′
n2

e

+
k′2

n2
o

− ω
2

c2
= 0 (21)

in the principal coordinate system, wherene and no are
the extraordinary index and ordinary index, respectively.
Under the coordinate transformation shown in figure 1, the
wavevector in the principal coordinate system,p′, is related

to the wavevector in the propagation coordinate system,p,
through

K ′x ′ = Kx cosθ + k sinθ,

K ′y ′ = Ky,
k′ = −Kx sinθ + k cosθ.

(22)

Inserting equation (22) into (21) gives the dispersion equation
in the propagation coordinate system:

(n2
o cos2 θ + n2

e sin2 θ)K2
x + n2

oK
2
y + (n2

o sin2 θ + n2
e cos2 θ)k2

+(n2
o − n2

e) sin(2θ)Kxk − ω
2n2

en
2
o

c2
= 0 (23)

for 0 < θ < π . The reason whyθ is limited to
the open interval(0, π) is that, as mentioned previously,
when the central wavevector is in the direction parallel
to the c-axis, the o-light and the e-light will share the
same dispersion properties. Therefore, after obtaining the
dispersion equation, we can, respectively, have

k0 = ωne

c
, (∇Kk0)y = 0,

(∇Kk0)x = (n2
e − n2

o) sin(2θ)

2(n2
e cos2 θ + n2

o sin2 θ)
,

(∇K∇Kk0)xx

= 1

k0

{
−n

2
o cos2 θ + n2

e sin2 θ

n2
e cos2 θ + n2

o sin2 θ
+ [(∇Kk0)x ]

2

}
, (24)

(∇K∇Kk0)yy = − n2
o

k0(n2
e cos2 θ + n2

o sin2 θ)
,

(∇K∇Kk0)xy = (∇K∇Kk0)yx = 0,

where
ne = neno

(n2
e cos2 θ + n2

o sin2 θ)1/2
(25)

is the linear refractive index for the e-light.
On the other hand, as is known [13], the electric

displacement vector of the e-light is perpendicular to the
central wavevector of the beam, but its electric field vector is,
in general, not perpendicular to the central wavevector. The
electric displacement vector and electric field vector form the
angleδ, which is also the angle between the Poynting vector
and the central wavevector, as shown in figure 2, andδ is
given by [12,18]

δ = arctan
(n2

e − n2
o) sin(2θ)

2(n2
e cos2 θ + n2

o sin2 θ)
. (26)

Then, the unit vector of the electric fieldE(0)
0 is found to

be
e0 = cosδex + sinδez. (27)

The combination of equation (14) with (27) gives the NRI in
the propagation coordinate system

n2(θ) = 3

8ne
[cos4 δ · χ(3)xxxx

+ cos3 δ sinδ(χ(3)zxxx + χ(3)xzxx + χ(3)xxzx + χ(3)xxxz)

+ cos2 δ sin2 δ(χ(3)zzxx + χ(3)zxzx
+χ(3)zxxz + χ(3)xzzx + χ(3)xzxz + χ(3)xxzz)

+ cosδ sin3 δ(χ(3)xzzz + χ(3)zxzz
+χ(3)zzxz + χ(3)zzzx) + sin4 δ · χ(3)zzzz]. (28)

8



Nonlinear light beam propagation in uniaxial crystals

Figure 2. Direction of the field vectors, the Poynting vectorS and
the central wavevector of the beamk0 for the e-light beam
propagating in uniaxial crystals. The electric field vectorE, the
electric displacement vectorD,S andk0 are coplanar, and the
magnetic field vectorH (and hence also the magnetic induction
vectorB) is at right angles to them.D is orthogonal tok0, butE
is not.S is perpendicular toE, but not toD. The angle between
E andD is the same as the angle betweenS andk0, and is
denoted byδ.

Through the coordinate transformation shown in figure 1,
n2 can be expressed by the components in the principal
coordinate system. For thē3m crystal, its n2 is
(details regarding the coordinate transformation are given in
appendix B):

n
(3̄m)
2 = 3

8ne
{cos4 δ(χ(3)

′
x ′x ′x ′x ′ cos4 θ + χ(3)

′
z′z′z′z′ sin4 θ

+χ ′1 sin2 θ cos2 θ − χ ′2 cos3 θ sinθ)

+ cos3 δ sinδ{sin(2θ)[2(χ(3)
′

x ′x ′x ′x ′ cos2 θ

−χ(3)′z′z′z′z′ sin2 θ) + χ ′1(sin2 θ − cos2 θ)]

+χ ′2 cos2 θ(cos2 θ − 3 sin2 θ)}
+ cos2 δ sin2 δ{[6(χ(3)′x ′x ′x ′x ′ + χ

(3)′
z′z′z′z′)

−4χ ′1] sin2 θ cos2 θ

+χ ′1(cos4 θ + sin4 θ) + 3χ ′2 cosθ sinθ(cos2 θ − sin2 θ)}
+ cosδ sin3 δ{sin(2θ)[2(χ(3)

′
x ′x ′x ′x ′ sin2 θ − χ(3)′z′z′z′z′ cos2 θ)

+χ ′1(cos2 θ − sin2 θ)] + χ ′2 sin2 θ(3 cos2 θ − sin2 θ)}
+ sin4 δ(χ

(3)′
x ′x ′x ′x ′ sin4 θ + χ(3)

′
z′z′z′z′ cos4 θ + χ ′1 sin2 θ cos2 θ

+χ ′2 sin3 θ cosθ)}, (29)

where

χ ′1 = χ(3)
′

x ′x ′z′z′ +χ
(3)′
z′z′x ′x ′ +χ

(3)′
z′x ′x ′z′ +χ

(3)′
x ′z′z′x ′ +χ

(3)′
x ′z′x ′z′ +χ

(3)′
z′x ′z′x ′ ,

(30)
and

χ ′2 = χ(3)
′

x ′x ′x ′z′ + χ
(3)′
x ′x ′z′x ′ + χ

(3)′
x ′z′x ′x ′ + χ

(3)′
z′x ′x ′x ′ . (31)

The crystals 6/mmm and 4/mmm have the same nonzero
elements, which are less than those of the crystal3̄m.
Therefore, theirn2 have a simpler expression:

n
(6/mmm)
2 = n(4/mmm)

2

= 3

8ne
{cos4 δ(χ(3)

′
x ′x ′x ′x ′ cos4 θ + χ(3)

′
z′z′z′z′ sin4 θ

+χ ′1 sin2 θ cos2 θ)

+ cos3 δ sinδ sin(2θ)[2(χ(3)
′

x ′x ′x ′x ′ cos2 θ

−χ(3)′z′z′z′z′ sin2 θ) + χ ′1(sin2 θ − cos2 θ)]

+ cos2 δ sin2 δ{[6(χ(3)′x ′x ′x ′x ′ + χ
(3)′
z′z′z′z′)

−4χ ′1] sin2 θ cos2 θ + χ ′1(cos4 θ + sin4 θ)}
+ cosδ sin3 δ sin(2θ)[2(χ(3)

′
x ′x ′x ′x ′ sin2 θ

−χ(3)′z′z′z′z′ cos2 θ) + χ ′1(cos2 θ − sin2 θ)]

+ sin4 δ(χ
(3)′
x ′x ′x ′x ′ sin4 θ + χ(3)

′
z′z′z′z′ cos4 θ

+χ ′1 sin2 θ cos2 θ)}. (32)

It is obvious thatn2 is anisotropic and dependent on the
propagation direction. For example, whenθ approaches zero
(or π ) or equalsπ/2 we obtain

limθ→0 n2 =
limθ→π n2 =

}
n
(o)
2 =

3χ(3)
′

x ′x ′x ′x ′

8no
,

n2

(π
2

)
= 3χ(3)

′
z′z′z′z′

8ne
,

(33)

for all three crystals, wheren(o)2 is the NRI for the o-light.
Since the condition that

1L = (no− ne)

no
� 1 (34)

is satisfied for most of uniaxial crystals [13],n2 can be
simplified greatly if its expression is expanded about small
parameter1L to the first order. First of all,ne andδ can be
expanded as

ne = no(1−1L sin2 θ) + o(1L), (35)

and
δ = −1L sin(2θ) + o(1L). (36)

Then, equation (29) is reduced to

n
(3̄m)
2 = 3

8no
{(1 +1L sin2 θ)[χ(3)

′
x ′x ′x ′x ′ cos4 θ

+χ(3)
′

z′z′z′z′ sin4 θ + χ ′1 sin2 θ cos2 θ − χ ′2 cos3 θ sinθ ]

−1L sin(2θ){sin(2θ)[2(χ(3)
′

x ′x ′x ′x ′ cos2 θ − χ(3)′z′z′z′z′ sin2 θ)

+χ ′1(sin2 θ − cos2 θ)] + χ ′2 cos2 θ(cos2 θ − 3 sin2 θ)}}
+o(1L), (37)

and the simplified expression ofn2 for crystals 6/mmm and
4/mmm is

n
(6/mmm)
2 = n(4/mmm)

2

= 3

8no
{(1 +1L sin2 θ)[χ(3)

′
x ′x ′x ′x ′ cos4 θ

+χ(3)
′

z′z′z′z′ sin4 θ + χ ′1 sin2 θ cos2 θ ]

−1L sin2(2θ)[2(χ(3)
′

x ′x ′x ′x ′ cos2 θ

−χ(3)′z′z′z′z′ sin2 θ) + χ ′1(sin2 θ − cos2 θ)]}
+o(1L). (38)

Expressions (37) and (38) can still be further simplified by
considering the Kleinman symmetry condition [14]. In this

9
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case, we can obtain

n
(3̄m)
2 = 3

8no
{(1 +1L sin2 θ)[χ(3)

′
x ′x ′x ′x ′ cos4 θ

+χ(3)
′

z′z′z′z′ sin4 θ + 6χ(3)
′

x ′x ′z′z′ sin2 θ cos2 θ

−4χ(3)
′

x ′x ′x ′z′ cos3 sinθ ]

−1L sin(2θ){sin(2θ)[2(χ(3)
′

x ′x ′x ′x ′ cos2 θ

−χ(3)′z′z′z′z′ sin2 θ) + 6χ(3)
′

x ′x ′z′z′(sin2 θ − cos2 θ)]

+4χ(3)
′

x ′x ′x ′z′ cos2 θ(cos2 θ − 3 sin2 θ)}}
+o(1L), (39)

and

n
(6/mmm)
2 = 3

8no
{(1 +1L sin2 θ)[χ(3)

′
x ′x ′x ′x ′ cos4 θ

+χ(3)
′

z′z′z′z′ sin4 θ + 6χ(3)
′

x ′x ′z′z′ sin2 θ cos2 θ ]

−1L sin2(2θ)[2(χ(3)
′

x ′x ′x ′x ′ cos2 θ − χ(3)′z′z′z′z′ sin2 θ)

+6χ(3)
′

x ′x ′z′z′(sin2 θ − cos2 θ)]} + o(1L). (40)

4. Properties of the self-focusing and self-trapping
of a light beam in uniaxial crystals

After obtaining the NRI, we are now in a position to discuss
the behaviour of the paraxial beam in the uniaxial crystals
when the diffraction and nonlinearity act together.

The introduction of equation (27) into (13) gives

α1 = cos2 δ = 1 + o(12
L) ≈ 1, (41)

and, hence, by combining with equation (24), wave
equation (12) becomes

i

(
∂A

∂z
− σ ∂A

∂x

)
+

1

2k0

(
ρx
∂2A

∂x2
+ ρy

∂2A

∂y2

)
+
ωn2

c
|A|2A = 0, (42)

where

σ = (∇Kk0)x ′ ρx = −k0(∇K∇Kk0)xx ′

ρy = −k0(∇K∇Kk0)yy
(43)

for 0 < θ < π . If the nonlinear term is not considered,
and the [(∇Kk0)x ]2 term inρx which can be proved to be of
the order of12

L, is dropped, the linear case of equation (42)
is equal to that obtained by Fleck and Feit (equation (39)
in [18]). However, our treatment is simpler.

Using the transformation

u(ξ, η, ζ ) =
√
ωn2

ck0
A(x, y, z), (44a)

ξ = k0(σz + x)√
ρx

, (44b)

η = k0y√
ρy
, (44c)

ζ = k0z, (44d)

the transverse asymmetrical equation (42) is readily trans-
formed to the transverse symmetric nonlinear Schrödinger
equation:

i
∂u

∂ζ
+

1

2

(
∂2u

∂ξ2
+
∂2u

∂η2

)
+ |u|2u = 0. (45)

Transformation (44b) shows that the propagation of the
e-light beam is inclined to its central wavevectork0ez.
This deflection results from the fact that the e-light beam
propagates along the direction of the Poynting vector rather
than along the central wavevectork0ez [12, 19]. It is
easy to see that the deflection equals zero in the direction
perpendicular to thec-axis.

The analytical approaches to solving equation (45) are
the aberrationless ray approximation [5,8] and the variational
method [9]. The former provides some qualitatively correct
answers but the quantitative predictions are less reliable,
while the latter can give analytical results in good agreement
with numerical results. Moreover, a sech trial function
yields more accurate approximation than a Gaussian trial
function [9], because the sech function is the exact profile
for a (1 + 1)-dimensional nonlinear Schrödinger equation.
Therefore, the variational approach with the sech ansatz is
used here to find the solution of equation (45). For the choice
of symmetry sech trial function

u(ξ, η, ζ ) = 3(ζ)sech

[√
ξ2 + η2

a(ζ )

]
exp[ib(ζ )(ξ2 + η2)],

(46)
proves that if the beam waist is located at the entrance face
of the media, that is da(ζ )/dζ = 0 atζ = 0, the normalized
beam radiusa(ζ ) has the form

a(ζ )2

a2
0

= κ1ζ
2(1− κ2|30|2a2

0)

a4
0

+ 1, (47)

wherea0 and|30| are the initial normalized beam radius and
amplitude, respectively, andκ1 = 4(2 ln 2 + 1)/[27f (3)],
κ2 = (4 ln 2− 1)/(2 ln 2 + 1) (f (n) denotes the Riemann
zeta function,f (3) ≈ 1.202). By transformation (44), we
can get the real physical quantities

|A(x, y, z)| =
√
ck0

ωn2
|3(z)|sech

(√
(σz + x)2

w2
x(z)

+
y2

w2
y(z)

)
,

(48)
where

Wx =
a
√
ρx

k0
, Wy =

a
√
ρy

k0
(49)

are beam widths in thex-direction and y-direction,
respectively, and

S(z)

S0
= π2κ1ρxρyz

2

S2
0k

2
0

(
1− P0

Pcre

)
+ 1, (50)

Pcre(θ) = Pcro
√
ρxρy

n
(o)
2

n2(θ)
, Pcro = ln 2

4π

λ2
0

κ2Z0n
(0)
2

,

(51)
whereS = πwxwy is a beam area,S0 its initial value,P0

represents the input power [P = ( 1
2)
∫
E × H∗ dxdy =

k0/(2µ0ω)
∫ |E|2 dxdy], Pcre andPcro are critical powers for

the e-light and the o-light, respectively,Z0[= (µ0/ε0)
1/2 ≈

377�] the vacuum impedance, andλ0 is the wavelength in
vacuum.

10
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4.1. Critical power

Equation (50) tells us that whenP0 = Pcre, the beam area
keeps constantS0. This is the self-trapping situation. If
P0 > Pcre, S will reduce continuously to a point until the
beam collapses, which is the self-focusing situation; on the
contrary, the beam will diffract.

Substitution of the expressions forρx , ρy andn(0)2 into
equation (51) and by means of equation (39),Pcre of crystal
3̄m reads

P
(3̄m)
cre (θ)

Pcro
= 1 + 21L(1− 2 sin2 θ) + o(1L)

D
, (52a)

where
D = 1−1N1 sin4 θ − 1

21N2 sin2(2θ)− 41N3 cos3 θ sinθ

−1L sin(2θ){2 sin(2θ)[1N1 sin2 θ

+1N2(1− 2 sin2 θ)] + 41N3 cos2 θ(1− 4 sin2 θ)},
(52b)

1N1 =
χ
(3)′
x ′x ′x ′x ′ − χ(3)

′
z′z′z′z′

χ
(3)′
x ′x ′x ′x ′

,

1N2 =
χ
(3)′
x ′x ′x ′x ′ − 3χ(3)

′
x ′x ′z′z′

χ
(3)′
x ′x ′x ′x ′

, 1N3 =
χ
(3)′
x ′x ′x ′z′

χ
(3)′
x ′x ′x ′x ′

.

(52c)

If 1N1, 1N2 and1N3 are assumed to be small parameters
(�1), expression (52a) can be reduced further as

P
(3̄m)
cre (θ)

Pcro
= 1 + 21L(1− 2 sin2 θ) +1N1 sin4 θ

+1
21N2 sin2(2θ) + 41N3 cos3 θ sinθ

+o(1L +1N1 +1N2 +1N3). (53)

From equation (53), let1N3 = 0, i.e.χ(3)
′

x ′x ′x ′z′ = 0, we can
obtain the critical power for crystal 6/mmm (and 4/mmm):

P
(6/mmm)
cre (θ)

Pcro
= 1 + 21L(1− 2 sin2 θ) +1N1 sin4 θ

+1
21N2 sin2(2θ) + o(1L +1N1 +1N2), (54)

where both1N1 and1N2 are also assumed to be small
parameters.

We can conclude from equations (51), (53) and (54) that
the e-light beam propagating in a different direction has a
different critical power, but the o-light’s critical power is
independent of the propagation direction, as in the case of
isotropic media.

Figures 3 and 4 pertain to the critical power as the
function of θ obtained from equation (53) for the case
where1L ≈ 0.158. In the figures,1N1, 1N2 and1N3

are all, as assumed, small parameters, their absolute values
being less than 0.2, because no such data are available both
experimentally and theoretically. These figures correspond
to the critical power of negative crystal NaNO3, whose crystal
class is3̄m [14], and whereno andne are equal to 1.587 and
1.336, respectively [13]. The curves start from the same point
(1 + 21L) atθ = 0, reach a extreme(1−21L +1N1) atθ =
π/2, which is the minimum for some of the three parameters
1N1,1N2 and1N3, and end in the same point(1 + 21L) at
θ = π . The figures also show thatPcre might have the other
extremes depending upon the value of the parameters1N1,

1N2 and1N3. We find from the figures that the minimum
of the difference between the maximum and the minimum of
the critical power((|Pcre/Pcro)max− (Pcre/Pcro)min) is about

Pcre(0)− Pcre(π/2)

P0

∣∣∣∣
1N1=0.2,1N3=0.0, any1N2

= (41L −1N1)|1L=0.158,1N1=0.2 ≈ 43%. (55)

This means that no matter how many unknown parameters
1N1,1N2 and1N3 there are, the difference(|Pcre/Pcro)max−
(Pcre/Pcro)min in the crystal3̄m is large enough to be easily
detected experimentally. Therefore, the measurements of
critical power at various directions relative to the optic axis
of the crystal make it possible to obtain a set of independent
equations from equation (53) to calculate the independent
nonzero components of itsχ(3) tensor.

The analytical analysis about the expression of critical
power becomes possible for the crystal 6/mmm (and also
4/mmm) because its1N3 is zero. The analysis of
equation (54) shows that the critical power has two extremes:
Pcre→ Pext1= (1 + 21L)Pcro whenθ goes to 0 (orπ ), and
Pcre equalsPext2= (1− 21L +1N1)Pcro atθ = π/2. There
is another extreme:

Pext3= 1N1 + 21L(1N1− 21L)−1N2(2 +1N2)

1N1− 21N2
(56)

which at θ equalsθc = arcsin[(21L − 1N2)/(1N1 −
21N2)]1/2, if a condition 0< (21L−1N2)/(1N1−21N2) 6
1 is satisfied. Figure 5 gives the critical power as a function of
θ for a positive crystal Rutile (its crystal class is 4/mmm [14],
and itsno = 2.616, andne = 2.903 [13], so that1L ≈
−0.110), where both1N1 and1N2 are also small parameters,
and the absolute value is less than 0.2. For the case where
1N1 = 0.2 and any1N2, and the case where1N1 = 0.1
and any1N2, Pcre is single-valued function ofθ in the
interval (0, π/2) because the condition thatθc appears can
never be satisfied. However, when1N1 is small enough, the
functionPcre(θ) becomes a little complex and, as shown in
the figure, the third extreme as a maximum might appear or
not, depending upon the value of1N2. Figure 5 shows that
the difference between the maximum and the minimum of
Pcre is at least about
Pcre(π/2)− Pcre(0)

P0

∣∣∣∣
1N1=1N2=−0.2

= (−41L +1N1)|1L=−0.11,1N1=−0.2 = 24%, (57)

when1N1 = −0.2, or bigger if1N1 is bigger, which should
be easily measurable.

4.2. Self-focusing length

A self-focusing length is defined as the distance where the
beam spot shrinks to zero and the optical beam collapses.
From equation (50), lettingS = 0 we can obtain the self-
focusing length of the e-light, which reads

zf = S0k0

πκ
1
2

1

β1(θ)√
P0
Pcro
β2(θ)− 1

(58)

where

β1(θ) = 1√
ρxρy

= 1 +1L(1− 3 cos2 θ) + o(1L), (59)

11
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Figure 3. Critical powers as the function ofθ for the negative crystal NaNO3, where1N1,1N2 and1N3 are all assumed as small
parameters, with their absolute values less than 0.2. Theθ coordinate values in the first row are for the1N3 given in the figures, and the ones
in the second row are for the minus of the1N3 given, because equation (53) is unchangeable through a transformation such thatθ = π − θ
and1N3 = −1N3.

and

β2(θ) = n2(θ)/n
(o)
2√

ρxρy

=



1− 21L(1− 2 sin2 θ)−1N1 sin4 θ − 1
21N2 sin2(2θ)

−41N3 cos3 θ sinθ

+o(1L +1N1 +1N2 +1N3), for crystal3̄m;
1− 21L(1− 2 sin2 θ)−1N1 sin4 θ − 1

21N2 sin2(2θ)

+o(1L +1N1 +1N2), for crystal 6/mmm.

(60)

Equation (58) will give the self-focusing length of the o-light
if β1 andβ2 are set to be 1, letting1L = 1N1 = 1N2 =
1N3 = 0 in equations (59) and (60). It is obvious that the
self-focusing length is different for the e-light at a different
direction, but isotropic for the o-light.

As has been pointed out [20,21], however, this collapse
is due to the loss of validity of the nonlinear paraxial wave

equation (12) in the neighbourhood of the self-focus. To deal
with the detail in the neighbourhood of the self-focus in the
crystals, the other models should be used as in the case of
isotropic media [20,21].

4.3. Light spot of the self-trapping beam

We can demonstrate that the self-trapping beam of the e-light
is asymmetrical, and its light spot is an ellipse. The ratio of
the two axes of this ellipse (which axis is the major axis
depends on the sign of1L) equals

Wx

Wy

=
√
ρx

ρy
= 1−1L sin2 θ + o(1L). (61)

The result tells us that the asymmetry becomes strongest at
θ = π/2, and the ellipse becomes a circle asθ goes to zero
or π . It goes without saying that the self-trapping beam for
the o-light is circular, as that in the isotropic media.

12
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Figure 4. Critical powers as the function ofθ for the negative
crystal NaNO3, where1N1 = −1N3 = −0.1, and1N2 is as the
small parameter; its absolute values less than 0.2.

Figure 5. Critical powers as the function ofθ for the positive
crystal Rutile, where1N1 and1N2 are as parameters, with their
absolute values less than 0.2. Because the curves are symmetrical
aboutθ = π/2 in the interval(0, π), just half of them are drawn.

5. Conclusion

We have derived the nonlinear paraxial wave equation
describing the propagation of the optical beam in nonlinear
anisotropic media with centrosymmetry. As for application,
we obtained the nonlinear refractive index in the three
uniaxial crystals belonging to the symmetry classes 6/mmm
in the hexagonal system, 4/mmm in the tetragonal system
and3̄m in the trigonal system, respectively, and considered
the self-trapping and self-focusing of the optical beam
propagating along any direction in these crystals. The
nonlinear refractive index, critical power and self-focusing
length are all anisotropic for the e-light, that is, they are
dependent on the propagation direction. However, these
quantities are isotropic for the o-light. There exists an
elliptical self-trapping beam for the e-light. These features
can be easily understood considering the anisotropy for the

e-light and isotropy for the o-light. Our results might be
applied to the experimental determination of the anisotropy
of χ(3).
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Appendix A. Proof of neglecting the terms that
come from ∇ · E

By use of expansion (4b) and one of the properties of the
Fourier transform, which reads∫ ∫

KE
(0)
0 exp[iϕ(K,R, z)] dK = −i∇⊥Ae0,

the first two terms in equation (10) can be reduced as∫ ∫
(k − k0)(Kez + ezK) ·E(0)

0 exp(iϕ) dK

+(∇⊥ez + ez∇⊥) · e0∂A

∂z

≈
∫ ∫

(∇Kk0 ·K + 1
2∇K∇Kk0 : KK)

×(Kez + ezK) ·E(0)
0 exp(iϕ) dK

+(∇⊥ez + ez∇⊥) · e0∂A

∂z

= (∇⊥ez + ez∇⊥)
·e0

(
∂A

∂z
−∇Kk0 · ∇⊥A + i

1

2
∇K∇Kk0 : ∇⊥∇⊥A

)
.

(A.1)
By means of the order-of-magnitude analysis method [21],
we can get the following relation of the order-of-magnitude:
the first two terms in equation (11)

the third term in equation (11)

=
{∫ ∫

(k − k0)(Kez + ezK) ·E(0)
0 exp(iϕ) dK

+(∇⊥ez + ez∇⊥) · e0∂A

∂z

}{
(ezez − Î f )

·
[
2ik0e

0∂A

∂z
+E(0)

0

∫ ∫
(k2 − k2

0) exp(iϕ) dK

]}−1

∼ λ0

2πw
, (A.2)

wherew is the beam width. Generally,λ0/(2πw) is a very
small parameter(�1), which is just about 0.16 even if the
beam is focused tow ≈ λ0. Therefore, the first two terms of
equation (10) can be neglected in comparison with the other
terms.

Furthermore, it can also be proved that the second
derivative∂2A/∂z2 is two orders ofλ0/(2πw) less than the
terms retained by the order-of-magnitude analysis method.
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Appendix B. Calculation of the χ(3) components
under transformation from the principal coordinate
system (x′, y′, z′) to the propagation coordinate
system (x, y, z)

For the 3̄m crystal, we can obtain the following from
equation (17) and by means of equation (18):

χ(3)zxxx =
(i ′,j ′,k′,l′ 6=y ′)∑
i ′,j ′,k′,l′

χ
(3)′
i ′j ′k′l′gi ′zgj ′xgk′xgl′x

= (χ(3)′x ′x ′x ′x ′ − χ(3)
′

z′z′x ′x ′ − χ(3)
′

z′x ′x ′z′

−χ(3)′z′x ′z′x ′) cos3 θ sinθ

+(−χ(3)′z′z′z′z′ + χ
(3)′
x ′x ′z′z′ + χ

(3)′
x ′z′z′x ′

+χ(3)
′

x ′z′x ′z′) sin3 θ cosθ

−(χ(3)′x ′x ′x ′z′ + χ
(3)′
x ′x ′z′x ′ + χ

(3)′
x ′z′x ′x ′) sin2 θ cos2 θ

+χ(3)
′

z′x ′x ′x ′ cos4 θ. (B.1)

In the same way, we can get

χ(3)xzxx = (χ(3)
′

x ′x ′x ′x ′ − χ(3)
′

z′z′x ′x ′ − χ(3)
′

x ′z′z′x ′

−χ(3)′x ′z′x ′z′) cos3 θ sinθ

+(−χ(3)′z′z′z′z′ + χ
(3)′
x ′x ′z′z′ + χ

(3)′
z′x ′x ′z′

+χ(3)
′

z′x ′z′x ′) sin3 θ cosθ

−(χ(3)′x ′x ′x ′z′ + χ
(3)′
x ′x ′z′x ′ + χ

(3)′
z′x ′x ′x ′) sin2 θ cos2 θ

+χ(3)
′

x ′z′x ′x ′ cos4 θ, (B.2)

χ(3)xxzx = (χ(3)
′

x ′x ′x ′x ′ − χ(3)
′

x ′x ′z′z′ − χ(3)
′

x ′z′z′x ′

−χ(3)′z′x ′z′x ′) cos3 θ sinθ

+(−χ(3)′z′z′z′z′ + χ
(3)′
z′z′x ′x ′ + χ

(3)′
z′x ′x ′z′

+χ(3)
′

x ′z′x ′z′) sin3 θ cosθ

−(χ(3)′x ′x ′x ′z′ + χ
(3)′
x ′z′x ′x ′ + χ

(3)′
z′x ′x ′x ′) sin2 θ cos2 θ

+χ(3)
′

x ′x ′z′x ′ cos4 θ, (B.3)

and

χ(3)xxxz = (χ(3)
′

x ′x ′x ′x ′ − χ(3)
′

x ′x ′z′z′ − χ(3)
′

z′x ′x ′z′

−χ(3)′x ′z′x ′z′) cos3 θ sinθ

+(−χ(3)′z′z′z′z′ + χ
(3)′
z′z′x ′x ′ + χ

(3)′
x ′z′z′x ′

+χ(3)
′

z′x ′z′x ′) sin3 θ cosθ

−(χ(3)′z′x ′x ′x ′ + χ
(3)′
x ′z′x ′x ′ + χ

(3)′
x ′x ′z′x ′) sin2 θ cos2 θ

+χ(3)
′

x ′x ′x ′z′ cos4 θ. (B.4)

The addition of equations (B.1)–(B.4) gives the coefficient
of cos3 δ sinδ in equation (29).

Similarly, we can also obtain

χ(3)zzxx = χ(3)
′

z′z′x ′x ′ cos4 θ + χ(3)
′

x ′x ′z′z′ sin4 θ + (χ(3)
′

x ′x ′x ′x ′

+χ(3)
′

z′z′z′z′ − χ(3)
′

x ′z′z′x ′ − χ(3)
′

z′x ′x ′z′

−χ(3)′x ′z′x ′z′ − χ(3)
′

z′x ′z′x ′) cos2 θ sin2 θ

+(χ(3)
′

x ′z′x ′x ′ + χ
(3)′
z′x ′x ′x ′) cos3 θ sinθ

−(χ(3)′x ′x ′x ′z′ + χ
(3)′
x ′x ′z′x ′) cosθ sin3 θ, (B.5)

χ(3)zxxz = χ(3)
′

z′x ′x ′z′ cos4 θ + χ(3)
′

x ′z′z′x ′ sin4 θ

+(χ(3)
′

x ′x ′x ′x ′ + χ
(3)′
z′z′z′z′ − χ(3)

′
x ′x ′z′z′ − χ(3)

′
z′z′x ′x ′

−χ(3)′x ′z′x ′z′ − χ(3)
′

z′x ′z′x ′) cos2 θ sin2 θ

+(χ(3)
′

x ′x ′x ′z′ + χ
(3)′
z′x ′x ′x ′) cos3 θ sinθ

−(χ(3)′x ′x ′z′x ′ + χ
(3)′
x ′z′x ′x ′) cosθ sin3 θ, (B.6)

χ(3)zxzx = χ(3)
′

z′x ′z′x ′ cos4 θ + χ(3)
′

x ′z′x ′z′ sin4 θ

+(χ(3)
′

x ′x ′x ′x ′ + χ
(3)′
z′z′z′z′ − χ(3)

′
x ′z′z′x ′ − χ(3)

′
z′x ′x ′z′

−χ(3)′x ′x ′z′z′ − χ(3)
′

z′z′x ′x ′) cos2 θ sin2 θ

+(χ(3)
′

z′x ′x ′x ′ + χ
(3)′
x ′x ′z′x ′) cos3 θ sinθ

−(χ(3)′x ′z′x ′x ′ + χ
(3)′
x ′x ′x ′z′) cosθ sin3 θ, (B.7)

χ(3)xzzx = χ(3)
′

x ′z′z′x ′ cos4 θ + χ(3)
′

z′x ′x ′z′ sin4 θ

+(χ(3)
′

x ′x ′x ′x ′ + χ
(3)′
z′z′z′z′ − χ(3)

′
z′z′x ′x ′ − χ(3)

′
x ′x ′z′z′

−χ(3)′x ′z′x ′z′ − χ(3)
′

z′x ′z′x ′) cos2 θ sin2 θ

+(χ(3)
′

x ′z′x ′x ′ + χ
(3)′
x ′x ′z′x ′) cos3 θ sinθ

−(χ(3)′x ′x ′x ′z′ + χ
(3)′
z′x ′x ′x ′) cosθ sin3 θ, (B.8)

χ(3)xzxz = χ(3)
′

x ′z′x ′z′ cos4 θ + χ(3)
′

z′x ′z′x ′ sin4 θ

+(χ(3)
′

x ′x ′x ′x ′ + χ
(3)′
z′z′z′z′ − χ(3)

′
x ′z′z′x ′ − χ(3)

′
z′x ′x ′z′

−χ(3)′x ′x ′z′z′ − χ(3)
′

z′z′x ′x ′) cos2 θ sin2 θ

+(χ(3)
′

x ′z′x ′x ′ + χ
(3)′
x ′x ′x ′z′) cos3 θ sinθ

−(χ(3)′z′x ′x ′x ′ + χ
(3)′
x ′x ′z′x ′) cosθ sin3 θ, (B.9)

and

χ(3)xxzz = χ(3)
′

x ′x ′z′z′ cos4 θ + χ(3)
′

z′z′x ′x ′ sin4 θ

+(χ(3)
′

x ′x ′x ′x ′ + χ
(3)′
z′z′z′z′ − χ(3)

′
x ′z′z′x ′ − χ(3)

′
z′x ′x ′z′

−χ(3)′x ′z′x ′z′ − χ(3)
′

z′x ′z′x ′) cos2 θ sin2 θ

+(χ(3)
′

x ′x ′x ′z′ + χ
(3)′
x ′x ′z′x ′) cos3 θ sinθ

−(χ(3)′z′x ′x ′x ′ + χ
(3)′
x ′z′x ′x ′) cosθ sin3 θ, (B.10)

as well as

χ(3)xzzz = (χ(3)
′

x ′x ′x ′x ′ − χ(3)
′

z′z′x ′x ′ − χ(3)
′

z′x ′x ′z′

−χ(3)′z′x ′z′x ′) cosθ sin3 θ

+(−χ(3)′z′z′z′z′ + χ
(3)′
x ′x ′z′z′ + χ

(3)′
x ′z′z′x ′

+χ(3)
′

x ′z′x ′z′) cos3 θ sinθ

+(χ(3)
′

x ′x ′x ′z′ + χ
(3)′
x ′x ′z′x ′ + χ

(3)′
x ′z′x ′x ′) cos2 θ sin2 θ

−χ(3)′z′x ′x ′x ′ sin4 θ, (B.11)

χ(3)zxzz = (χ(3)
′

x ′x ′x ′x ′ − χ(3)
′

z′z′x ′x ′ − χ(3)
′

x ′z′z′x ′

−χ(3)′x ′z′x ′z′) cosθ sin3 θ

+(−χ(3)′z′z′z′z′ + χ
(3)′
x ′x ′z′z′ + χ

(3)′
z′x ′x ′z′

+χ(3)
′

z′x ′z′x ′) cos3 θ sinθ

+(χ(3)
′

x ′x ′x ′z′ + χ
(3)′
x ′x ′z′x ′ + χ

(3)′
z′x ′x ′x ′) cos2 θ sin2 θ

−χ(3)′x ′z′x ′x ′ sin4 θ, (B.12)

χ(3)zzxz = (χ(3)
′

x ′x ′x ′x ′ − χ(3)
′

x ′x ′z′z′ − χ(3)
′

x ′z′z′x ′

−χ(3)′z′x ′z′x ′) cosθ sin3 θ

+(−χ(3)′z′z′z′z′ + χ
(3)′
z′z′x ′x ′ + χ

(3)′
z′x ′x ′z′ + χ

(3)′
x ′z′x ′z′) cos3 θ sinθ

+(χ(3)
′

x ′x ′x ′z′ + χ
(3)′
x ′z′x ′x ′ + χ

(3)′
z′x ′x ′x ′) cos2 θ sin2 θ

−χ(3)′x ′x ′z′x ′ sin4 θ, (B.13)
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and

χ(3)zzzx = (χ(3)
′

x ′x ′x ′x ′ − χ(3)
′

x ′x ′z′z′ − χ(3)
′

z′x ′x ′z′ − χ(3)
′

x ′z′x ′z′) cosθ sin3 θ

+(−χ(3)′z′z′z′z′ + χ
(3)′
z′z′x ′x ′ + χ

(3)′
x ′z′z′x ′

+χ(3)
′

z′x ′z′x ′) cos3 θ sinθ

+(χ(3)
′

x ′x ′z′x ′ + χ
(3)′
x ′z′x ′x ′ + χ

(3)′
z′x ′x ′x ′) cos2 θ sin2 θ

−χ(3)′x ′x ′x ′z′ sin4 θ. (B.14)

Addition from equation (B.5) to equation (B.10) and from
equation (B.11) to equation (B.14) can obtain the two
corresponding expressions in equation (29), respectively.

Finally, the transformed results ofχ(3)xxxx andχ(3)zzzz can be
obtained directly from equations (17) and (18), which can be
found in equation (29).
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