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Abstract. We derive the nonlinear paraxial wave equation for the propagation of an optical
beam in nonlinear anisotropic media with centrosymmetry. As an application of the equation,
we obtain the nonlinear refractive index (NRI) in three uniaxial crystals belonging to the
symmetry classes 6/mmm of the hexagonal system, 4/mmm of the tetragonal syst&m, and
of the trigonal system, respectively, and consider the self-trapping and self-focusing of the
beam propagating in any direction in these crystals. We conclude that NRI, critical power and
self-focusing length are all anisotropic (dependent upon the propagation direction) for an
extraordinary light but isotropic for an ordinary light, and that there exists an elliptical
self-trapping beam for the extraordinary light.

Keywords: Nonlinear refractive index, optical beam, self-focusing, self-trapping, uniaxial
crystal

1. Introduction [4-9]. The circularly symmetric self-trapping beam in three
dimensions was found as early as 1964 [4]. However,
A variety of nonlinear optical effects such as optical it is rather unstable. A small amount of deviation from
Kerr effects, ellipse rotations, self-focusings, self-phase the self-trapping solution will lead to either divergence or
modulations, and optical solitons, are related to the nonlinearcollapse [5, 6]. Moreover, if the power of the beam exceeds
refractive index (NRI) [1, 2], a phenomenon that refers to some critical power, the symmetric beam will self-focus to
the intensity dependence on the refractive index, i.e. the a point catastrophically [5-9]. Although a large amount of

refractive indexaz becomes literature is available on the theory of self-trapping and self-
focusing problems in isotropic media, few attempts have been
i =n+nyE, made to deal with the case in anisotropic media because the
o ) o ) latter is much more complicated than the former. To our
wheren is its linear part,E is an electric field, and is a knowledge, the first attempt to deal with the problem related

NRI. The fundamental physical origin of the NRI is made {5 the optical Kerr effect in anisotropic media was made
clear via the formalism of nonlinear optical susceptibilities. by Yumoto and Otsuka [10], but their paper was intended
The NRI n; is derived from the real part of a Fourier- for a quasi-monochromatic plane wave propagating along a
transformed third-order susceptibility tenspf®, and the  special direction (the major axes of the crystals) rather than
specific linear combination of® components which defines  the optical beam because the second-order spatial derivative
ny is dependent on the geometry. For linearly and circularly of the field amplitude was not considered in their discussion.
polarized light beams in isotropic materiats,is related to  Karpman and Shagalov [11] considered self-focusing of the
only one component of® [1, 2], but for beams linearly  optical beam propagating parallel to an optic axisxis)
polarized at an angle relative to [100] and circularly polarized in uniaxial anisotropic gyrotropic media. In this paper we
beams in the cubic crystals it becomes a little more complex, discuss the self-trapping and self-focusing of the light beam
and is not isotropic as in the case of the linear refractive propagating along any direction in the uniaxial anisotropic
index [2, 3]. We can expect that, for crystals of lower media. In the following we will assume that the optical
symmetry, the linear combinations @f® components are  frequencies are small compared with the frequency of the
generally more complex. fundamental electronic absorption of the material, but still

Being effects that result from the NRI, self-trapping large in relation to infrared vibrational frequencies. In this
and self-focusing of a light beam in isotropic Kerr media ‘long-wavelength’ limit, linear and nonlinear absorptions are
have been studied extensively for over three decadesnegligible and Rg® > Im x®.

1464-4258/00/010005+11$30.00 © 2000 IOP Publishing Ltd 5
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Structurally, the paper develops the thesis in the different directions of propagation. The wavevectpref
following way: in section 2 we shall obtain the expression the component waves fill a solid angle around a central
of the light beam through the Taylor series expansion for wavevector, that is the ‘mean wavevector'. If we define the
the Fourier integral of an electric-field plane-wave spectrum coordinate system, termed the propagation coordinate system
vector about the transverse wavevector under the paraxialhereinafter, such that its-coordinate axis coincides with
approximation condition, and derive the evolution equation the central wavevector of the light beam, under the paraxial
of the beam, i.e. the nonlinear paraxial wave equation. The approximation which meank/k <« 1, Eyo(p) andk can be
propagation coordinate system, defined ag-it®ordinate expanded in a Taylor series in the vicinity of the pdiait= 0:
axis coincident with the central wavevector of the beam,
facilitates the derivation of the nonlinear paraxial wave Eo(p) = By’ (ko) +-- -, (4a)
equation. In section 3 we shall investigate the nature of .

x @ under the coordinate transformation from the principal k(K) = ko+ Vicko - K +5ViVicko : KK +---, (4b)

coordinate system to the propagation coordinate system,whereEé(’) = Eo(p)|x—o, ko = k(K)|x—o Which is the

and obtain the nonlinear refractive index for three uniaxial magnitude of the central wavevect® ko = Vi k(K)|k o,

crystals belonging to the symmetry classes 6/mmm of the and so on, and&x = 9/0K.e, + 3/9K e,. Substitution of

hexagonal system, 4/mmm of the tetragonal system, andthe above expansion into equation (1) gives

3m of the trigonal system, respectively. In section 4 we

shall consider the self-trapping and self-focusing of the beam E(r) = A(R, 2)€° expikoz) + O(K), (5)

propagating in any direction in these three crystals. Section 5,

the final section, is set aside for conclusions. Appendix A Where

deals with the proof of neglecting the terms that come from © 00 ]

V . E, and appendix B presents the calculations of the A(R, z) = Eq // explip(K, R, 2)]dK,  (6)

x® components under the transformation from the principal -

coordinate system to the propagation coordinate system. is the optical beam which is a scalar function, a phase factor
¢ reads

2. Optical beam equation in anisotropic media (K. R.2) = (Vko - K + %VKVKkO "KK):+K-R,
Assume that only one of the two mutually orthogonal

eigenmodes is propagating in the transparent crystals, and® o ) . o
under rather general conditions, a time-harmonic field @PProximation of the eigenfunctioBo. Also, £," should

nd € is a unit vector of E” that is the first-order

propagating in the media is comply v_vith gquatio_n (2) provideq that expansiora)(4s
only retained in the first term, that is,
E(T, 1) = %E(T’) eXp(—ia)t) + C.C., (KK - K - Ki) . E(()O) +k(K€z +€zK) . E(()O)

whereE (r) can be represented in a homogeneous half-space +2e.e. — 1) - E® + aig .E® _p @

z > 0 by its plane-wave spectrum [12] o 0 2 O '

o In the following, we will discuss the evolution of

E(r)= // Ey(p)expli(K - R+kz)]dK, (1) the light beam (5) when a perturbed cubic nonlinearity
—o0 appears in the media. Without loss of generality, we can

where E, represents the field of the normal wave, i.e. the assume that the media possess a centre of symmetry, some

plane wave, propagating along the wavevegiop = K + examples of which are [14] the ones belonging to the crystal
ke., andr = R + ze. (e, is the unit vector along the- classes 6m and 6/mmm in the hexagonal syst@nand
coordinate, K’ and R represent transverse wavevector and 3™ in the trigonal system, and 4/m and 4/mmm in the
coordinate vector perpendicular &, respectively,K = tetragonal system. For these crystals, the lowest-order non-
K.ex + Kye,, les| = |ey| = 1). Eo andp, sometimes  Z€ro nonlinear susceptibility should € rather thary ®,
refered tointhe literature as the eigenfunction and eigenvalue therefore, the time-harmonic Maxwell equation in the mks
respectively, satisfy the eigenvalue equation [12, 13] system of units reads [13, 15, 16]

2p, @02 V x (V x E) o (¢-E+Py)=0 8)

— X X - —(& - =0,
(pp — pPl+ Zg) - Eq =0, ) go NE

A . . . where P, expressed as
where I and ¢ are unit and dielectric tensors of rank 2, N (7) exp

respectively.k as a function ofK can be derived from the

380 3) . *
dispersion equation Py (r) = TX( (w=wtw—ow): E(r)E(r)E*(r) (9)

br W28 is the third-order nonlinear polarization [14-16], and the
det(;:p —pl+ §;> =0, 3) fourth-rank tensory @ (o = w1 + wp + ws) is the Fourier
0 transform of the third-order nonlinear susceptibility.
wherew remains unchangeable. In order to obtain the wave equation for the slowly

Consider now the special case of a paraxial beam, whichvarying amplitudeA(R, z), the first step is to introduce
is a group of plane waves with the same frequency but slightly equation (5) into (8) with the help of equation (7), and
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neglecting the second derivati9A /02 in the intermediate  the linear refractive index = no, the eigenfunctiont "

result. In this way, equation (8) can be deduced as is a linearly polarized vector field orthogonal to the wave
00 © ) propagation direction, and the dispersion equation becomes
[ - roe. + e B expliv) dic K242 — w?nd /e suchthate;  1,ko = wno/c, Vixko = O,
- 09A A andVg Vgko = —1 /ko. Suppose?ém is polarized along the
+(Vie teVi)-e . +(e;e; — 1) x-axis; therefore, the NRI becomes
dA o0 3
A 2ip 072 0) 2_ g2 ; - ,0 15
[2.koe st E} / /_ oo(k k2) exp(ip) dK] M2 = g Xoax: (15)
®? . and the nonlinear paraxial wave equation is reduced to the
_6250 P exp(—ikoz) =0, (10) previously derived1+2)-dimensional nonlinear Schdinger

where a subscript represents the transverse part of a vector €duation [5,7-9]:

perpendicularte,. The first two terms of the above equation 9A 1 [3%A  92A
result fromV - E, and as proved in appendix A, can be IE + % <ﬁ + 872)
neglected. Retaining the first three terms of expansioh (4 ¢
we have

+ 220240, (16)
Cc

3. NRI in uniaxial crystals
2 2 o _ .
ke = ko~ 2holk — ko) = ZoVicko - K +koVi Vigho ! Kéﬁ) For crystals, the problem becomes much more complicated
than the case for the isotropic media because of the anisotropy
of the linear refractive index and the fourth-rank tengt?.
The nonlinear paraxial wave equation (12) is only derived
under the condition of one-mode propagation. To ensure this

Finally, substituting equation (11) into (10) whose first two
terms are neglected, we derive the optical beam equation in
anisotropic media, i.e., the nonlinear paraxial wave equation:

i (% — Viko - VLA> _ }VKVKkO V.V, A condition is §atisfied, we mus_t investigate the naturg @&f
0z 2 under coordinate transformation.
$ON2 2, As mentioned above, equation (12) is obtained in the
—ZJAPPA =0, (12) . :
cay propagation coordinate system, but the allowed form of
where the third-order nonlinear susceptibility® is determined
ar=el-(F —e.e) e =, (13) in the principal coordinate system [13]. Therefope’®
) ] should be transformed from the principal coordinate system
and where the NRi; is defined as (x',y', 7)), where a prime represents the quantity in the
principal coordinate system, to the propagation coordinate
30 3. 0000 i )
ny = 86k0X ie'eee”. (14) system(x, y, z). The corresponding new componem%(,

of the tensory @ can be computed in terms of the old ones
At this point it is important to emphasize the following. ', by writing [17]
First, the field is determined by equation (5) in the lowest-

C ) ! ) 3 3y
order approximation. SincB(r) is proportional tA (R, z), X,&k); = Z X[(/j)/k'[/gi’igj’jgk’kgl’l (17)
the vectorial field is completely specified when the scalar gLkl

equation (12) is solved for(R, z). The reason why it~ yhereg,, = e; - €| represents the direction cosine of the

is possible to describe the field as consisting of vectorial angle between the direction of the old base veetomnd
properties with the scalar equation can be readily elucidatedine new base vectar;. Becauser’ and y’ directions are

through the physical background of the problem. As already equivalent for the uniaxial crystals [13], we can thus choose
pointed out, in this paper we limit ourselves to the discussion pe propagation coordinate system such thattheplane is

of the evolution of the light field under the influence of the  yithin thez'—x plane without loss of generality, as shown in
perturbable nonlinearity. It is because the nonlinearity is figyre 1. In this way, we can have

perturbed that it can alter nothing more than the magnitude _ _

of the field rather than the direction of the field, which is gvx =COK0), gy:=SIN0), gyx = —sIN0),
governed by the dominant linear part of the field equation, i.e. , _ o4y =1 S — gm0 —g, =0
equation (2) or equivalently equation (7). Moreover, because - W) sy =L 8y = 8ye = 8y =8 (1é)

the nonlinearity has the property of a tensor, the vectorial \yhere g is the angle between the-axis and the central
property (polgrization) of the field can, i.n t.urn, have an effect \y5yevector of the beam, varying in a closed intervat{D

on the magnitude through the NI within the last term  There are six classes of crystals with centrosymmetry: 6m
of equation (12), and the NICs are different for the different ang 6/mmm in the hexagonal syste®,and 3m in the
kinds of polarization. Secondly, equation (12) is a general tigonal system, and 4/m and 4/mmm in the tetragonal
form of the evolution equation for the beam in nonlinear system, respectively. Three of these crystals, 6/m@m,
crystals. To find its concrete %xpression for the different and 4/mmm, whose® form in the principal coordinate
modes, we should first obtaifiy” and its accompanying  system can be found from table 1.5.2 of [14], can be easily
functionk(K') by making use of the eigenvalue equation (7) demonstrated by the transformation above to have

and the dispersion equation (3), and then obkginVg ko, 5 5 5 s

Vi Viko, a1 andn,. For example, in isotropic media with Xy = Xioer = Xony = x40, =0 (19)

7



Qi Guo and Sien Chi

>
>

’
z

(c-axis)

Y,y

Figure 1. Coordinate systems and the central wavevector of the
beamk, that makes an angkewith the optic axis0 < 6 < 7).

The propagation coordinate systém y, z) is introduced by a
counterclockwise rotation throughabout they’ axis of the
principal coordinate systeix’, y’, z').

in the propagation coordinate system for @&y the closed
interval [0, 7]. This means that if the field structurezat 0
excites only one of the two orthogonal eigenmodes, there will

not be a nonlinear couple between the o-light polarized along

they-axis and the e-light polarized in thex plane no matter

which direction it propagates along: the mode merely keeps
propagating in these three class crystals. But the other three

centrosymmetric crystals belonging to crystal classes 8/m,
and 4/m can be proved not to have this feature.
It is this nonlinear couple-free feature of the o-light

to the wavevector in the propagation coordinate sysgem,
through
K!, = K, cost +ksind,

K, =Ky, (22)

k' = —K, sinf + k cosh.

Inserting equation (22) into (21) gives the dispersion equation
in the propagation coordinate system:

(n§cOS 0 +ngsin? 0)KZ +niK?2 + (n)sin? 0 + nf cos 0)k?
a)znéng

=0
2

+(n2 — n) sin(20)K .k — (23)

for 0 < 6 < m. The reason why is limited to

the open interval0, =) is that, as mentioned previously,
when the central wavevector is in the direction parallel
to the c-axis, the o-light and the e-light will share the
same dispersion properties. Therefore, after obtaining the
dispersion equation, we can, respectively, have

wn®

ko = - (Vkko)y =0,

(n2 — n2) sin(29)
2(n2co 0 +n2sirf0)’
(Vi Viko)xx

1| n2cog +nZsir’e
" ko {_ngco§0 +n2sin’ g
(Vi Viko)yy =

(Vkko)x =

+ [(kao)x]z} : (24)

2
o

 ko(n2co26 +n2sirt o)’
(VKVKkO)yx = O»

n

(VK vK kO)xy

and the e-light at any direction that makes the discussionyhere

possible and simpler. Then, we can respectively deal with
the evolution of the o-light and the e-light in the three class
of crystals:3m, 6/mmm and 4/mmm.

For the o-light propagating along any direction except
the one parallel to the-axis @ = 0 or rr), the case is the

e Nelg

n® = -
(n2cog 0 + n2sin® 9)/2

is the linear refractive index for the e-light.
On the other hand, as is known [13], the electric
displacement vector of the e-light is perpendicular to the

(25)

same as that of isotropic media, as discussed at the end otentral wavevector of the beam, but its electric field vector is,

section 2, and, for the o-light is

3
3Xx’x’x/x/

8no

n(zo) = (20)
When the central wavevector is along the direction parallel
to the c-axis, there will be a special situation, which is
a double mode with two eigenmodes, o-light and e-light,

sharing the same dispersion properties, and the propagation
becomes more complicated because of the singularity in this

direction [13, 18]. This situation is not considered in this
paper.

The propagation of the e-light is more complex than the
case of the o-light.

The dispersion equation (3) for the e-light reads

KZ+KZ k2 o2

=0
2
U

2
nO

— 21
> (21)
in the principal coordinate system, whetg and n, are
the extraordinary index and ordinary index, respectively.
Under the coordinate transformation shown in figure 1, the

wavevector in the principal coordinate systeph,is related

8

in general, not perpendicular to the central wavevector. The
electric displacement vector and electric field vector form the
angles, which is also the angle between the Poynting vector
and the central wavevector, as shown in figure 2, &isl
given by [12,18]

(n — n2)sin(29)
2(n2cog 6 +n2sirf )’

§ = arctan (26)

Then, the unit vector of the electric fiel is found to
be

e® = cosse, + sinde,. (27)

The combination of equation (14) with (27) gives the NRI in
the propagation coordinate system

3

XXXX

(©)]

n2(0) = i[cos“(s X
8ne

3) 3

; 3
+ CO§ 6 SIn(S(XZXXX + X]CZ]CX + X,’CXZX + X,EX?’CZ)
+cog8sirt s(x2), +x 2,
(€] (€] (€] ()]
+XZ«’CXZ + XXZZ«’C + XXZXZ + XX)CZZ)
+0088 Sin §(x%), + x5,
4
+X7(?))rz + X'(f;r) +sin's - Xz(fzz] (28)



&)
,‘D‘p
W
N

Figure 2. Direction of the field vectors, the Poynting vec®and
the central wavevector of the bedfor the e-light beam
propagating in uniaxial crystals. The electric field vedirthe
electric displacement vectd, S andk, are coplanar, and the
magnetic field vectoH (and hence also the magnetic induction
vector B) is at right angles to themD is orthogonal tdcg, but E

is not. S is perpendicular t&, but not toD. The angle between
E andD is the same as the angle betweeandko, and is
denoted bys.

Through the coordinate transformation shown in figure 1,

ny can be expressed by the components in the principal

coordinate system. For th&m crystal, itsn, is

(details regarding the coordinate transformation are given in

appendix B):
3 3 ] .
nS™ = @{005?5()(;33%’ codo + ¢ sinto
™ ; 777z

+x} SiN? 6 cos 6 — x5 oS 0 sind)
+cos s sins(sin20)[2(x2,. cof o
—x . si?0) + xi(sin?6 — cod )]
+x5COZ 0 (co 6 — 3sirt 0))
- @ @

+COS §SIP 8{[6(x v + X))
—4y;]sin?6 cog 0
+x;(cog 0 + sin’ 0) + 3y cosd sind(cog 6 — sir? 6))

. . 3) . &%
+coss sin® §{sin0)[2(x 7). sinf 0 — x ¥ cog 0)
+x;(cog 0 — sirf 0)] + x5 sin? 0(3cog 6 — sin’6))

+sints(x¥ . sin*0 + x ¥ cod 6 + y; sir?6 cod 6
+x5SIM 6 cos)}, (29)
where

r_ ., Q (© 3 ()} (©) 3
X1 = Xwxrzy + Xzzwx + Xwix'z + Xxz'z'x! + Xxzx'z + Xzx'gxs

(30)
and

/ [ [

_ (€} 3
X2 = Xyxw'z + Xx'x'z'x

ot Xz T Xoxrrers

(31)

The crystals 6/mmm and 4/mmm have the same nonzero

elements, which are less than those of the cry8tal
Therefore, their, have a simpler expression:

n(26/mmm) _ n(24/mmm)

cod o+ &

= i{coé‘(S(X@)/ sin6

8ne x'x'x'x

rd
77
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+x1 Sin? 0 cog 0)
+cos § sins sin(20)[2(x ),

x'x'x'x

,cog 6

—x.,, sin6) + xi(sir? 6 — co 9)]
+cog ssin?s{[6(x . + x2..)

—4y;]sin*6 cos 6 + x;(cos 6 + sin' 6))
+coss sin? s sin29)[2(x 2., sin o

—xY. cod8) + x;(cog 8 — sinf §)]

+sits(x > sinto + 'Y cod o

x/x'x!'x 2’772
+x} Si 6 cog 6)}. (32)

It is obvious thatn, is anisotropic and dependent on the
propagation direction. For example, wheapproaches zero
(or ) or equalst/2 we obtain

. (€4
I|m9—>0 nz = n(O) — SXX’,\'/x’x’
limg_, na= |2 8no
(33)
3 @3y
n <7T) XZ’Z/Z’Z'
2|l =z ) = ——,
2 8ne

for all three crystals, Wher@ff)

Since the condition that

is the NRI for the o-light.

(no — ne)

no

Ap <1 (34)

is satisfied for most of uniaxial crystals [13}, can be
simplified greatly if its expression is expanded about small
parameterz, to the first order. First of allz® ands can be
expanded as

n® =no(l— Az sin?0) +0(AL), (35)
and
§ = —Arsin(20) + o(Ayp). (36)
Then, equation (29) is reduced to
3 3 . /
nSm = RO sin?6)[xY,.. . cog o
+x . sin*6 + x; sif 0 cog 6 — x5 cos 6 sind]
— Ay sin@20)(sin@29)[2(x Y, .. cog 6 — x 2. sir?6)

+x;(Sin? 6 — cog 0)] + x5 cog 0 (cog 6 — 3sirt 0)}}
+0(AL), (37)
and the simplified expression e$ for crystals 6/mmm and
4/mmm is
n(26/mmm) _ n(24/mmm)

,cos 6

x'x'x'x

%{(1 +ALSITP 01,0

+x .. sin*6 + x; sin? 0 cog 0]

—ALsiP@O[2(x2, . coge
—x(3) sin6) + x;(sir? 6 — cog 6)]}
+O(AL). (38)

Expressions (37) and (38) can still be further simplified by
considering the Kleinman symmetry condition [14]. In this

9
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case, we can obtain

3 3 . :
&M = (@ +A.siPo)[x? . code
8no

x'x'x'x!

& sin?gcofe

x'x'7'z

+x . sin*6 + 6x

—4x )
— A, sin20){sin20)[2(x 2. cog 6
x> sifo) +6xY, (s 6 — cod )]
+4y Y, cod6(cog 6 — 3sirt0)})
+0(AL),

, cos sind]

(39)
and

(6/mmm)
2 =

(©

3 .
{(A+ALsi?o)[xS) . cosa

o
@ it @
+x5). sin'6 +6x.) ,, si? 6 co 6]

—ALsiPO)2(xY.  cof6 — x 2. sin?6)

x'x'x'x

+6x' . (sir?6 — cog 0)]} + 0(A ). (40)

4. Properties of the self-focusing and self-trapping
of a light beam in uniaxial crystals

After obtaining the NRI, we are now in a position to discuss
the behaviour of the paraxial beam in the uniaxial crystals
when the diffraction and nonlinearity act together.
The introduction of equation (27) into (13) gives
a1 =cog8 =1+0A2)~ 1, (41)

and, hence, by combining with equation (24), wave
equation (12) becomes

32A

¥

92A

(n55
X

d0A d0A 1

i|——0—)+—
(Bz Gax) 2ko

+221424 =0, (42)
C
where
0 = (VKkO)x’ Px = _kO(VKkaO)xx’
(43)

Py = _kO(VKVKkO)yy

for 0 < 6 < m. If the nonlinear term is not considered,
and the [Vxko).]? term in o, which can be proved to be of
the order ofAZ?, is dropped, the linear case of equation (42)
is equal to that obtained by Fleck and Feit (equation (39)
in [18]). However, our treatment is simpler.

Using the transformation

w(E . 8) = ,/%’jA(x, v, 2).

ko(oz +x)
e
_ koy
=
¢ = koz,

(44a)

§ : (44b)

n , (44c)

(44d)

10

the transverse asymmetrical equation (42) is readily trans-
formed to the transverse symmetric nonlinear 8dimger

equation:
2 2

i—+ <a—u+a—u> +|ul’u = 0.

ac 2\ 02 an?
Transformation (44) shows that the propagation of the
e-light beam is inclined to its central wavevectkye,.
This deflection results from the fact that the e-light beam
propagates along the direction of the Poynting vector rather
than along the central wavevectége, [12, 19]. It is
easy to see that the deflection equals zero in the direction
perpendicular to the-axis.

The analytical approaches to solving equation (45) are
the aberrationless ray approximation [5,8] and the variational
method [9]. The former provides some qualitatively correct
answers but the quantitative predictions are less reliable,
while the latter can give analytical results in good agreement
with numerical results. Moreover, a sech trial function
yields more accurate approximation than a Gaussian trial
function [9], because the sech function is the exact profile
for a (1 + 1)-dimensional nonlinear Sobdinger equation.
Therefore, the variational approach with the sech ansatz is
used here to find the solution of equation (45). For the choice
of symmetry sech trial function

0 1
u (45)

/&2 2
u,n,¢) = A(;)sech[i(;n} explib(¢) (&% +n?)],
(46)

proves that if the beam waist is located at the entrance face
of the media, that isal¢)/d¢ = 0 at¢ = 0, the normalized
beam radius(¢) has the form

a(©)? _ r1g®(1 = kalAol®a)) | o

2 2 d
)

(47)

do

whereag and|Ag| are the initial normalized beam radius and
amplitude, respectively, andy = 4(2In2 + 1)/[27 £ (3)],

ko = (4In2—-1)/(2In2 + 1) (f(n) denotes the Riemann
zeta function,f (3) ~ 1.202). By transformation (44), we
can get the real physical quantities

cko (07 +x)? 2
Ay 2)| = | K0 A pl /o2 7Y" ,
[A(x,y,2)| \/w»nz| (z)|sec <\/ wi(@)  wi()
(48)
where
W, = D% ,= 20 (49)
ko ko

are beam widths in thex-direction and y-direction,
respectively, and

5@ _ mPkipipy2®

P
i (1 - i) +1, (50)
So Sokg Pere
Porcl®) = P néo) _In2 Ag
cre = Fecroy/ pxpynz(@) , oo = Kzzon(zo) s
(51)

whereS = mw,w, is a beam area its initial value, Py
represents the input poweP|[= (%)IE x H*dxdy =
ko/(2uow) [ |E|?dxdy], Pere @nd Py are critical powers for
the e-light and the o-light, respectivel§io[= (110/€0)Y/? ~
377 2] the vacuum impedance, ang is the wavelength in
vacuum.
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4.1. Critical power Ay and Ays. We find from the figures that the minimum

Equation (50) tells us that wheRy, = P, the beam area of the difference between the maximum and the minimum of
o = “ore IR HEG the critical power((| Pere/ P — (Pere/ Pero)min) is about

keeps constan§,. This is the self-trapping situation. If b0 Pp f;(l cre/ Pero)max = (Pere/ Pero)min)

Po > Pee, S Will reduce continuously to a point until the cre(0) — Pere(7/2)

beam collapses, which is the self-focusing situation; on the Po An1=0.2,Ax3=0.0, any Ay,

contrary, the beam will diffract. = (4AL — An1)|a,=0158 Ay=02 ~ 43% (55)

Substitution of the expressions fpr, p, andn This means that no matter how many unknown parameters

O ;
5> into

equation (51) and by means of equation (32)e of crystal
3m reads

PEM(©)  1+2A,(1—2sif6) +0(A,)

, 52a
PCI'O D ( )

where

D =1— Ayysin®6 — $Ayzsin?(20) — 4AyzcoS 6 sing
— Ay SiN(20){2 SiN(20)[ A y1 Sin? 6
+An2(1 — 25sirf 0)] + 4Ay3c0S 6 (1 — 4sirf 6)},

(520)
© 3
A _ Xywxx = Xgz'z'y
N1 — @y )
Xx'x'x'x’ (520)
() () 3
Ay — Krwrxrer = SXyrwrzrzs Ava — o
N2 = - @3 N3 = 3y
Xrxixix! x'x'x'x’

If Ay1, Ay2 and Ayz are assumed to be small parameters

(«1), expression (58) can be reduced further as

PEM (6 : .
%() =1+2A;(1—25sirf0) + Ay Sin* o
Cro

+1 A2 Sin?(20) + 4A 3 cOS 0 sind
+0(AL + Ay1+ Aya + Ap3). (53)
3

From equation (53), lehyz = 0, i.e. x,;., = 0, we can

obtain the critical power for crystal 6/mmm (and 4/mmm):

An1, Ayz andA yz there are, the differenc@Pere/ Pero) max—
(Pere/ Pero)min in the crystalB3m is large enough to be easily
detected experimentally. Therefore, the measurements of
critical power at various directions relative to the optic axis
of the crystal make it possible to obtain a set of independent
equations from equation (53) to calculate the independent
nonzero components of ijg® tensor.

The analytical analysis about the expression of critical
power becomes possible for the crystal 6/mmm (and also
4/mmm) because itsAys is zero. The analysis of
equation (54) shows that the critical power has two extremes:
Pere = Pext1 = (1 + 2A1) Pero Wheno goes to 0 (orr), and
Pere €qualsPexiy = (1 — 2A1 + An1) Pero at® = /2. There
is another extreme:

An1+2A10(An1 —2A1) — An2(2+ Ap2)

P 56
ext3 ANl — ZANZ ( )

which at 6 equalsf. = arcsinf2A; — An2)/(An1 —
2AN2)]Y?, ifacondition 0< (2A; —Apn2)/(Ay1—2Ax2) <

lis satisfied. Figure 5 gives the critical power as a function of
o for a positive crystal Rutile (its crystal class is 4/mmm [14],
and itsn, = 2.616, andne = 2.903 [13], so thatA; ~
—0.110), where bothm 1 andA y, are also small parameters,
and the absolute value is less than 0.2. For the case where
Ay1 = 0.2 and anyAy», and the case whergy; = 0.1
and anyAyz, Pee is single-valued function o in the
interval (0, 7 /2) because the condition that appears can
never be satisfied. However, whevy,; is small enough, the

PE/MMM (g ) » function P(6) becomes a little complex and, as shown in
T P 1+2A,(1—2sirf0) + Ayssin'6 the figure, the third extreme as a maximum might appear or
1 .5 not, depending upon the value afy,. Figure 5 shows that
T2 AN2SIM(20) + O(AL + Ana ¥ Anz), (54) the difference between the maximum and the minimum of
where bothAy; and Ay, are also assumed to be small P, is at least about
parameters. Pere(7w/2) — Pere(0)

We can conclude from equations (51), (53) and (54) that P
the e-light beam propagating in a different direction has a 0 Anr=Ayz=—02
different critical power, but the o-light’s critical power is = (-4AL + Ayy)la,——011a=-02 = 24% (57)
independent of the propagation direction, as in the case ofwhenAy; = —0.2, or bigger ifA y1 is bigger, which should
isotropic media. be easily measurable.

Figures 3 and 4 pertain to the critical power as the
function of 6 obtained from equation (53) for the case 4.2. Self-focusing length
where A, ~ 0.158. In the figuresAyi1, Ay2 and Ays
are all, as assumed, small parameters, their absolute value
being less than 0.2, because no such data are available bot ; - .
experimentally and theoretically. These figures correspond From_equatlon (50), Iettl_ng‘ - 0. we can obtain the self-
to the critical power of negative crystal NaN@vhose crystal focusing length of the e-light, which reads
class is3m [14], and whera, andn. are equal to 1.587 and Soko B1(0)
1.336, respectively [13]. The curves start from the same point = I Thma .
(1+2A;) atd = 0, reach aextrem@ —2A; + Ay1) atd = KL P2 — 1
/2, which is the minimum for some of the three parameters

self-focusing length is defined as the distance where the
eam spot shrinks to zero and the optical beam collapses.

(58)

where
An1, Anz @andAys, and end in the same poi(lt + 2A,) at
6 = n. The figures also show tha&.. might have the other B1(6) = =1+A,(1-3cod0) +o(A,)., (59)
extremes depending upon the value of the parametgks A/ Px Py

11
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Figure 3. Critical powers as the function éffor the negative crystal NaNQwhereA y;, Ay, andA y3 are all assumed as small
parameters, with their absolute values less than 0.2 Tde®rdinate values in the first row are for theg; given in the figures, and the ones
in the second row are for the minus of thg s given, because equation (53) is unchangeable through a transformation sutk-that- 6
andAyz = —Ays.

and equation (12) in the neighbourhood of the self-focus. To deal
n2(0)/n® with the detail in the neighbourhood of the self-focus in the
Ba(0) = ———% crystals, the other models should be used as in the case of
VPxPy isotropic media [20, 21].
1—2AL(1—2sif0) — Aygsin' 0 — 1Ay, sin?(20)
—4A N30S0 sing 4.3. Light spot of the self-trapping beam
=) YO(AL+Ani+ A+ Ayg),  forcrystal3m; We can demonstrate that the self-trapping beam of the e-light
1—2AL(1—2sif0) — Aygsin' 0 — 2 Ay, sin?(20) is asymmetrical, and its light spot is an ellipse. The ratio of
+0(AL + Ay1+ Ay), forcrystal 6/mmm. the two axes of this ellipse (which axis is the major axis
(60) depends on the sign df;) equals
Equation (58) will give the self-focusing length of the o-light We  [px .
if g1 andp, are setto be 1, letting;, = Ay1 = Ays = w, ;Ty =1—ALSIPO+0(AL). (61)

Apysz = 0 in equations (59) and (60). It is obvious that the
self-focusing length is different for the e-light at a different The result tells us that the asymmetry becomes strongest at
direction, but isotropic for the o-light. 6 = m/2, and the ellipse becomes a circlefagoes to zero

As has been pointed out [20, 21], however, this collapse or . It goes without saying that the self-trapping beam for
is due to the loss of validity of the nonlinear paraxial wave the o-lightis circular, as that in the isotropic media.

12
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e-light and isotropy for the o-light. Our results might be
145 | TTA2=I07 applied to the experimental determination of the anisotropy
e - = 0.1 of x®,
N e = 0.2
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Angle 8 (degree) Appendix A. Proof of neglecting the terms that
. i ) ) come from V . E
Figure 4. Critical powers as the function éffor the negative
crystal NaNQ, whereAy; = —Ays = —0.1, andAy; is as the

small parameter; its absolute values less than 0.2. By use of expansion 4 and one of the properties of the

Fourier transform, which reads

145 . .
A —-0.2 / KEY explip(K, R, 2)]dK = —iV, A€’
_ N2 ~0O.1
1351 | --- = g% e the first two terms in equation (10) can be reduced as
. e
125 | o [ [t~ e e B explior axc
JdA
g 115 +(V,e, +te V) - ed——
-9 0z
\Q)
~° 105 ~ //(kao-K+%vaKko ' KK)
095 | x(Ke, +e.K) - EQ explip) dK
: 004
0.85 +(Viye +eVi)-e aiz
: = (Vioe;teVy)
0.75 * : = ‘ b b L 9A 1
0 10 20 30 40 50 60 70 80 90 0 —— — Viko-VIA+i=VgVkko: V.V A]).
0z 2
Angle 6 (degree) (A1)
Figure 5. Critical powers as the function éffor the positive By means of the order-of-magnitude analysis method [21],
CB/St?' Rutllle, Wkl‘efe&r# a”géNé are as pﬁrametefsy with their we can get the following relation of the order-of-magnitude:
absolute values less than 0.2. Because the curves are symmetrical - . .
abouty = /2 in the interval(0, =), just half of them are drawn. the first .tWO terms n equ.atlon (11)
the third term in equation (11)
5. Conclusion _ {//(k ~ ko) (Ke. + e.K) - B explip) dK
We have derived the nonlinear paraxial wave equation A R
describing the propagation of the optical beam in nonlinear t(Vie;te Vi) e TZ}{(ezez =17
anisotropic media with centrosymmetry. As for application, 1
i i ve i i _ G0A . B
we o!otalned the nonll_near refractive index in the three | 2ikoe®ZE + EéO)/ k2 — ké) expli) dK
uniaxial crystals belonging to the symmetry classes 6/mmm 9z
in the hexagonal system, 4/mmm in the tetragonal system Ao (A2)

and3m in the trigonal system, respectively, and considered "~ 27w’
the self-trapping and self-focusing of the optical beam wherew is the beam width. Generally,y/(27w) is a very
propagating along any direction in these crystals. The small paramete¢«1), which is just about 0.16 even if the
nonlinear refractive index, critical power and self-focusing beam is focused t@ ~ Aq. Therefore, the first two terms of
length are all anisotropic for the e-light, that is, they are equation (10) can be neglected in comparison with the other
dependent on the propagation direction. However, theseterms.

guantities are isotropic for the o-light. There exists an Furthermore, it can also be proved that the second
elliptical self-trapping beam for the e-light. These features derivatived?A/dz? is two orders ofiy/ (27 w) less than the
can be easily understood considering the anisotropy for theterms retained by the order-of-magnitude analysis method.
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Appendix B. Calculation of the  x() components
under transformation from the principal coordinate
system (z’,vy’, 2’) to the propagation coordinate
system (x,y, 2)

For the 3m crystal, we can obtain the following from
equation (17) and by means of equation (18):
G K #)
Xffgrx = Z Xi(’i)’,](’[/gi’zg Jj'x8k'x8lx
ik

_ (@ 3 ©
_(Xxxxx X"”xx szx-r

,) coS 6 sing

X”XZ)C

() 3 3
+(_Xzzzz t Xarwzy T Xargow

+x..)sin®6 coss

—x& xS+ xS ) sirf6 cod 6
+x 2. codo. (B.1)
In the same way, we can get
12 = <xi3£'x = Kews = Xavrw
—x¥..) cos 6 sing
XD+ X+ Xz
+x . ) sin®6 coss
— &+ x P ) sirf 6 cod 6
+x 3. code, (B.2)
3 @ @ @

Xxm—(x”” Xewzz = Xagaw
—x¥..) cos 0sing

@y o ()

= Xerzrgg ¥ Xpgww F Xyowry
X,“)sm 6 cosh
O+ xS+ xS ) sinf 6 cog 0
+x . codo, (B.3)
and
K = (xfi/x e = X
—x..) cos 0sing
3 (3) @A)

+( Xz’z’““ Xz'zxx! +Xx/z’z’x

+)<”Z ) sin® 6 cosd

3) 3 3
— xS+ xP ) sir?6 cod 6
3
x¥ .. codo. (B.4)

The addition of equations (B.1)—(B.4) gives the coefficient
of cos’ 5 siné in equation (29).
Similarly, we can also obtain

3
XD =48 ,”/coé‘9+xu,,/ sinto+ (2

XS = Kot = X

—x&.. = x¥..) cogasirte

+(x o+ xS cos o sing

—(x& .+ x2 ) cosasin’e, (B.5)
22, = x% codo+x Y sinto

(©} 3 (3)/ 3
+(Xx’x’x/x’ + Xyzzz = Xxixizig = Xggx'x!

14

—x& .. - x¥. ) codasirte

+(x D+ 1) cossing

XX X'Z 'x'x'x!
3) 3
~(x +xx(,,>/x/x,)cose sin®e, (B.6)

3 3
Ktk = Xivy €080+ x 7, sinto

(© (3)/ (€}
+(Xx x'x'x! XV’v’z’z’ Xzzx — Xgxixtz

3) 3
—x&.. = x¥..) codasirte

+(X;?X)’x’x + x,§3)2 ,) COS 6 sing
_(X)gi)/x o+ x,.) cososint 6, (B.7)
x2 . =x¥_ codo+ D sinto
O+ X = X = X
xSy — m)co§esm29
+(X;?Z)rx/x + %) cos gsing
¥+ 2% ) cosasinte, (B.8)
X3, =¥ codo+x ¥ sinte
3) (€ 3) @3y

+(Xxxxx X”ZZZ — Xy 77X’ X7xx’z’

—x&.. - x¥. ) cogasirte

+(x O+ 12 coS o sing

— (X ¥ A ) COSH SINP 6, (B.9)
and
%@, =xP._ codo+xY, sinfo

IO SR S L B

—x&.. = x¥. ) codasirte

+(x .+ %2 ) cosasing

~ (U * Xysry) COSO SI O, (B.10)
as well as

3) © 3y 3
Axzzz = (Xx’x’x/x — Xygxw T Xgxixy

- xf‘x),z,x/) cos sin*6
®’ @ o
(= Xowyo ¥ Xerwwe ¥ Xz

+x?..) co$ 6 sing

3 3 3
+ a2 ) codosine
— X sint o, (B.11)
3 3 3 3

XZXA - (Xx’x’x’x Xz’z’x’x Xxr 7'7/x’
—x)f?;,x/z,) cost sin6
3 (3)' 3y
+(_Xz 2oz T Xawzy T Xowiory
+x.,.) cos 6 sing
3 3
xS+ xS+ 2 co it e

—x&. . sinto, (B.12)

3) () 3y 3
Xezxz = (Xx iyt T Xaxgy T Xagx
—x.,.) cososin® o
3 3y @3y 3
H=x D+ xS+ xS+ x5 ) cos 0 sing

x'7'x'z

& L+ xD L+ x P ) co 6 sirte

+(Xx 'x'x'z Xx’z’x’x z x'x'x’

@ sin'e, (B.13)

_XXXZ)C



and
XS‘;X (X)E?,xx Xﬁ?’z’z/ - XZ(:?X o ;3) / ,) cosf sin®
(= Xff X A
+x., ) cos 6 sing
+( D+ a2 2 ) codasine
xj“, sin* 6. (B.14)

Addition from equation (B.5) to equation (B.10) and from

equation (B.11) to equation (B.14) can obtain the two [11

corresponding expressions in equation (29), respectively.

Finally, the transformed results gf?,, andx®), can be
obtained directly from equations (17) and (18), which can be
found in equation (29).
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