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Abstract

A consistent co-rotational total Lagrangian ®nite element formulation and numerical procedure for the geometric nonlinear

buckling and postbuckling analysis of thin-walled beams with monosymmetric open section is presented. The element developed here

has two nodes with seven degrees of freedom per node. The element nodes are chosen to be located at the shear centers of the end cross-

sections of the beam element and the shear center axis is chosen to be the reference axis. The deformations of the beam element are

described in the current element coordinate system, which is constructed at the current con®guration of the beam element. In element

nodal forces, all coupling among bending, twisting, and stretching deformations of the beam element is considered by consistent

second-order linearization of the fully geometrically nonlinear beam theory. However, the third-order term of the twist rate of the

beam axis is considered in element nodal forces. An incremental-iterative method based on the Newton±Raphson method combined

with constant arc length of incremental displacement vector is employed for the solution of nonlinear equilibrium equations. The zero

value of the tangent sti�ness matrix determinant of the structure is used as the criterion of the buckling state. A parabolic interpolation

method of the arc length is used to ®nd the buckling load. Numerical examples are presented to demonstrate the accuracy and e�-

ciency of the proposed method. Ó 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

The buckling and postbuckling analyses of thin-walled beams with open section have been the subject of
considerable research [1±30]. The buckling of the beam structures is caused by the coupling among bending,
twisting, and stretching deformations of the beam members. Thus the buckling analysis is a subtopic of
nonlinear rather than linear mechanics [7]. Many di�erent formulations and numerical procedures for the
buckling and postbuckling analyses of thin-walled beams have been proposed. Currently, the most popular
approach for the analyses of three-dimensional beam is to develop ®nite element models. The formulations,
which have been used in the literature, might be divided into three categories: total Lagrangian (TL)
formulation [13±15,17,18,22,25,29], updated Lagrangian (UL) formulation [17,20,28], and co-rotational
(CR) formulation [19,21,24,26±28,30]. It is well known that within the co-rotating system either a TL or a
UL formulation may be employed [21,31]. These formulations are consequently termed CR±TL and
CR±UL formulations. The reference con®guration used in a CR±TL formulation di�ers from the one used
in a conventional TL formulation by the motion performed by the co-rotating coordinate system from the
initial to the current (or neighboring) con®guration. In order to correctly capture all coupling among
bending, twisting, and stretching deformations of the beam elements, the formulation of beam elements
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might be derived by the fully geometrically nonlinear beam theory [32]. The exact expressions for the el-
ement nodal forces, which are required in a TL formulation for large rotation/small strain problems, are
highly nonlinear functions of element nodal parameters. However, the dominant factors in the geometrical
nonlinearities of beam structures are attributable to ®nite rotations, the strains remaining small. For a
beam structure discretized by ®nite elements, this implies that the motion of the individual elements to a
large extent will consist of rigid body motion. If the rigid body motion part is eliminated from the total
displacements and the element size is properly chosen, the deformational part of the motion is always small
relative to the local element axes; thus in conjunction with the co-rotational formulation, the higher-order
terms of nodal parameters in the element nodal forces may be neglected by consistent linearization [21,32].
The so-called ÔNatural approachÕ by Argyris and co-workers, for instance [9±12], was also based on the idea
of separating rigid body motions from local deformations.

Hsiao [21] presented a co-rotational total Lagrangian formulation of beam element for the nonlinear
analysis of three-dimensional beam structures with large rotations but small strains. Element deforma-
tions and element equations were de®ned in terms of element coordinates, which were constructed at the
current con®guration of the beam element. The element deformations were determined by the rotation of
element cross-section coordinates, which were rigidly tied to element cross-section, relative to the element
coordinate system. The beam element developed had two nodes with six degrees of freedom per node.
The out-of-plane warping of the cross-section was assumed to be the product of the twist rate of the
beam element and the Saint Venant warping function for a prismatic beam of the same cross-section,
and the twist rate was assumed to be uniform. In order to correctly capture all coupling among bending,
twisting, and stretching deformations of the beam elements, the formulation of beam element was de-
rived by consistent second-order linearization of the fully geometrically nonlinear beam theory. This
element was proven to be very e�ective for geometric nonlinear analysis of three-dimensional beams by
numerical examples studied in [21]. The e�ect of warping restraint is slight and may be negligible in solid
sections [33]. Thus, the assumption of uniform twist rate used in [21] may be still appropriate for solid
sections with warping restraint. However, the e�ect of warping restraint is of practical importance in
thin-walled sections [33]. Thus, when the restraint of warping is considered, the assumption of uniform
twist rate used in [21] is not appropriate for thin-walled sections. When the restraint of warping is
considered, the twist rate and the corresponding warping displacement are not uniform for thin-walled
open-section beams. The warping bending stress caused by the nonuniform warping displacement could
be of the same order of magnitude as the bending stress caused by the applied load for the majority of
thin-walled open-section beams. The strain energy corresponding to the warping stress and the associ-
ated strain may be equal to the work done by the bimoment [33] upon the twist rate. In [34], the bi-
moment was considered to be a generalized nodal force and the twist rate to be the associated
generalized nodal displacement, and the formulation of the element in [21] was extended to the doubly
symmetric thin-walled open-section beams. The beam element proposed in [34] had two nodes with seven
degrees of freedom per node. In [21,34], the unit extension of the centroidal axis of the beam element
was assumed to be uniform. This assumption might be reasonable for beams with doubly symmetric
cross-section, whose centroid and shear center are coincident, because the value of the longitudinal
normal strain at the centroid of the cross-section relevant to curvature of the centroidal axis and twist
about the shear center axis is zero. However, the assumption of uniform unit extension for centroidal
axis may not be applied to thin-walled beams with monosymmetric cross-section, whose shear center and
centroid are not coincident, because the longitudinal normal strain at the centroid relevant to the twist
about the shear center axis is not equal to zero or uniform. Thus, the kinematics of the element em-
ployed in [34] cannot be used to the thin-walled beams with monosymmetric open section. To the au-
thorsÕ knowledge, the application of co-rotational total Lagrangian formulation in the geometric
nonlinear buckling and postbuckling analysis for thin-walled beams with monosymmetric open section
has not been reported in the literature. The object of this paper is to present a co-rotational total
Lagrangian ®nite element formulation for the geometric nonlinear buckling and postbuckling analysis of
thin-walled beams with monosymmetric open section.

Here, the uniform unit extension assumption for centroidal axis used in [34] is modi®ed as that when the
longitudinal normal strain at the centroidal axis relevant to the twist about the shear center axis is excluded,
the unit extension of the centroid axis of the beam element corresponding to the rest of longitudinal normal
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strain is uniform in this study. Following [34], the shear center axis is chosen to be the reference axis and the
element nodes are chosen to be located at the shear centers of the end cross-sections of the beam element.

The third-order terms of the nodal parameters are not considered for the element nodal forces in [21].
Timoshenko [35] and Gregory [1] mentioned that owing to this axial deformation, there is an additional
resistance of the shaft to torsion proportional to the cube of the twist rate. In the case of a very narrow
rectangular cross-section and comparatively large twist rate, the additional resistance corresponding to the
cube of the twist rate may contribute an important portion of the total torque [1,30,35]. The values of twist
rate, the rate of twist rate and curvature of the beam axis of the beam axis are deformation dependent, not
element size dependent. Thus their values may not always be much smaller than unity. It seems that some
third-order terms of the element nodal forces, which are relevant to the twist rate, the rate of twist rate and
curvature of the beam axis, may not be negligible for some cross-sections with large rotations. In [30,34], it
was reported that the third-order term of twist rate was the dominant third-order term of element nodal
forces and should be retained for the geometric nonlinear analysis of three-dimensional beams with thin-
walled open cross-section. Thus, for simplicity, the third-order term of the twist rate is the only third-order
term retained in the element nodal forces in this study.

An incremental-iterative method based on the Newton±Raphson method combined with constant arc
length of incremental displacement vector is employed for the solution of nonlinear equilibrium equations.
The zero value of the tangent sti�ness matrix determinant of the structure is used as the criterion of the
buckling state, and the corresponding load is the so-called buckling load. The parabolic interpolation
method of the arc length proposed in [34] is employed to ®nd the buckling load. An inverse power method
for the solution of the generalized eigenvalue problem is used to ®nd the corresponding buckling mode. In
order to initiate the secondary path, at the bifurcation point a perturbation displacement proportional to
the ®rst buckling mode is added [36]. Numerical examples are presented to demonstrate the accuracy and
e�ciency of the proposed method.

2. Finite element formulation

2.1. Basic assumptions

The following assumptions are made in the derivation of behavior of the thin-walled beam element with
monosymmetric open section.
1. The beam is prismatic and slender, and the Euler±Bernoulli hypothesis is valid.
2. When the longitudinal normal strain at the centroidal axis relevant to the twist about the shear center

axis is excluded, the unit extension of the centroid axis of the beam element corresponding to the rest of
longitudinal normal strain is uniform.

3. The cross-section of the beam element does not deform in its own plane and strains within this cross-
section can be neglected.

4. The out-of-plane warping of the cross-section is the product of the twist rate of the beam element and
the Saint Venant warping function for a prismatic thin walled beam of the same cross-section.

5. The deformation displacements of the beam element are small.
6. The material is homogeneous, isotropic and linear elastic.

In this study, PrandtlÕs membrane analogy and the Saint Venant torsion theory [29,30,33] are used to
obtain an approximate Saint Venant warping function for a prismatic thin-walled beam.

2.2. Coordinate systems

In this paper, a co-rotational total Lagrangian formulation is adopted. In order to describe the system,
we de®ne four sets of right-handed rectangular Cartesian coordinate systems:
1. A ®xed global set of coordinates. X G

i �i � 1; 2; 3) (see Fig. 1); the nodal coordinates, nodal displacements
and rotations, and the stiffness matrix of the system are de®ned in this coordinates.

2. Element cross-section coordinates. xS
i (i � 1; 2; 3) (see Fig. 1); a set of element cross-section coordinates is

associated with each cross-section of the beam element. The origin of this coordinate system is rigidly
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tied to the centroid of the cross-section. The xS
1 axis is chosen to coincide with the normal of the unwarped

cross-section and the xS
2 and xS

3 axes are chosen to be the principal centroidal axes of the cross-section.
3. Element coordinates. xi (i � 1; 2; 3) (see Fig. 1), a set of element coordinates is associated with each ele-

ment, which is constructed at the current con®guration of the beam element. The origin of this coordi-
nate system is located at node 1, and the x1 axis is chosen to pass through two end nodes (shear centers of
end sections) of the element; the directions of the x2 and x3 axes are chosen to coincide with the direction
of the principal centroidal axes of the cross-section in the undeformed state. Note that this coordinate
system is a local coordinate system not a moving coordinate system. The deformations, internal nodal
forces and stiffness matrix of the elements are de®ned in terms of these coordinates. In this paper,
the element deformations are determined by the rotation of element cross-section coordinate systems rel-
ative to this coordinate system.

4. Load base coordinates. X P
i �i � 1; 2; 3�; a set of load base coordinates is associated with each con®gura-

tion-dependent moment. The origin of this coordinate system is chosen to be the node where the con-
®guration-dependent moment is applied. The mechanism for generating con®guration-dependent
moment is described in these coordinates, and the corresponding external load and load stiffness matrix
are de®ned in terms of these coordinates.
In this paper, the symbol { } denotes column matrix. The relations among the global coordinates, el-

ement cross-section coordinates, element coordinates and load base coordinates may be expressed by

XG � AGSxS; XG � AGEx; XG � AGP XP ; �1�

where XG � fX G
1 ;X

G
2 ;X

G
3 g; xS � fxS

1 ; x
S
2 ; x

S
3g; x � fx1; x2; x3g, and XP � fX P

1 ;X
P
2 ;X

P
3 g; AGS , AGE, and AGP are

matrices of direction cosines of the element cross-section coordinate system, element coordinate system,
and load base coordinate system, respectively.

2.3. Rotation vector

For convenience of later discussion, the term `rotation vector' is used to represent a ®nite rotation. Fig. 2
shows a vector b which as a result of the application of a rotation vector /a is transported to the new
position �b. The relation between �b and b may be expressed as [37]:

Fig. 1. Coordinate systems.
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�b � cos /b� �1ÿ cos /��a � b�a� sin /�a� b�; �2�

where / is the angle of rotation about the axis of rotation, and a is the unit vector along the axis of rotation.

2.4. Kinematics of beam element

The deformations of the beam element are described in the current element coordinate system. From the
kinematic assumptions made in this paper, the deformations of the beam element may be determined by the
displacements of the shear center axis of the beam element, orientation of the cross-section (element cross-
section coordinates) and the out-of-plane warping of the cross-section. In general, the shear center and
centroid are not coincident for thin-walled beams with monosymmetric cross-section. Here, the shear center
axis is chosen to be the reference axis and the element nodes are chosen to be located at the shear centers of
the end cross-sections of the beam element. Let Q (Fig. 1) be an arbitrary point in the beam element, and P
be the point corresponding to Q on the shear center axis. The position vector of point Q in the undeformed
and deformed con®gurations may be expressed as

r0 � xe1 � �y ÿ yp�e2 � ze3 �3�
and

r � xp�x�e1 � v�x�e2 � w�x�e3 � h1;xxeS
1 � �y ÿ yp�eS

2 � zeS
3; �4�

where yp is the xS
2 coordinate of point P and y and z are the xS

2 and xS
3coordinates of point Q referred to the

element cross-section coordinates, respectively, xp�x�, v�x�, and w�x� are the x1, x2 and x3 coordinates of
point P referred to the current element coordinates, respectively, in the deformed con®guration, x � x�y; z�
is the Saint Venant warping function for a prismatic beam of the same cross-section, and ei and eS

i
(i � 1; 2; 3) denote the unit vectors associated with the xi and xS

i axes, respectively. Note that the directions
of ei and eS

i are the same in the undeformed state. Here, the orientations of triad eS
i in the deformed state are

assumed to be determined by the successive application of the following two rotation vectors to the triad ei:

hn � hnn; �5�

ht � h1t; �6�

where

n � f0; h2=�h2
2 � h2

3�1=2; h3=�h2
2 � h2

3�1=2g; �7�

t � fcos hn; h3; ÿh2g; �8�

cos hn � �1ÿ h2
2 ÿ h2

3�1=2; �9�

Fig. 2. Rotation vector.

K. Mo Hsiao, W. Yi Lin / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1163±1185 1167



h2 � ÿ dw�x�
ds
� ÿ dw�x�

dx
dx
ds
� ÿ w0

1� e0

; h3 � ÿ dv�x�
ds
� dv�x�

dx
dx
ds
� v0

1� e0

; �10�

e0 � os
ox
ÿ 1 �11�

in which n is the unit vector perpendicular to the vectors e1 and eS
1, and t is the tangent unit vector of the

deformed shear center axis of the beam element. Note that the orientation of eS
1 coincides with that of t. h1 is

the rotation about vector t. hn the angle measured from x1 axis to vector t, e0 the unit extension of the shear
center axis and s is the arc length of the deformed shear center axis measured from node 1 to point P. In this
paper, the symbol � �0 denotes � �;x � o� �=ox.

Using Eqs. (2)±(8), the relation between the vectors ei and eS
i (i � 1; 2; 3) in the element coordinate

system may be obtained as [21]:

eS
i � Rei; �12�

where R is the so-called rotation matrix. The rotation matrix is determined by hi �i � 1; 2; 3�. Thus, hi are
called rotation parameters in this study.

Let h � fh1; h2; h3g be the column matrix of rotation parameters, dh be the variation of h: The triad eS
i

(i � 1; 2; 3) corresponding to h may be rotated by a rotation vector d/ � fd/1; d/2; d/3g to reach their new
positions corresponding to h� dh [21]. When h2 and h3 are much smaller than unity, the relationship be-
tween dh and d/ may be approximated by [21]

dh �
1 h3 2= ÿh2 2=
ÿh3 1 0
h2 0 1

24 35d/ � Tÿ1d/: �13�

The relationship among xp�x�, v�x�, w�x� in Eq. (4) may be given as

xp�x� � u1 �
Z x

0

��1� e0�2 ÿ v2
;x ÿ w2

;x�1=2
dx; �14�

where u1 is the displacement of node 1 in the x1 direction. Note that due to the de®nition of the element
coordinate system, the value of u1 is equal to zero. However, the variation of u1 is not zero. Making use of
Eq. (14), one obtains

` � L� u2 ÿ u1 � xp�L� ÿ xp�0� �
Z L

0

��1� e0�2 ÿ v2
;x ÿ w2

;x�1=2
dx �15�

in which ` is the current chord length of the shear center axis of the beam element, and L the length of the
undeformed beam axis, and u2 is the displacement of node 2 in the x1 direction.

Here, the lateral de¯ections of the shear center axis, v�x� and w�x�, and the rotation about the shear
center axis, h1�x�, are assumed to be the Hermitian polynomials of x. v�x�, w�x� and h1�x� may be expressed
by

v x� � � Nt
bub; w x� � � Nt

cuc; h1 x� � � Nt
dud ; �16�

ub � v1; v01; v2; v02
� 	

; uc � w1;
� ÿ w01;w2;ÿ w02

	
; ud � fh11;b1; h12; b2g; �17�

where vj and wj (j � 1; 2) are nodal values of v and w at nodes j, respectively, v0j and w0j (j � 1; 2) are nodal
values of v;x and w;x at nodes j, respectively, and h1j and bj �j � 1; 2� are nodal values of h1; h1;x at nodes j,
respectively. Note that, due to the de®nition of the element coordinates, the values of vj and wj �j � 1; 2�
are zero. However, their variations are not zero.

The axial displacements of the shear center axis may be determined from the lateral de¯ections and the
unit extension of the shear center axis using Eq. (14).

1168 K. Mo Hsiao, W. Yi Lin / Comput. Methods Appl. Mech. Engrg. 190 (2000) 1163±1185



If x, y and z in Eq. (3) are regarded as the Lagrangian coordinates, the Green strain e11, e12 and e13 are
given by [38]:

e11 � 1
2
�rt
;xr;x ÿ 1�; �18a�

e12 � 1
2
rt
;xr;y ; �18b�

e13 � 1
2
rt
;xr;z: �18c�

Substituting Eqs. (4) and (12) into Eq. (18a) and retaining all terms up to the second-order yields

e11 � e0 ÿ �y ÿ yp�h3;x � zh2;x � xh1;xx � 1
2
e2

0 � xe0h1;xx � �y ÿ yp��h1h2;x ÿ e0h3;x� � z�h1h3;x � e0h2;x�
ÿ �y ÿ yp�xh3;xh1;xx � zxh2;xh1;xx � 1

2
�y ÿ yp�2�h2

1;x � h2
3;x� � 1

2
z2�h2

1;x � h2
2;x� ÿ �y ÿ yp�zh2;xh3;x

� 1
2
x2h2

1;xx: �19�
When e11 at the centroidal axis (x � y � 0) relevant to the twist about the shear center axis is excluded, ec,

the unit extension of the centroidal axis of the beam element corresponding to the rest of e11 in Eq. (19) may
be expressed as

1
2
��1� ec�2 ÿ 1� � e0 � yph3;x ÿ h2;x � 1

2
e2

0 � ype0h3;x � 1
2
y2

ph
2
3;x: �20�

From Eq. (20), one may obtain

e0 � ec ÿ yph3;x: �21�
Substituting Eq. (21) into Eq. (15) and making use of assumption (2), one may obtain ec as

ec � `ÿ L
L
� yp

L
�h32 ÿ h31� � 1

2L

Z L

0

�v2
;x � w2

;x�dx: �22�

Substituting Eq. (21) into Eq. (19), one may obtain

e11 � e1
11 � e2

11; �23a�

e1
11 � ec ÿ yv;xx ÿ zw;xx � xh1;xx; �23b�

e2
11 � 1

2
e2

c � e0;x�yv;x � zw;x� � xech1;xx � 1
2
��y ÿ yp�2 � z2�h2

1;x � �12y2 ÿ ypy�v2
;xx � 1

2
z2w2

;xx � 1
2
x2h2

1;xx

ÿ �y ÿ yp�h1w;xx � zh1v;xx � �yzÿ ypz�v;xxw;xx ÿ yxv;xxh1;xx ÿ zxw;xxh1;xx; �23c�
where ek

11 �k � 1; 2� represent the kth-order terms of e11:
Substituting Eqs. (4) and (12) into Eqs. (18b) and (18c) and retaining all terms up to the second-order

yields

e12 � e1
12 � e2

12; �24a�

e1
12 � 1

2
�x;y ÿ z�h1;x; �24b�

e2
12 � 1

2
�x;yech1;x � �xÿ yx;y�h1;xv;xx ÿ zx;yh1;xw;xx � xx;yh1;xh1;xx� � 1

4
z�v;xw;xx ÿ w;xv;xx�; �24c�

e13 � e1
13 � e2

13; �25a�

e1
13 � 1

2
�x;z � �y ÿ yp��h1;x; �25b�

e2
13 � 1

2
�x;zech1;x � �xÿ zx;z�h1;xw;xx ÿ yx;zh1;xv;xx � xx;zh1;xh1;xx� � 1

4
�y ÿ yp��w;xv;xx ÿ v;xw;xx�; �25c�

where ek
1j �j � 2; 3; k � 1; 2� represent the kth-order terms of e11:
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2.5. Nodal parameters and forces

The element proposed here has two nodes with seven degrees of freedom per node. Two sets of element
nodal parameters termed `explicit nodal parameters' and `implicit nodal parameters' are employed. The
explicit nodal parameters of the element are used for the assembly of the system equations from the element
equations. They are chosen to be uij (u1j � uj, u2j � vj, u3j � wj), the xi (i � 1; 2; 3) components of the
translation vectors uj at node j (j � 1; 2), /ij, the xi (i � 1; 2; 3) components of the rotation vectors /j at
node j (j � 1; 2), and bj, the twist rate of the shear center axis at node j. Here, the values of /j are reset to
zero at current con®guration. Thus, d/ij, the variation of /ij, represents in®nitesimal rotations about the xi

axes [21], and the generalized nodal forces corresponding to d/ij are mij, the conventional moments about
the xi axes. The generalized nodal forces corresponding to duij, the variations of uij are fij, the forces in the xi

directions. The generalized nodal forces corresponding to dbj, the variations of bj, are bimoment Bj.
The implicit nodal parameters of the element are used to determine the deformation of the beam ele-

ment. They are chosen to be uij, the xi �i � 1; 2; 3� components of the translation vectors uj at node
j �j � 1; 2�, h1j, bj, v0j, and w0j (j � 1; 2) de®ned in Eq. (17). Let h�1j, h�2j and h�3j �j � 1; 2� denote h1j, ÿw0j and
v0j, respectively. The generalized nodal forces corresponding to duij, dh�1j and dbj are fij, mh

ij and Bj, the forces
in the xi directions, the generalized moments, and bimoments, respectively. Note that mh

ij are not con-
ventional moments, because dh�1j are not in®nitesimal rotations about the xi axes at deformed state.

In view of Eqs. (10) and (13), the relations between the variation of the implicit and explicit nodal
parameters may be expressed as

dqh �

du1

dh�1
du2

dh�2
db

8>>>>><>>>>>:

9>>>>>=>>>>>;
�

I3 0 0 0 0

Tb1 Ta1 ÿTb1 Tc1 0

0 0 I3 0 0

Tb2 Tc2 ÿTb2 Ta2 0

0
t

0
t

0
t

0
t

I2

26666664

37777775 �
du1

d/1

du2

d/2

db

8>>>>><>>>>>:

9>>>>>=>>>>>;
� Th/dq; �26�

Taj �
1 h3j=2 ÿ�h2j=2�
ÿh3j 1� e0j 0
h2j 0 1� e0j

24 35 � �ÿ1�j
0 0 0
0 0 ÿ�3yp=L�h2j

0 0 ÿ�3yp=L�h3j

24 35;
Tbj �

0 0 0
ÿ�h2j=L� 0 0
ÿ�h3j=L� 0 0

24 35� �ÿ1�j
0 0 0
0 ÿ�6yp=L2�h2j 0
0 ÿ�6yp=L2�h3j 0

24 35; �27�

Tcj � �ÿ1�j
0 0 0
0 �3zp=L�h2j ÿ�3yp=L�h2j

0 �3zp=L�h3j ÿ�3yp=L�h3j

24 35 �j � 1; 2�;

where duj � fduj; dvj; dwjg, dh�j � fdh1j; ÿdw0j; dv0jg; d/j � fd/1j; d/2j; d/3jg �j � 1; 2� and db �
fdb1; db2g; I2 and I3 are the identity matrices of order 2� 2 and 3� 3, respectively, 0 and �0 are zero
matrices of order 3� 3 and 3� 2, respectively, and e0j �j � 1; 2� are the nodal values of e0 at node j.

Let f � ff1;m1; f2;m2;Bg; fh � ff1;m
h
1; f2;m

h
2Bg, where fj � ff1j; f2j; f3jg, mj � fm1j;m2j;m3jg, mh

j �
fmh

1j;m
h
2j;m

h
3jg �j � 1; 2�, and B � fB1;B2g, denote the internal nodal force vectors corresponding to the

variation of the explicit and implicit nodal parameters, dq and dqh, respectively. Using the contragradient
law [39] and Eq. (26), the relation between f and fh, may be given by

f � Tt
h/fh: �28�

The global nodal parameters for the structural system corresponding to the element local nodes
j �j � 1; 2� should be consistent with the element explicit nodal parameters. Thus, they are chosen to be Uij,
the Xi �i � 1; 2; 3� components of the translation vectors Uj at node j (j � 1; 2) , Uij, the Xi �i � 1; 2; 3�
components of the rotation vectors Uj at nodes j �j � 1; 2�, and bj, the twist rate of the shear center axis at
node j. Here, the values of Uj are reset to zero at current con®guration. Thus, dUij, the variations of Uij,
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represent in®nitesimal rotations about the Xi axes [21], and the generalized nodal forces corresponding to
dUij are the conventional moments about the Xi axes. The generalized nodal forces corresponding to dUij,
the variation of Uij are the forces in the Xi directions. The generalized nodal forces corresponding to dbj, the
variation of bj are Bj.

2.6. Element nodal force vector

The element nodal force vector fh (Eq. (28)) corresponding to the implicit nodal parameters is obtained
from the virtual work principle in the current element coordinates. It should be mentioned again that the
element coordinate system is a local coordinate system not a moving coordinate system. Thus, a standard
procedure is used here for the derivation of fh. For convenience, the implicit nodal parameters are divided
into four generalized nodal displacement vectors ui �i � a; b; c; d�, where

ua � fu1; u2g �29�
and ub, uc, and ud are de®ned in Eq. (17).

The generalized force vectors corresponding to dui, the variation of ui �i � a; b; c; d�, are

fa � ff11; f12g; fb � ff21;mh
31; f22;mh

32g;

fc � ff31;mh
21; f32;mh

22g; fd � fmh
11;B1;mh

12;B2g:
�30�

The virtual work principle requires that

dut
afa � dut

bfb � dut
cfc � dut

dfd �
Z

V
�r11de11 � 2r12de12 � 2r13de13�dV ; �31�

where V is the volume of the undeformed beam, de1j �j � 1; 2; 3� are the variations of e1j in Eqs. (23a)±(25c)
respectively, with respect to the implicit nodal parameter. r1j �j � 1; 2; 3� are the second Piola±Kirchhoff
stresses. For linear elastic material, the following constitutive equations are used:

r11 � Ee11; r12 � 2Ge12 and r13 � 2Ge13 �32�
in which E is YoungÕs modulus and G is the shear modulus.

If the element size is chosen to be su�ciently small, the values of the rotation parameters of the deformed
element de®ned in the current element coordinate system may always be much smaller than unity. Thus the
higher-order terms of rotation parameters in the element internal nodal forces may be neglected. However,
in order to include the nonlinear coupling among the bending, twisting, and stretching deformations, the
terms up to the second-order of rotation parameters and their spatial derivatives are retained in element
internal nodal forces by consistent second-order linearization of Eq. (31). However, the values of h1;x, h1;xx,
v;xx and w;xx in Eqs. (23a)±(25c) are deformation dependent, not element size dependent. Thus their values
may not always be much smaller than unity and their third-order terms may not be negligible. In [30,34], it
was reported that the third-order term of twist rate is the dominant third-order term of element nodal forces
and should be retained for the geometric nonlinear analysis of three-dimensional beams with thin walled
open cross-section. Thus, for simplicity, the third-order term of the twist rate h1;x is the only third-order
term retained in the element nodal forces in this study.From Eqs. (23a)±(25c),(29)±(32) we may obtain

fa � �A1 ÿ AEec�ypBtub��Ga; �33�

fb � EIz�1� ec�
Z

N00bv;xx dx� yp

L
A1B� ypEIy

Z
N000b w;xw;xx dx� ypEIz

Z
N000b v;xv;xx dx� f12LGb

ÿ EIz

Z
e0;x�N0bv;xx �N00bv;x�dx� E�Iz ÿ Iy�

Z
N00bh1w;xx dx� GJz ÿ E

2
�az � ayz ÿ 2ypIz�

� �
�
Z

N00bh
2
1;x dxÿ E

3

2
az

�
ÿ 3ypIz

�Z
N00bv2

;xx dxÿ E
3

2
ayz

�
ÿ ypIy

�Z
N00bw2

;xx dx

ÿ 3

2
Eaxz

Z
N00bh

2
1;xx dx� 3Eaxyz

Z
N00bh1;xxw;xx dx� 1

2
GJ
Z
�N00bh1;xw;x ÿN0bh1;xw;xx�dx; �34�
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fc � EIy�1� ec�
Z

N00c w;xx dx� f12LGc ÿ EIy

Z
e0;x�N0cw;xx �N00c w;x�dx� AEypec

Z
N00ch1 dx

� E�Iz ÿ Iy�
Z

N00ch1v;xx dx� 3Eaxyz

Z
N00ch1;xxv;xx dx

ÿ E�3ayz ÿ 2ypIy�
Z

N00c v;xxw;xx dx� 1

2
GJ
Z
�N0ch1;xv;xx ÿN00ch1;xv;x�dx; �35�

fd � �GJ � �EIp � AEy2
p�ec�

Z
N0dh1;x dx� EIx�1� 3ec�

Z
N00dh1;xx dx� AEypec

Z
Ndw;xx dx

ÿ 3Eaxz

Z
N00dh1;xxv;xx dx� 3Eaxyz

Z
N00dv;xxw;xx dx� E�Iz ÿ Iy�

Z
Ndv;xxw;xx dx

� 1

2
GJ
Z

N0d�w;xv;xx ÿ v;xw;xx�dx� �2GJz ÿ E�az � ayz ÿ 2ypIz��
Z

N0dh1;xv;xx dx

� 1

2
EKI

Z
Ndh

3
1;x dx; �36�

A1 � AELec � 3

2
AELe2

c �
1

2
�EIp � AEy2

p�
Z

h2
1;x dx� 3

2
EIx

Z
h2

1;xx dx� 1

2
EIy

Z
w2
;xx dx

� 1

2
EIz

Z
v2
;xx dx� AEyp

Z
h1w;xx dx; �37�

B � 0;f ÿ 1; 0; 1g; Ga � 1

L
f ÿ 1; 1g; Gb � 1

L

Z
N0bv;x dxÿ yp

L
ecB�

y2
p

L2
Qub;

Gc � 1

L

Z
N0cw;x dx; Q � L�N0b2N00tb2 ÿN0b1N00tb1 �N00tb2N0tb2 ÿN00tb1N0tb1� ÿ BBt; �38�

Iy �
Z

z2 dA; Iz �
Z

y2 dA; KI �
Z
��y ÿ yp�2 � z2�2 dA; az �

Z
y3 dA;

ayz �
Z

z2y dA; Ix �
Z

x2 dA; axz �
Z

x2y dA; axyz �
Z

xyzdA; Ip � Iy � Iz;

J �
Z
f�ÿz� x;y�2 � ��y ÿ yp� � x;z�2gdA;

Jz �
Z
�z�yx;y ÿ x� ÿ y�y ÿ yp�x;z ÿ y�x2

;y � x2
;z� � xx;y �dA; �39�

in which the range of integration for the integral
R � �dx in Eqs. (34)±(38) is from 0 to L, A is the cross-

section area, Nk �k � b; c; d� are given in Eq. (17), and Nkj are nodal values of Nk at nodes j �j � 1; 2�. The
underlined term in Eq. (36) is the third-order term of h1;x.

The element nodal force vector f (Eq. (28)) corresponding to the explicit nodal parameters may be
obtained from Eqs. (28) and (33)±(36). Note that only the terms up to the second-order of nodal parameters
and the third-order terms of h1;x, are retained in fh. Thus, the corresponding f in Eq. (28) may be rewritten
as

f � fh � �Tt
h/ ÿ I14�f1

h; �40�
where f1

h is the ®rst-order terms of nodal parameters of fh, and I14 is the identity matrix of order 14� 14.
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2.7. Element tangent sti�ness matrices

The element tangent sti�ness matrix corresponding to the explicit nodal parameters (referred to as
explicit tangent sti�ness matrix) may be obtained by di�erentiating the element nodal force vector f in
Eq. (40) with respect to explicit nodal parameters. Using Eqs. (26) and (40), we obtain

k � of

oq
� of

oqh

oqh

oq
� �kh � �Tt

h/ ÿ I14�k0
h �H�Th/; �41�

where kh � ofh=oqh is the tangent sti�ness matrix corresponding to implicit nodal parameters (referred to as
implicit tangent sti�ness matrix), k0

h the zeroth-order terms of nodal parameters of kh, and H is an un-
symmetrical matrix and is given by

H �

0 hb1 0 hb2 0

ht
b1 ha1 ÿht

b1 hc 0

0 ÿhb1 0 ÿhb2 0

ht
b2 ht

c ÿht
b2 ha2 0

0
t

0
t

0
t

0
t

02

26666666666664

37777777777775
; �42�

haj �

0 mh1
3j ÿmh1

2j

0 0 �1=2�mh1
1j

0 ÿ�1=2�mh1
1j 0

266664
377775� �ÿ1�j

0 0 0

0 0 ÿ�3yp=L�mh1
2j

0 ÿ�3yp=L�mh1
2j ÿ�6yp=L�mh1

3j

266664
377775;

hbj �
0 ÿ�1=L�mh1

2j ÿ�1=L�mh1
3j

0 0 0
0 0 0

24 35� �ÿ1�j
0 0 0
0 ÿ�6yp=L2�mh1

2j ÿ�6yp=L2�mh1
3j

0 0 0

24 35 �j � 1; 2�;

hc �

0 0 0

0 0 �3yp=L�mh1
21

0 ÿ�3yp=L�mh1
22 �3yp=L��mh1

31 ÿ mh1
32�

266664
377775; �43�

where 02, 0 and �0 are zero matrices of order 2� 2, 3� 3 and 3� 2, respectively; mh1
ij �i � 1; 2; 3; j � 1; 2�

are the ®rst-order terms of mh
ij.

Note that the element tangent sti�ness matrix in Eq. (41) is asymmetric. However, the structural tangent
sti�ness matrix becomes symmetric at equilibrium con®guration [19,27,40].

Using the direct sti�ness method, the implicit tangent sti�ness matrix kh may be assembled by the
submatrices

kij � of i

ouj
; �44�

where f i �i � a; b; c; d� are de®ned in Eqs. (33)±(36) and ui �i � a; b; c; d� are de®ned in Eqs. (17) and (29).
Note that kij are symmetric matrices. The explicit form of kij may be expressed as

kaa � AEL 1
�
� 3ec ÿ 2

yp

L
Btub

�
GaGt

a;
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kab � Ga AELGt
b

�
� AEyp 1

�
� 2ec ÿ yp

L
Btub

�
Bt � EIz

Z
N00tb v;xx dx

�
;

kac � Ga AELGt
c

�
� AEyp

Z
N00tc h1 dx� EIy

Z
N00tc w;xx dx

�
;

kad � Ga �EIp

�
� AEy2

p�
Z

N00td h1;x dx� AEyp

Z
N0td w;xx dx� 3EIx

Z
N00td h1;xx dx

�
;

kbb � EIz�1� ec�
Z

N00bN00b dx� AEy2
p

L
��1� 2ec�BBt � ecQ� � AEyp�GbBt � BGt

b�

ÿ EIze0;x

Z
�N0bN00tb �N00bN0tb�dx� f12

Z
N0bN0tb dxÿ 3E�az ÿ 2ypIz�

Z
N00bN00tb v;xx dx

� ypEIz

Z
N000b N0tb

��
�N0bN000tb �

1

L
N00bBt � 1

L
BN00tb

�
v;xx � �N000b N00tb �N00bN000tb �v;x

�
dx;

kbc � AEypBGt
c �

AEy2
p

L

Z
BN00tc h1 dx� E�Iz ÿ Iy�

Z
N00bN00tc h1 dx

� ypEIy

Z
N000b N0tc

��
� 1

L
BN00tc

�
w;xx �N000b N00tc w;x

�
dx� 3Eaxyz

Z
N00bN00tc h1;xx dx

ÿ E�3ayz ÿ 2ypIy�
Z

N00bN00c w;xx dx� 1

2
GJ
Z
�N00bN0tc ÿN0bN00tc �h1;x dx;

kbd � yp

L
�EIp � AEy2

p�
Z

BN0tdh1;x dx� 3ypEIx

L

Z
BN00td h1;xx dx� AEy2

p

L

Z
BNt

dw;xx dx

ÿ 3Eaxz

Z
N00bN00td h1;xx dx� 3Eaxyz

Z
N00bN00td w;xx dx� E�Iz ÿ Iy�

Z
N00bNt

dw;xx dx

� 1

2
GJ
Z
�N00bN0td w;x ÿN0bN0td w;xx�dx� �2GJz ÿ E�az � ayz ÿ 2ypIz��

Z
N00bN0tdh1;x dx;

kcc � EIy�1� ec�
Z

N00c N00tc dxÿ EIye0;x

Z
�N0cN00tc �N00c N0tc �dx� f12

Z
N0cN

0t
c dx

ÿ E�3ayz ÿ 2ypIy�
Z

N00c N00tc v;xx dx;

kcd � AEypec

Z
N00c Nt

d dx� 3Eaxyz

Z
N00c N00td v;xx dx� E�Iz ÿ Iy�

Z
N00c Nt

dv;xx dx

� 1

2
GJ
Z
�N0cN0td v;xx ÿN00c N0td v;x�dx;

kdd � �GJ � �EIp � AEy2
p�ec�

Z
N0dN0td dx� EIx�1� 3ec�

Z
N00dN00td dxÿ 3Eaxz

Z
N00dN00td v;xx dx

� �2GJz ÿ E�az � ayz ÿ 2ypIz��
Z

N0dN0td v;xx dx� 3

2
EKI

Z
N0dN0tdh

2
1;x dx; �45�

where the underlined term is the second-order term of h1;x.
The element tangent sti�ness matrix referred to the global coordinate system is obtained by using the

standard coordinate transformation.
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2.8. Load sti�ness matrix

Di�erent ways for generating con®guration-dependent moment were proposed in the literature [8,11,27].
Here, for simplicity, only the conservative moments generated by conservative force or forces (with ®xed
directions) are considered, and one of the ways for generating conservative moment proposed in [27] is
employed here. For completeness, a brief description of the way for generating conservative moment is
given here. In this study, a set of load base coordinates X P

i �i � 1; 2; 3� associated with each con®guration-
dependent moment is constructed at the current con®guration. The mechanism for generating con®gura-
tion-dependent moment is described in these coordinates, and the corresponding external load and load
sti�ness matrix [41] are de®ned in terms of these coordinates. Unless stated otherwise, all vectors and
matrices in this section are referred to these coordinates. Note that this coordinate system is just a local
coordinate system constructed at the current con®guration, not a moving coordinate system. Thus, it is
regarded as a ®xed coordinate system in the derivation of the load sti�ness matrix.

The way for generating con®guration-dependent moment may described as follows.
Consider a rigid arm of length R whose end is rigidly connected with the structure at node O as shown in

Fig. 3. The other end of the rigid arm is acted upon by a conservative force (with a ®xed direction) of
magnitude P. The origin of the load base coordinates X P

i �i � 1; 2; 3� is chosen to be located at the node O.
The X P

1 axis is chosen to coincide with the axis of the rigid arm, and the X P
2 and X P

3 axes are perpendicular to
the rigid arm.

The external moment vector at node O generated by the above mentioned mechanism may be expressed
by

M � RP tP � eP
p ; �46�

where eP
p � f`1; `2; `3g is the unit vector in the direction of P, and tP is the unit vector in the axial direction

of the rigid arm. Note that tP coincides with eP
1 � f1; 0; 0g, the unit vector associated with the X P

1 axis. The
corresponding load sti�ness matrix may be expressed as

kp � RP
0 `2 `3

0 ÿ`1 0
0 0 ÿ`1

24 35: �47�

The load sti�ness matrix referred to the global coordinate system is obtained by using the standard
coordinate transformation.

2.9. Equilibrium equations

The nonlinear equilibrium equations may be expressed by

W � Fÿ kP � 0; �48�
where W is the unbalanced force between the internal nodal force F and the external nodal force kP, where k
is the loading parameter, and P is a reference loading. Note that P may require to be updated at each
iteration if the applied load is con®guration dependent. F is assembled from the element nodal force

Fig. 3. Mechanism for generating con®guration dependent moment by an o�-axis load.
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vectors, which are calculated using Eqs. (33)±(36) and (40) ®rst in the current element coordinates and then
transformed from current element coordinate system to global coordinate system before assemblage using
standard procedure.

In this paper, a weighted Euclidean norm of the unbalanced force is employed as the error measure for
the equilibrium iterations, and is given by

Wk k
kj j ����N
p 6 etol; �49�

where N is the number of equilibrium equations; etol is a prescribed value of error tolerance.

2.10. Criterion of the buckling state

Here, the zero value of the tangent sti�ness matrix determinant is used as the criterion of the buckling
state. The tangent sti�ness matrix of the structure is assembled from the element sti�ness matrix and load
sti�ness matrix. Let KT�k� denote the tangent sti�ness matrix of the structure corresponding to the loading
parameter k. The criterion of the buckling state may be expressed as

D�k� � det jKT�k�j � 0: �50�
Let kNB denote the minimum loading parameter satisfying Eq. (50). kNB is called buckling loading pa-

rameter here.
The buckling mode corresponding to kNB may be obtained by solving the following generalized eigen-

value problem:

K0X � ÿ k
kNB

KGX; �51�

where K0 is the linear sti�ness matrix of the structure, and KG � KT ÿ K0 is the geometric sti�ness matrix of
the structure corresponding to kNB. It can be seen that kNB is also an eigenvalue for Eq. (51) The eigenvector
corresponding to eigenvalue kNB is the required buckling mode. Here, the inverse power method [42] is used
to ®nd buckling mode.

3. Numerical algorithm

An incremental-iterative method based on the Newton±Raphson method combined with constant arc
length of incremental displacement vector [21,43] is employed for the solution of nonlinear equilibrium
equations. For a given displacement increment or corrector, the method described in [21,44] is employed to
determine the current element cross-section coordinates, element coordinates and element deformation
nodal parameters for each element. The parabolic interpolation method of the arc length proposed in [34] is
employed here to ®nd the buckling load. In order to initiate the secondary path, at the bifurcation point a
perturbation displacement proportional to the ®rst buckling mode is added [36].

4. Numerical studies

Example 1 (Cantilever beam of angle section subjected to an end torque). The example considered here is a
cantilever beam of monosymmetric angle section with a pure torque T applied at its free end as shown in
Fig. 4. This example was experimentally and theoretically studied by Gregory [1]. The clamped end of the
beam is warping free. The geometry and material (brass) properties are: L � 177:8 mm, a � 90�, b � 14:605
mm, t � 0:9601 mm, Young's modulus E � 89632 MPa, the shear modulus G � 33445 MPa, and the
speci®c weight c � 83:385 N=cm

3
.

The present results are obtained using 20 elements. Fig. 5 shows the path of point B in the centerline
of the end cross-section obtained by the present study, the experimental results given in [1], and the
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numerical results given in [13]. The material properties used in [13] are: E � 89660 MPa, and
G � 31130 MPa. Very good agreement is observed between the present solutions and the experimental
results.

Example 2 (Cantilever beams subjected to an end force (buckling analysis)). The elastic buckling loads of
bisymmetric I-section, monosymmetric I-section and T-section cantilever beams subjected to a vertical
downward end force P, as shown in Fig. 6 are studied here. This example was experimentally and theo-
retically investigated by Anderson and Trahair [5], and also studied by Attard [14] and by Pi and Trahair
[22] using the ®nite element method. The clamped end of the beam is fully restrained against warping. The
material properties, Young's modulus E � 9445 ksi and the shear modulus G � 3766 ksi used in [14] are
employed here. The self-weight is not considered for this example. Four different section geometries are
considered: (1) b � 1:241 in., tf � 0:1232 in., d � 2:975 in., tw � 0:0862 in. (bisymmetric I-section);
(2) b1 � 1:241 in., t1 � 0:1232 in., b2 � 0:625 in., t2 � 0:1231 in., d � 2:975 in., tw � 0:0862 in. (mono-
symmetric I-section); (3) b1 � 1:239 in., t1 � 0:1236 in., b2 � 1:238 in., t2 � 0:0451 in., d � 2:897 in.,
tw � 0:0863 in. (monosymmetric I-section); (4) b � 1:239 in., tf � 0:1236 in., h � 2:8292 in., tw � 0:0863 in.
(monosymmetric T-section). A total of 28 cases denoted by NXxL are investigated, where N � 1ÿ 4,
X � A;B, x � a; b; c; and L � 65; 50(in.). N means that section N is considered; A and B mean that the
larger ¯ange is at the bottom and at the top, respectively; the lower case letters a, b and c indicate the load

Fig. 4. Cantilever beam of angle section subjected to an end torque.

Fig. 5. Path of point B under end torque.
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Table 1

Bucklingload for Example 2

Case Bucklingload PNB �lb�

Exp. [5] Theory [5] FEM [14] FEM [22] Present

1Aa65 59.7 56.8 ± 56.5 56.2

1Ac65 72.7 74.2 ± 76.1 74.5

1Aa50 91.2 94.6 ± 92.1 91.8

1Ac50 134.2 139.2 ± 141.8 138.1

2Aa65 37.8 36.5 36.6 36.0 37.0

2Ab65 57.4 57.7 58.9 56.9 58.0

2Ba65 32.8 31.3 31.7 32.7 31.8

2Bb65 37.7 38.7 39.1 37.5 39.0

2Aa50 56.8 58.0 57.5 56.8 58.6

2Ab50 105.3 110.3 112.6 109.6 111.2

2Ba50 51.0 52.1 51.9 50.7 52.4

2Bb50 64.8 66.7 67.9 66.0 67.7

3Aa65 35.6 36.6 ± 35.7 36.8

3Ab65 59.1 61.6 ± 61.3 61.9

3Ba65 38.3 35.8 ± 36.8 35.8

3Bb65 47.8 49.4 ± 48.9 49.3

3Aa50 61.6 58.4 ± 59.6 58.2

3Ab50 111.6 118.9 ± 118.7 121.0

3Ba50 61.0 58.4 ± 57.7 59.7

3Bb50 90.2 91.8 ± 90.4 92.1

4Aa65 29.2 26.7 26.7 28.0 27.3

4Ab65 43.0 42.6 45.2 46.3 45.0

4Ba65 21.2 21.4 21.1 21.6 21.9

4Bb65 22.9 24.6 24.5 23.0 25.3

4Aa50 45.4 40.9 40.2 42.7 41.6

4Ab50 84.2 79.4 84.3 89.0 84.3

4Ba50 33.6 32.7 32.1 33.2 33.7

4Bb50 37.8 38.2 37.1 38.0 39.4

Fig. 6. Cantilever beams subjected to an end force (buckling analysis).
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acts at the upper face, the lower face, and the centroid, respectively; L indicates the lengths of the beam. The
present buckling loads obtained using ®ve elements are shown in Table 1 together with those given in
[5,14,22]. It can be seen that the agreement between all results is very good.

Example 3 (Cantilever beam of channel section subjected to an end force). This example considered here is a
cantilever beam of monosymmetric channel section with a vertical end force P applied at the top of the web
as shown in Fig. 7. The example was ®rst analyzed by Gruttmann et al. [29]. The clamped end of the beam is
fully restrained against warping. The geometry and material properties are as follows: L � 900 cm,
b � 10 cm, tf � 1:6 cm, h � 28:4 cm, tw � 1:0 cm, Young's modulus E � 21000 kN=cm

2
, and PoissonÕs

ratio m � 0:3.
The present results are obtained using 30 elements. The load±de¯ection curves of the present study

together with the two results given in [29], which were obtained using 20 two-node beam elements and 180
four-node shell elements, respectively, are shown in Figs. 8 and 9. As can be seen that the agreement is very
good between the present results and the results of [29] obtained by using the shell element. Note that even a
fairly sharp break appears in each de¯ection curve, in this study no buckling load is found for this example.
Note that no buckling load was reported in [29] also for this example.

Fig. 7. Cantilever beam of channel section subjected to an end force.

Fig. 8. Load±tip displacements (U, V) for cantilever beam of Example 3.
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Example 4 (Cantilever right-angle frame of channel section subjected to an end force). The example con-
sidered is a cantilever right-angle frame with an in-plane force P applied at the shear center of the end cross-
section as shown in Fig. 10. This example was analyzed by Chen and Blandford [20]. Each member of the
frame has a C15� 50 section with the web lying in the plane of the frame. The geometry and material
properties are as follows: L � 240 in., b � 3:716 in., tf � 0:65 in., h � 15 in., tw � 0:716 in., Young's

Fig. 10. Cantilever right-angle frame subjected to an end force.

Fig. 11. Load±displacement (U) curves for case (a) of Example 4.

Fig. 9. Load±tip displacements (W) for cantilever beam of Example 3.
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modulus E � 29000 ksi, and the shear modulus G � 11200 ksi. Here, two cases are considered for the
warping condition at member ends: (a) Warping free at the ®xed end, corner joint connecting two members,
and free end, and (b) Warping restrained at the ®xed end and corner joint, and warping free at free end.

The frame is analyzed using 8, 40 and 80 elements. The load±de¯ection curves of the present study
obtained using 80 elements together with the results obtained by Chen and Blandford [20] using eight
updated Lagrangian beam elements are shown in Figs. 11±13, for case (a) and Figs. 14±16 for case (b). The
present results obtained using 40 and 80 elements are nearly identical. The agreement between the results of
the present study obtained using eight element (not shown) and those of [20] obtained using eight elements
is fairly good. As can be seen that the results of the present study and [20] are nearly identical when the load
is less than 2.69 kip for case (a) and 3.00 kip for case (b). However, their discrepancy is not negligible as the
load approximately exceeds 2.75 kip for case (a) and 3.10 kip for case (b). It was reported in [20] that the

Fig. 13. Load±displacement (W) curves for case (a) of Example 4.

Fig. 12. Load±displacement (V) curve for case (a) of Example 4.

Fig. 14. Load±displacement (U) curves for case (b) of Example 4.
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buckling loads were 2.488 kip and 2.939 kip for cases (a) and (b), respectively. However, in this study no
buckling load is found for both cases.

Example 5 (Simply supported beam of channel section subjected to a mid-span force). The example con-
sidered is a simply supported beam of channel section subjected to a mid-span concentrated load P, as
shown in Fig. 17. The ends of the beam are free to warp and free to rotate about X G

2 and X G
3 axes, but

Fig. 15. Load±displacement (V) curves for case (b) of Example 4.

Fig. 16. Load±displacement (W) curve for case (b) of Example 4.

Fig. 17. Simply supported beam of channel section subjected to a mid-span force.
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restrained from rotation about X G
1 axis. The translation is restrained at end point B, and is free only in the

direction of X G
1 axis at points C. The geometrical and material properties are b � 16 cm,

tf � tw � t � 1:6 cm , h � 40 cm, L=h � 15, 30 and 45, Young's modulus E � 20600 N=cm
2

and PoissonÕs
ratio m � 0:3. Two different loading points (see Fig. 17), top ¯ange (TF) and bottom ¯ange (BF), are
considered.

The present results are obtained using 40 elements. No buckling load is found for each case The load±
de¯ection curves are shown in Figs. 18±20. As can be seen that the span length and the location of loading
point are important factors for the load carrying capacity of this example.

Fig. 20. Load±displacement (W) curves for Example 5.

Fig. 18. Load±twist angle curves for Example 5.

Fig. 19. Load±displacement (V) curves for Example 5.
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5. Conclusions

This paper has proposed a consistent co-rotational total Lagrangian ®nite element formulation for the
geometric nonlinear buckling and postbuckling analysis of monosymmetric thin-walled beams with open
section. All coupling among bending, twisting, and stretching deformations for beam element is considered
by consistent second-order linearization of the fully geometrically nonlinear beam theory. The third-order
term of the twist rate of the beam axis is also considered in element nodal forces. An incremental-iterative
method based on the Newton±Raphson method combined with constant arc length of incremental dis-
placement vector is employed for the solution of nonlinear equilibrium equations. The zero value of the
tangent sti�ness matrix determinant of the structure is used as the criterion of the buckling state. From the
numerical examples studied, it is found that the agreement between the prebuckling displacements and
buckling loads of the present study and those given in the literature is very good. However, di�erences
between the postbuckling de¯ections of the present study and those given in the literature become signif-
icant for some cases.
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