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Abstract

A consistent co-rotational ®nite element formulation and numerical procedure for the buckling and postbuckling analyses of

three-dimensional elastic Euler beam is presented. All coupling among bending, twisting, and stretching deformations for a beam

element is considered by consistent second-order linearization of the fully geometrically nonlinear beam theory. However, the third-

order terms, which are relevant to the twist rate and curvature of the beam axis, are also considered. An incremental±iterative

method based on the Newton±Raphson method combined with constant arc length of incremental displacement vector is employed

for the solution of nonlinear equilibrium equations. The zero value of the tangent sti�ness matrix determinant of the structure is

used as the criterion of the buckling state. A bisection method of the arc length is proposed to ®nd the buckling load. Numerical

examples are presented to demonstrate the accuracy and e�ciency of the proposed method and to investigate the e�ect of third-

order terms on the buckling load and postbuckling behavior of three-dimensional beams. Ó 2000 Elsevier Science S.A. All rights

reserved.

1. Introduction

The buckling and postbuckling analyses of spatial beams have been the subject of considerable research
[1±24]. The buckling of the beam structures is caused by the coupling among bending, twisting, and
stretching deformations of the beam members. Thus the buckling analysis is a subtopic of nonlinear rather
than linear mechanics [8]. The linear buckling analysis of the beam has been extensively studied, and many
valuable results have been reported in the literature [1±17]. In [17] a consistent co-rotational ®nite element
formulation and numerical procedure for the linear buckling analysis of three-dimensional elastic Euler
beam is presented. A limitation of ®nite element formulation for the linear buckling analysis of beam
problems has been the omission of any consideration of the e�ect of prebuckling de¯ections of the beam.
This omission may be su�ciently accurate when the prebuckling de¯ection of the beam is negligible. In
other cases, however, the e�ect of the prebuckling de¯ections must be taken into account if the buckling
load is to be determined with accuracy [8,17]. Moreover, the linear buckling analysis gives no information
about the shape of the secondary path. Sometimes the behavior of a structure can be understood only if the
shape of the secondary shape is known. Thus, many di�erent formulations and numerical procedures for
the buckling and postbuckling analyses of the three-dimensional beam have been proposed [1±8,18±24].
Currently, the most popular approach for the analysis of the three-dimensional beam is to develop ®nite
element models. The formulations, which have been used in the literature, might be divided into three
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categories: total Lagrangian (TL) formulation [14,18,22,23,25,26], updated Lagrangian (UL) formulation
[23,25], and co-rotational (CR) formulation [17,19,27]. It is well known that within the co-rotating system
either a TL or a UL formulation may be employed [27,28]. These formulations are consequently termed
CR±TL and CR±UL formulations. The reference con®guration used in a CR±TL formulation di�ers
from the one used in a conventional TL formulation by the motion performed by the co-rotating
coordinate system from the initial to the current (or neighboring) con®guration. In order to capture
correctly all coupling among bending, twisting, and stretching deformations of the beam elements, the
formulation of beam elements might be derived by the fully geometrically nonlinear beam theory [29].
The exact expressions for the element nodal forces, which are required in a TL formulation for large
displacement/small strain problems, are highly nonlinear functions of element nodal parameters.
However, the dominant factors in the geometrical nonlinearities of beam structures are attributable to
®nite rotations, the strains remaining small. For a beam structure discretized by ®nite elements, this
implies that the motion of the individual elements to a large extent will consist of rigid body motion. If
the rigid body motion part is eliminated from the total displacements and the element size is properly
chosen, the deformational part of the motion is always small relative to the local element axes; thus in
conjunction with the co-rotational formulation, the higher-order terms of nodal parameters in the ele-
ment nodal forces may be neglected by consistent linearization [27,29]. The so-called `Natural approach'
by Argyris and co-workers, for instance [1±7], is also based on the idea of separating rigid body motions
from local deformations. It has been used in various applications such as linear, large displacement/small
strain, and large strain problems. The co-rotational formulation has been extensively applied in the
nonlinear analysis. However, to the authorsÕ knowledge, the application of co-rotational formulation in
the nonlinear buckling and postbuckling analyses has not been reported in the literature. The object of
this paper is to investigate the e�ect of prebuckling de¯ections on the buckling load of beam structures
and to investigate the postbuckling behavior of beam structures using the co-rotational total Lagrangian
formulation.

In [27], Hsiao presented a co-rotational total Lagrangian formulation of the beam element for the
nonlinear analysis of three-dimensional beam structures with large rotations but small strains. Element
deformations and element equations are de®ned in terms of element coordinates which are constructed at
the current con®guration of the beam element. The element deformations are determined by the rotation
of element cross-section coordinates, which are rigidly tied to element cross section, relative to the
element coordinate system. In order to capture correctly all coupling among bending, twisting, and
stretching deformations of the beam elements, the formulation of the beam element is derived by
consistent second-order linearization of the fully geometrically nonlinear beam theory. This element is
proven to be very e�ective for geometrically nonlinear analysis of the three-dimensional beams by nu-
merical examples studied in [27]. However, the third-order terms of the nodal parameters are not
considered in [27]. It is reported in [30] that the third-order term of twist rate of the beam axis is not
negligible for the geometrically nonlinear analysis of the cantilever beam with narrow rectangular cross
section under twist. The values of twist rate and curvature of the beam axis are deformation dependent,
not element size dependent. Thus their values may not always be much smaller than unity. It seems that
some third-order terms, which are relevant to the twist rate and curvature of the beam axis, may not be
negligible for some cross sections with large rotations. Here, the formulation of the beam element
proposed in [30] is employed, and the third-order terms of nodal parameters, which are relevant to the
twist rate and curvature of the beam axis, are also considered.

An incremental±iterative method based on the Newton±Raphson method combined with constant arc
length of incremental displacement vector is employed for the solution of nonlinear equilibrium equations.
The zero value of the tangent sti�ness matrix determinant of the structure is used as the criterion of the
buckling state, and the corresponding load is the so-called buckling load. A bisection method of the arc
length is proposed to ®nd the buckling load. An inverse power method for the solution of the generalized
eigenvalue problem is used to ®nd the corresponding buckling mode. In order to initiate the secondary
path, at the bifurcation point a perturbation displacement proportional to the ®rst buckling mode is added
[31]. Numerical examples are presented to demonstrate the accuracy and e�ciency of the proposed method
and to investigate the e�ect of third-order terms on the buckling load and postbuckling behavior of three-
dimensional beams.
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2. Finite element formulation

In the following only a brief description of the beam element is given. The more detailed description may
be obtained from [27].

2.1. Basic assumptions

The following assumptions are made in derivation of the beam element behavior:
1. The beam is prismatic and slender, and the Euler±Bernoulli hypothesis is valid.
2. The cross section of the beam is doubly symmetric.
3. The unit extension and the twist rate of the centroid axis of the beam element are uniform.
4. The cross section of the beam element does not deform in its own plane and strains within this cross

section can be neglected.
5. The out-of-plane warping of the cross section is the product of the twist rate of the beam element and the

Saint Venant warping function for a prismatic beam of the same cross section.
6. The deformation displacements of the beam element are small.

2.2. Coordinate systems

In this paper, a co-rotational total Lagrangian formulation is adopted. In order to describe the system,
we de®ne four sets of right-handed rectangular Cartesian coordinate systems:

1. A ®xed global set of coordinates, X G
i �i � 1; 2; 3� (see Fig. 1): the nodal coordinates, displacements,

and rotations, and the sti�ness matrix of the system are de®ned in these coordinates.

Fig. 1. Coordinate systems.
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2. Element cross-section coordinates, xS
i �i � 1; 2; 3� (see Fig. 1): a set of element cross-section coordi-

nates is associated with each cross section of the beam element. The origin of this coordinate system is
rigidly tied to the centroid of the cross section. The xS

1 axes are chosen to coincide with the normal of the
unwrapped cross section and the xS

2 and xS
3 axes are chosen to be the principal directions of the cross section.

3. Element coordinates, xi �i � 1; 2; 3� (see Fig. 1): a set of element coordinates is associated with each
element, which is constructed at the current con®guration of the beam element. The origin of this coor-
dinate system is located at node 1, and the x1 axis is chosen to pass through two end nodes of the element;
the x2 and x3 axes are chosen to be the principal directions of the cross section at the undeformed state. Note
that this coordinate system is a local coordinate system not a moving coordinate system. The deformations,
internal nodal forces and stiffness matrix of the elements are de®ned in terms of these coordinates. In this
paper the element deformations are determined by the rotation of element cross-section coordinate systems
relative to this coordinate system.

4. Load base coordinates, X P
i �i � 1; 2; 3�: a set of load base coordinates is associated with each con-

®guration-dependent moment. The origin of this coordinate system is chosen to be the node where the
con®guration-dependent moment is applied. The mechanism for generating con®guration-dependent
moment is described in these coordinates, and the corresponding external load and load sti�ness matrix are
de®ned in terms of these coordinates.

In this paper, the symbol { } denotes the column matrix. The relations among the global coordinates,
element cross-section coordinates, element coordinates and load base coordinates may be expressed by

XG � AGSxS; XG � AGEx; XG � AGP XP ; �1�
where XG � fX G

1 ;X
G
2 ;X

G
3 g; xS � fxS

1 ; x
S
2; x

S
3g; x � fx1; x2; x3g; and XP � fX P

1 ;X
P
2 ;X

P
3 g; AGS , AGE, and AGP

are matrices of direction cosines of the surface coordinate system, element coordinate system, and load base
coordinate system, respectively.

2.3. Rotation vector and rotation parameters

For the convenience of later discussion, the term `rotation vector' is used to represent a ®nite rotation.
Fig. 2 shows a vector b which as a result of the application of a rotation vector /a is transported to the new
position �b. The relation between �b and b may be expressed as [32]

�b � cos/b� �1ÿ cos/��a � b�a� sin/�a� b�; �2�
where / is the angle of counterclockwise rotation, and a is the unit vector along the axis of rotation.

Fig. 2. Rotation vector.
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Let ei and eS
i �i � 1; 2; 3� denote the unit vectors associated with the xi and xS

i axes, respectively. Here, the
traid eS

i in the deformed state is assumed to be achieved by the successive application of the following two
rotation vectors to the traid ei :

hn � hnn �3�

and

ht � h1t; �4�

where

n � 0; h2 �h2
2

.n
� h2

3�1=2; h3 �h2
2

.
� h2

3�1=2
o
� f0; n2; n3g; �5�

t � fcoshn; h3;ÿh2g; �6�

coshn � �1ÿ h2
2 ÿ h2

3�1=2; �7�

h2 � ÿ dw�s�
ds

; h3 � dv�s�
ds

�8�

in which n is the unit vector perpendicular to the vectors e1 and eS
1, and t is the tangent unit vector of the

deformed centroid axis of the beam element. Note that eS
1 coincides with t. h1 is the rotation about vector t.

hn is the inverse of coshn. v�s� and w�s� are the lateral de¯ections of the centroid axis of the beam element in
the x2 and x3 directions, respectively, and s is the arc length of the deformed centroid axis.

Using Eqs. (2)±(8), the relation between the vectors ei and eS
i �i � 1; 2; 3� in the element coordinate

system may be obtained as

eS
i � �t;R1;R2�ei � Rei; �9�

R1 � cosh1r1 � sinh1r2; R2 � ÿ sinh1r1 � cosh1r2;

r1 �
�ÿ h3; coshn � �1ÿ coshn�n2

2; �1ÿ coshn�n2n3

	
;

r2 � h2; �1
� ÿ coshn�n2n3; coshn � �1ÿ coshn�n2

3

	
;

�10�

where R is the so-called rotation matrix. The rotation matrix is determined by hi �i � 1; 2; 3�. Thus, hi are
called rotation parameters in this study.

Let h � fh1; h2; h3g be the column matrix of rotation parameters, dh be the variation of h: The traid
eS

i �i � 1; 2; 3� corresponding to h may be rotated by a rotation vector d/ � fd/1; d/1; d/1g to reach their
new positions corresponding to h� dh [27]. When h2 and h3 are much smaller than unity, the relationship
between dh and d/ may be approximated by [27]

dh �
1 h3=2 ÿ h2=2
ÿh3 1 0
h2 0 1

24 35d/ � Tÿ1d/: �11�

2.4. Nodal parameters and forces

The element employed here has two nodes with six degrees of freedom per node. Two sets of element
nodal parameters termed `explicit nodal parameters' and `implicit nodal parameters' are employed. The
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explicit nodal parameters of the element are used for the assembly of the system equations from the element
equations. They are chosen to be uij, the xi �i � 1; 2; 3� components of the translation vectors uj at node j
�j � 1; 2� and /ij, the xi �i � 1; 2; 3� components of the rotation vectors /j at node j �j � 1; 2�. Here, the
values of /j are reset to zero at current con®guration. Thus, d/ij, the variation of /ij, represents in®ni-
tesimal rotations about the xi axes [27], and the generalized nodal forces corresponding to d/ij are mij, the
conventional moments about the xi axes. The generalized nodal forces corresponding to duij, the variations
of uij, are fij, the forces in the xi directions.

The implicit nodal parameters of the element are used to determine the deformation of the beam ele-
ment. They are chosen to be uij, the xi �i � 1; 2; 3� components of the translation vectors uj at node j
(j � 1; 2) and hij, the nodal values of the rotation parameters hi �i � 1; 2; 3� at node j �j � 1; 2�. The gen-
eralized nodal forces corresponding to duij and dhij are fij and mh

ij, the forces in the xi directions and the
generalized moments, respectively. Note that mh

ij are not conventional moments, because dhij are not in-
®nitesimal rotations about the xi axes at deformed state.

In view of Eq. (11), the relations between the variation of the implicit and explicit nodal parameters may
be expressed as

dqh �
du1

dh1

du2

dh2

8>><>>:
9>>=>>; �

I 0 0 0

0 Tÿ1
1 0 0

0 0 I 0

0 0 0 Tÿ1
2

2664
3775

du1

d/1

du2

d/2

8>><>>:
9>>=>>; � Th/dq; �12�

where duj � fdu1j; du2j; du3jg, dhj � fdh1j; dh2j; dh3jg and d/j � fd/1j; d/2j; d/3jg �j � 1; 2�; I and 0 are the
identity and zero matrices of order 3� 3, respectively; Tÿ1

j �j � 1; 2� are nodal values of Tÿ1 given in
Eq. (11).

Let f � ff1;m1; f2;m2g, fh � ff1;m
h
1; f2;m

h
2g, where fj � ff1j; f2j; f3jg, mj � fm1j;m2j;m3jg, and

mh
j � fmh

1j;m
h
2j;m

h
3jg �j � 1; 2�, denote the internal nodal force vectors corresponding to the variation of the

explicit and implicit nodal parameters, dq and dqh, respectively. Using the contragradient law [33] and
Eq. (12), the relation between f and fh, may be given by

f � Tt
h/fh: �13�

The global nodal parameters for the system of equations corresponding to the element local nodes
j �j � 1; 2� should be consistent with the element explicit nodal parameters. Thus, they are chosen to be Uij,
the Xi �i � 1; 2; 3� components of the translation vectors Uj at node j �j � 1; 2� and Uij, the Xi �i � 1; 2; 3�
components of the rotation vectors Uj at nodes j �j � 1; 2�. Here, the values of Uj are reset to zero at
current con®guration. Thus, dUij, the variations of Uij, represent in®nitesimal rotations about the Xi axes
[27], and the generalized nodal forces corresponding to dUij are the conventional moments about the Xi

axes. The generalized nodal forces corresponding to dUij, the variation of Uij, are the forces in the Xi

directions.

2.5. Kinematics of beam element

The deformations of the beam element are described in the current element coordinate system. From the
kinematic assumptions made in this paper, the deformations of the beam element may be determined by the
displacements of the centroid axis of the beam element, orientation of the cross section (element cross-
section coordinates), and the out-of-plane warping of the cross section. Let Q (Fig. 1) be an arbitrary point
in the beam element, and P be the point corresponding to Q on the centroid axis. The position vector of
point Q in the undeformed and deformed con®gurations may be expressed as

r0 � xe1 � ye2 � ze3 �14�
and

r � xc�s�e1 � v�s�e2 � w�s�e3 � h1;sx�y; z�es
1 � yes

2 � zes
3; �15�
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where xc�s�, v�s�, and w�s� are the x1, x2 and x3 coordinates of point P, respectively, s is the arc length of the
deformed centroid axis measured from node 1 to point P, and x�y; z� is the Saint Venant warping function.
The relationship among xc�s�, v�s�, w�s�, and s may be given as

xc�s� � u11 �
Z s

0

coshn ds; �16�

where u11 is the displacement of node 1 in the x1 direction, and coshn is de®ned in Eq. (7). Note that due to
the de®nition of the element coordinate system, the value of u11 is equal to zero. However, the variation of
u11 is not zero. Making use of Eq. (16), one obtains

S � 2lR 1

ÿ1
coshn dn

; �17�

l � xc�S� ÿ xc�0� � Lÿ u11 � u12 �18�

and

n � ÿ1� 2s
S

�19�

in which S and l are the current arc length and chord length of the centroid axis of the beam element,
respectively, and L is the chord length of the undeformed beam axis.

Here, the lateral de¯ections of the centroid axis v�s� and w�s� are assumed to be the Hermitian poly-
nomials of s, and the rotation about the centroid axis h1�s� (Eq. (4)) is assumed to be linear polynomials of
s. v�s�, w�s�, and h1�s� may be expressed by

v�s� � fN1;N2;N3;N4gt fu21; h31; u22; h32g � Nt
bub;

w�s� � fN1;ÿN2;N3;ÿN4gt fu31; h21; u32; h22g � Nt
cuc; �20�

h1�s� � fN5;N6gt fh11; h12g � Nt
dud ;

where u2j and u3j �j � 1; 2� are nodal values of v and w at nodes j, respectively, and hij �i � 1; 2; 3; j � 1; 2�
are nodal values of hi at nodes j. Note that, due to the de®nition of the element coordinates, the values of u2j

and u3j �j � 1; 2� are zero. However, their variations are not zero. Ni �i � 1; . . . ; 6� are shape functions and
are given by

N1 � 1

4
�1ÿ n�2�2� n�; N2 � 1

8
S�1ÿ n2��1ÿ n�; N3 � 1

4
�1� n�2�2ÿ n�;

N4 � 1

8
S�ÿ1� n2��1� n�; N5 � 1

2
�1ÿ n�; N6 � 1

2
�1� n�:

�21�

The axial displacements of the centroid axis may be determined from the lateral de¯ections and the unit
extension of the centroid axis using Eq. (16).

If x, y and z in Eq. (14) are regarded as the Lagrangian coordinates, the Green strain e11, e12 and e13 are
given by [34]

e11 � 1

2
�rt
;xr;x ÿ 1�; e12 � 1

2
rt
;xr;y ; e13 � 1

2
rt
;xr;z: �22�
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Using the chain rule for di�erentiation, r;x in Eq. (22) may be expressed as

r;x � r;s�1� e0�; �23�

e0 � os
ox
ÿ 1; �24�

where e0 is the unit extension of the centroid axis. Making use of the assumption of uniform unit extension,
one may rewrite Eq. (24) as

e0 � S
L
ÿ 1: �25�

Substituting Eqs. (5)±(10), (15), (23) and (25) into Eq. (22) and retaining terms up to the second-order of
nodal parameters yield

e11 � e0 � 1

2
e2

0 � �1� e0�2 y�
�
ÿ h3;s � h2;sh1� � z�h2;s � h3;sh1� � 1

2
y2�h2

1;s � h2
3;s�

� 1

2
z2�h2

1;s � h2
2;s� ÿ yzh2;sh3;s

�
;

e12 � 1

2
�1� e0� �

�
ÿ z� x;y�h1;s � 1

2
z�h2h3;s ÿ h3h2;s� � x;yh1;s�zh2;s ÿ yh3;s� � h1;sh3;sx

�
;

e13 � 1

2
�1� e0� �y

�
� x;z�h1;s � 1

2
y�h3h2;s ÿ h2h3;s� � x;zh1;s�zh2;s ÿ yh3;s� ÿ h1;sh2;sx

�
;

�26�

e0 � l
L

1

�
� 1

4

Z 1

ÿ1

�h2
2 � h2

3� dn

�
ÿ 1: �27�

2.6. Element nodal force vector

The element nodal force vector fh (Eq. (13)) corresponding to the implicit nodal parameters is obtained
from the virtual work principle in the current element coordinates. It should be mentioned again that the
element coordinate system is a local coordinate system not a moving coordinate system. Thus, a standard
procedure is used here for the derivation of fh. For convenience, the implicit nodal parameters are divided
into four generalized nodal displacement vectors ui �i � a; b; c; d�, where

ua � fu11; u12g �28�
and ub, uc, and ud are de®ned in Eq. (20).

The generalized force vectors corresponding to dui, the variation of ui �i � a; b; c; d� are

fa � ff11; f12g; fb � ff21;mh
31; f22;mh

32g; fc � ff31;mh
21; f32;mh

22g; fd � fmh
11;m

h
12g: �29�

The virtual work principle requires that

dut
afa � dut

bfb � dut
cfc � dut

dfd �
Z

V
�r11de11 � 2r12de12 � 2r13de13�dV ; �30�

where V is the volume of the undeformed beam, de1j �j � 1; 2; 3� are the variation of e1j in Eq. (26), re-
spectively, with respect to the implicit nodal parameter. r1j �j � 1; 2; 3� are the second Piola±Kirchhoff
stress. For linear elastic material, the following constitutive equations are used:

r11 � Ee11; r12 � 2Ge12; and r13 � 2Ge13 �31�

in which E is Young's modulus and G is shear modulus.
If the element size is chosen small enough, the values of the rotation parameters of the deformed

element de®ned in the current element coordinate system may always be much smaller than unity. Thus the
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higher-order terms of rotation parameters in the element internal nodal forces may be neglected. However,
in order to include the nonlinear coupling among the bending, twisting, and stretching deformations,
the terms up to the second-order of rotation parameters and their spatial derivatives are retained in
element internal nodal forces by consistent second-order linearization of Eq. (30). The values of spatial
derivatives of the rotation parameters, which are relevant to the twist rate and curvature of the beam axis,
are deformation dependent, not element size dependent. Thus their values may not always be much smaller
than unity and their third-order terms may not be negligible. Here, the third-order terms of the
spatial derivatives of the rotation parameters are also retained in Eq. (30). From Eqs. (26)±(31), we may
obtain

fa � AELe0 1

�
� 3

2
e0

�
Ga � EIy

Z
5

2
h2

2;s

��
ÿ h2;sh

�
2;s

�
ds� EIz

Z
5

2
h2

3;s

�
ÿ h3;sh

�
3;s

�
ds

� 1

2
EIp

Z
h2

1;s ds
�

Ga; �32�

fb � EIz�1� 4e0�
Z

N00bh3;s ds� f12Gb ÿ E�Iz ÿ Iy�
Z

N00bh1h2;s ds� 1

2
GJ
Z

N0bh1;sh2;s

�
ÿN00bh1;sh2

�
ds

� 1

2
EKz

Z
N00bh

3
3;s ds� 1

2
E�Kz � Kyz�

Z
N00bh

2
1;sh3;s ds� 3

2
EKyz

Z
N00bh

2
2;sh3;s ds; �33�

fc � ÿ EIy�1� e0�
Z

N00ch2;s ds� f12Gc � E Iz

ÿ ÿ Iy

� Z
N00ch1h3;s ds� 1

2
GJ
Z

N0ch1;sh3;s

�
ÿN00ch1;sh3

�
ds

ÿ 1

2
EKy

Z
N00ch

3
2;s dsÿ 1

2
E�Ky ÿ Kyz�

Z
N00ch

2
1;sh2;s dsÿ 3

2
EKyz

Z
N00ch

2
3;sh2;s ds; �34�

fd � GJ�1� e0�
Z

N0dh1;s ds�EIpe0

Z
N0dh1;s dsÿ 1

2
GJ
Z

N0d�h2h3;sÿ h3h2;s�dsÿE�Izÿ Iy�
Z

Ndh2;sh3;s ds

� 1

2
EKI

Z
N0dh

3
1;s ds� 1

2
E�Ky �Kyz�

Z
N0dh

2
2;sh1;s ds� 1

2
E�Kz�Kyz�

Z
N0dh

2
3;sh1;s ds; �35�

where

Ga � 1

L
fÿ1; 1g; Gb �

Z
N0bh3 ds; Gc � ÿ

Z
N0ch2 ds; h�3;s � f2N 001 ;N

00
2 ; 2N 003 ;N

00
4 gt

ub � N�
00t

b ub;

h�2;s � ÿf2N 001 ;ÿN 002 ; 2N 003 ;ÿN 004 gt
uc � ÿN�

00t
c uc; Iy �

Z
z2 dA; Iz �

Z
y2 dA; Ip � Iy � Iz;

Ky �
Z

z4 dA; Kyz �
Z

y2z2 dA; Kz �
Z

y4 dA; KI � Ky � Kz � 2Kyz;

J �
Z
�
h
ÿ z� x;y�2 � �y � x;z�2

i
dA

�36�

in which the range of integration for the integral
R � �ds in Eqs. (32)±(36) is from 0 to S, A is the cross-

section area, Nj �j � b; c; d� are given in Eq. (21), � �0 � d� �=ds. The underlined terms in Eqs. (32)±(35) are
the third-order terms of the spatial derivatives of the rotation parameters.

The element nodal force vector f (Eq. (13)) corresponding to the explicit nodal parameters may be
obtained from Eqs. (13) and (32)±(35). Note that only the terms up to the second-order of nodal parameters
and the third-order terms of the spatial derivatives of the rotation parameters are retained in f.

K.M. Hsiao, W.Y. Lin / Comput. Methods Appl. Mech. Engrg. 188 (2000) 567±594 575



2.7. Element tangent sti�ness matrices

The element tangent sti�ness matrix corresponding to the explicit nodal parameters (referred to as
explicit tangent sti�ness matrix) may be obtained by di�erentiating the element nodal force vector f in
Eq. (13) with respect to explicit nodal parameters. Using Eqs. (12) and (13), we obtain

k � of

oq
� of

oqh

oqh

oq
� TT

h/khTh/ �H; �37�

where kh � ofh=oqh is the tangent sti�ness matrix corresponding to implicit nodal parameters (referred to as
implicit tangent sti�ness matrix), and H is an unsymmetrical matrix and is given by

H �
0 0 0 0

0 H1 0 0

0 0 0 0

0 0 0 H2

2664
3775 �38�

in which 0 is a zero matrix of order 3� 3 and

Hj �
0 mh

3j ÿ mh
2j

0 0 1
2
mh

1j

0 ÿ 1
2
mh

1j 0

264
375: �39�

Using the direct sti�ness method, the implicit tangent sti�ness matrix kh may be assembled by the
submatrices

kij � of i

ouj
; �40�

where f i �i � a; b; c; d� are de®ned in Eqs. (32)±(35) and ui �i � a; b; c; d� are de®ned in Eqs. (20) and (28).
The explicit form of kij may be expressed as

kaa � AEL�1� 3e0�GaGt
a;

kab � kt
ba � AEGaGt

b � EIzGa

Z
N00tb �5h3;s

�
ÿ h�3;s� dsÿ

Z
N�00tb h3;s ds

�
;

kac � kt
ca � AEGaGt

c � EIy Ga

Z
N00tc �5h2;s

�
ÿ h�2;s� dsÿ

Z
N�00tc h2;s ds

�
;

kad � kt
da � EIpGa

Z
N0td h1;s ds;

kbb � EIz�1� 4e0�
Z

N00bN00tb ds� f12

Z
N0bN0tb ds� 1

2
E�Kz � Kyz�

Z
N00bN00tb h2

1;s ds

� 3

2
EKyz

Z
N00bN00tb h2

2;s ds� 3

2
EKz

Z
N00bN00tb h2

3;s ds;

kbc � Kt
cb

� E�Iz ÿ Iy�
Z

N00bN00tc h1 ds� 1

2
GJ
Z
�N00bN00tc ÿN0bN00tc �h1;s ds;ÿ3EKyz

Z
N00bN00tc h2;sh3;s ds;

kbd � kt
db � ÿE Iz

ÿ ÿ Iy

� Z
N00bNt

dh2;s dsÿ 1

2
GJ
Z

N00bN0td h2 ds� 1

2
GJ
Z

N0bN0td h2;s ds

� E�Kz � Kyz�
Z

N00bN0td h1;sh3;s ds;
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kcc � EIy�1� 4e0�
Z

N00c N00tc ds� f12

Z
N0cN

0t
c ds

� 1

2
E�Ky � Kyz�

Z
N00c N00tc h2

1;s ds� 3

2
EKy

Z
N00c N00tc h2

2;s ds� 3

2
EKyz

Z
N00c N00tc h2

3;s ds;

kcd � kt
dc � E�Iz ÿ Iy�

Z
N00c Nt

dh3;s dsÿ 1

2
GJ
Z

N00c N0td h3 ds� 1

2
GJ
Z

N0cN
0t
d h3;s ds

ÿ E�Ky � Kyz�
Z

N00c N0td h1;sh2;s ds;

kdd � GJ�1� 2e0�
Z

N0dN0td ds� EIpe0

Z
N0dN0td ds� 3

2
EKI

Z
N0dN0td h

2
1;s ds

� 1

2
E�Ky � Kyz�

Z
N0dN0td h

2
2;s ds� 1

2
E�Kz � Kyz�

Z
N0dN0td h

2
3;s ds;

�41�

where the underlined terms are the second-order terms of the spatial derivatives of the rotation
parameters.

Note that because only the terms up to the second-order of nodal parameters and the third-order terms
of the spatial derivatives of the rotation parameters are retained in f, only the terms up to the ®rst-order of
nodal parameters and the second-order terms of the spatial derivatives of the rotation parameters are
retained in the element sti�ness matrix given in Eq. (37). The element tangent sti�ness matrix referred to the
global coordinate system is obtained by using the standard coordinate transformation.

2.8. Load sti�ness matrix

Di�erent ways for generating con®guration-dependent moment were proposed in the literature
[3,4,13,17]. Here, for simplicity, only the conservative moments generated by conservative force or forces
(with ®xed directions) are considered, and the ways for generating conservative moment proposed in [17]
are employed here. For completeness, a brief description of the ways for generating conservative moment is
given here. In this study, a set of load base coordinates X P

i �i � 1; 2; 3� associated with each con®guration-
dependent moment are constructed at the current con®guration. The mechanism for generating con®gu-
ration-dependent moment is described in these coordinates, and the corresponding external load and load
sti�ness matrix [35] are de®ned in terms of these coordinates. Unless stated otherwise, all vectors and
matrices in this section are referred to these coordinates. Note that this coordinate system is just a local
coordinate system constructed at the current con®guration, not a moving coordinate system. Thus, it is
regarded as a ®xed coordinated system in the derivation of the load sti�ness matrix.

The ®rst way of generating con®guration-dependent moment may be described as follows.
Consider a sphere of radius R whose centroid is rigidly connected with the structure at node O as shown

in Fig. 3. Two strings wound around a great circle of the sphere are acted upon by forces of magnitude P.
Thus, the strings are always tangent to the sphere. The great circle and the forces are on the same plane at
the undeformed con®guration of the structure. However, the great circle and the forces are generally not on
the same plane when the structure is deformed. The origin of the load base coordinate system is chosen to
be located at the node O. The X P

1 axis is chosen to coincide with the normal of the plane of the great circle,
and the X P

2 and X P
3 axes lie in the plane of the great circle.

Let A denote the contact point of the force P and the great circle. Because P is tangent to the sphere, P

is perpendicular to the line OA. Let eA denote unit vector in the direction of line OA. eA may be expressed
by

eA � a=�ata�1=2; �42�

a � eP
p � nP � f0; l3;ÿl2g; �43�
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where eP
p � fl1; l2; l3g is the unit vector in the direction of P, and nP is the unit normal of the plane of the

great circle. Note that nP coincides with eP
1 � f1; 0; 0g, the unit vector associated with the X P

1 axis.
The external moment vector at node O generated by the above-mentioned mechanism may be expressed

by

M � M eA � eP
p ; �44�

where M � 2RP is the magnitude of the moment. The corresponding load sti�ness matrix kp may be ex-
pressed as

kp � M�l2
2 � l2

3�ÿ1=2
kpa �M�l2

2 � l2
3�ÿ3=2

kpb; �45�

where

kpa �
0 l1l3 ÿ l1l2

0 l2l3 l2
1 � l2

3

0 ÿ l2
1 ÿ l2

2 ÿ l2l3

24 35; �46�

kpb �
0 ÿ l1l3�l2

2 � l2
3� l1l2�l2

2 � l2
3�

0 l2
1l2l3 ÿ l2

1l2
2

0 l2
1l2

3 ÿ l2
1l2l3

24 35: �47�

Three special cases shown in Fig. 4 are considered here. Following [3,4], they are referred to as quasi-
tangential (QT) moments of the ®rst and second type, and semitangential (ST) moment. The load sti�ness
matrices corresponding to QT and ST moments at the con®gurations shown in Fig. 4 may be obtained from
Eqs. (45)±(47) and given by

kQT1
p � M

0 0 0
0 0 0
0 ÿ 1 0

24 35; �48�

kQT2
p � M

0 0 0
0 0 1
0 0 0

24 35; �49�

Fig. 3. Mechanism for generating con®guration dependent moment.
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kST
p �

M
2

0 0 0
0 0 1
0 ÿ 1 0

24 35: �50�

The second way for generating con®guration-dependent moment may described as follows.
Consider a rigid arm of length R whose end is rigidly connected with the structure at node O as shown in

Fig. 5. The other end of the rigid arm is acted upon by a conservative force (with a ®xed direction) of
magnitude P. The origin of the load base coordinates X P

i �i � 1; 2; 3� is chosen to be located at the node O.
The X P

1 axis is chosen to coincide with the axis of the rigid arm, and the X P
2 and X P

3 axes are perpendicular to
the rigid arm.

The external moment vector at node O generated by the above-mentioned mechanism may be expressed
by

M � RP tP � eP
p ; �51�

where eP
p � fl1; l2; l3gis the unit vector in the direction of P, and tP is the unit vector in the axial direction of

the rigid arm. Note that tP coincides with eP
1 � f1; 0; 0g, the unit vector associated with the X P

1 axis. The
corresponding load sti�ness matrix may be expressed as

Fig. 5. Mechanism for generating con®guration dependent moment by an o�-axis load.

Fig. 4. Quasitangential (QT) moment and semitangential (ST) moment.
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kp � RP
0 l2 l3

0 ÿ l1 0
0 0 ÿ l1

24 35: �52�

The load sti�ness matrix referred to the global coordinate system is obtained by using the standard
coordinate transformation and may be expressed by

kG
p � AGP kpAt

GP ; �53�
where AGP is the transformation matrix given in Eq. (1).

2.9. Equilibrium equations

The nonlinear equations of motion may be expressed by

W � Fÿ kP � 0; �54�

where W is the unbalanced force between the internal nodal force F and the external nodal force kP, where k
is the loading parameter, and P is a reference loading. Note that P may require to be updated at each
iteration if the applied load is con®guration dependent. F is assembled from the element nodal force
vectors, which are calculated using Eqs. (13) and (32)±(35) ®rst in the current element coordinates and then
transformed from current element coordinate system to global coordinate system before assemblage using
the standard procedure.

In this paper, a weighted Euclidean norm of the unbalanced force is employed for the equilibrium
iterations, and is given by

kWk����
N
p 6 etol; �55�

where N is the number of equations of the system, and etol is a prescribed value of error tolerance.

2.10. Criterion of the buckling state

Here, the zero value of the tangent sti�ness matrix determinant is used as the criterion of the buckling
state. The tangent sti�ness matrix of the structure is assembled from the element sti�ness matrix and load
sti�ness matrix. Let KT�k� denote the tangent sti�ness matrix of the structure corresponding to the loading
parameter k. The criterion of the buckling state may be expressed as

D�k� � det KT�k�j j � 0: �56�

Let kNB denote the minimum root of Eq. (56). kNB is the loading parameter corresponding to buckling
state. The buckling mode corresponding to kNB may be obtained by solving the following generalized ei-
genvalue problem

K0X � ÿ k
kNB

KGX; �57�

where K0 is the linear sti�ness matrix of the structure, and KG � KT ÿ K0 is the geometric sti�ness matrix
of the structure corresponding to kNB. The eigenvector corresponding to eigenvalue kNB is the re-
quired buckling mode. Here, the inverse power method [36] is used to ®nd the buckling load and buckling
mode.

580 K.M. Hsiao, W.Y. Lin / Comput. Methods Appl. Mech. Engrg. 188 (2000) 567±594



3. Numerical algorithm

An incremental±iterative method based on the Newton±Raphson method combined with constant arc
length of incremental displacement vector [37,38] is employed for the solution of nonlinear equilibrium
equations. For a given displacement increment or corrector, the method described in [27,39] is employed to
determine the current element cross-section coordinates, element coordinates and element deformation
nodal parameters for each element. A bisection method of the arc length is proposed here to ®nd the
buckling load. In order to initiate the secondary path, at the bifurcation point a perturbation displacement
proportional to the ®rst buckling mode is added [31].

The basic steps involved in the bisection method are outlined as follows.
Assume that the equilibrium con®guration of the Ith incremental step is obtained. Let DSI denote the arc

length of the incremental displacement vector of the Ith incremental step, and kI and KI
T denote loading

parameter and tangent stiffness matrix corresponding to the equilibrium con®guration of the Ith incre-
mental step, respectively. If KIÿ1

T is positive de®nite and KI
T is positive nonde®nite, the following steps are

used to obtain the buckling load:
1. Let DSL � 0; DSR � DSI ; kL � 0; and kR � kI :
2. Let DSI � �DSL � DSR�=2. Repeat the Ith incremental step to obtain a new kI and KI

T.
3. If KI

T is positive de®nite, let DSL � DSI , and kL � kI . If KI
T is positive nonde®nite, let DSR � DSI , and

kR � kI .
4. Let kI � �kL � kR�=2. If kL ÿ kRj j=kI 6Ek, where Ek is a prescribed error tolerance, stop the iteration;

otherwise go to step 2.
The buckling load kNB is chosen to be the converged kI .

4. Numerical studies

In order to investigate the e�ect of third-order terms on the buckling load and postbuckling behavior of
three-dimensional beams, the following cases are considered:
1. NF� 1 ± All the terms up to the second-order in Eqs. (32)±(35), and the corresponding terms in Eq. (41)

are considered.

Fig. 6. Cantilever beam subjected to end torsion.
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2. NF� 2 ± Except the term EIpe0

R
N0dh1;s ds in Eq. (35), all the terms up to the second-order in Eqs. (32)±

(35), and the corresponding terms in Eq. (41) are considered.
3. NF� 3 ± The third-order term �1=2�EKI

R
N 0dh

3
1;s ds in Eq. (35) and all the terms up to the second-order in

Eqs. (32)±(35), and the corresponding terms in Eq. (41) are considered.
4. NF� 4 ± All the terms in Eqs. (32)±(35), and Eq. (41) are considered.

4.1. Example 1. Cantilever beam subjected to end torsion

The example considered here is a cantilever beam subjected to end torsion T as shown in Fig. 6. Because
only the primary path is considered for this example, the ways of generating end moment are rendered
irrelevant here. The geometry and material properties of the beam are: b � 0:5 cm, h � 10 cm, L � 100 cm,
cross-sectional area A � 5 cm2, moment of inertia about xS

2 axis Iy � 0:1042 cm4, moment of inertia about
xS

3 axis Iz � 41:67 cm4, torsional constant J � 0:4167 cm4, KI � 626:6 cm6, Young's modulus
E � 2:1� 106 kP=cm2, and shear modulus G � 7:875� 105 kP=cm2.

It is observed that the only nonzero deformations are uniform twist rate h1;s and uniform unit extension
of the centroid axis e0 for this example. From Eq. (32), and using the approximation 1� �3=2�e0 � 1, one
may obtain

Fig. 7. Load±end twist angle for cantilever beam subjected to end torsion.

Fig. 8. Cantilever beam subjected to end force.
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e0 � ÿ Ip

2A
h2

1;s: �58�

As can be seen from Eq. (58) e0 is a second-order term of twist rate. Thus EIpe0

R
N0dh1;s ds in Eq. (35) may

be regarded as a third-order term of h1;s. From Eq. (35), and using the approximation 1� �1=2�e0 � 1, one
may obtain the constitutive equation for twist moment for di�erent cases as follows:

T � mh
1 � GJh1;s ÿ

EI2
p

2A
h3

1;s for NF � 1; �59�

T � mh
1 � GJh1;s for NF � 2 �60�

Fig. 9. Load±tip displacements for cantilever beam subjected to end force.

Fig. 10. Cantilever angle subjected to a horizontal end force.
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and

T � mh
1 � GJh1;s � 1

2
E KI

 
ÿ EI2

p

A

!
h3

1;s for NF � 3; 4: �61�

It is seen that linear twist moment±twist rate relation is used for NF� 2, and nonlinear twist moment±
twist rate relations are used for NF � 1; 3; 4. However, the third-order term for NF � 1 is incomplete.

The present results obtained by using 20 elements are shown in Fig. 7 together with the results of [1,2,40].
The results of [1,2,40] are obtained using triangular facet shell element. The agreement among all results is
very good when twist rate is small. The results of NF � 1, may be unreasonable when the twist rate is not
small, because the torsional rigidity decreases with the increase of the twist angle. The agreement between
the results of NF � 3; 4 and the results given in [1,2,40] is qualitatively good, each set showing increase of
torsional rigidity with the increase of twist angle. Quantitatively there are considerable di�erences. These
may be attributed at least in part to that the theory of the shell is two-dimensional and the theory of beam is
one-dimensional. However, the results of NF � 3; 4 are more reliable than the results of NF � 1 and 2.
Thus NF � 3, or 4 may be required for reasonable solutions.

Fig. 11. Load±displacement for cantilever angle subjected to end force.

Fig. 12. Load±displacement for cantilever angle subjected to end force.
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4.2. Example 2. Cantilever beam subjected to end force

This example was ®rst introduced by Argyris et al. [3,4]. The example considered is a cantilever beam
subjected to a lateral end force P as shown in Fig. 8. The X G

i �i � 1; 2; 3� axes of the global coordinate
system shown in Fig. 8 coincide with xS

i axes, the axes of the element cross-section coordinate system in the
undeformed beam. The geometry and material properties are: length L � 100, cross-sectional area A � 1:0,
moment of inertia about xS

2 axis Iy � 0:125, moment of inertia about xS
3 axis Iz � 1:0, torsional constant

J � 0:5, Young's modulus E � 104, and shear modulus G � 5� 103. The classical buckling load for this
example is Pcr � �4:013=L2� �������������

EIyGJ
p � 0:7094 [11].

Fig. 13. Load±displacement for cantilever angle subjected to end force.

Fig. 14. Simply supported angle subjected to uniform moment.
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Twenty elements are used for discretization. Because the cross-section constants Ky ;Kz, and Kyz (see
Eq. (36)) are not given in [3,4], only the cases NF� 1, 2 are considered. The results for these two cases are
nearly identical. Thus, only the results for the case NF� 2 are reported. The nonlinear buckling load
obtained here is PNB � 1:0069. The load±de¯ection curves of the present study together with the results of
[3,4] are shown in Fig. 9. Very good agreement among all these solutions is observed. Because the pre-
buckling displacements for this example are quite large, the discrepancy between the nonlinear buckling
load and classical linear buckling load is remarked.

4.3. Example 3. Cantilever angle subjected to a horizontal end force

The example considered here is a cantilever angle subjected to a horizontal force P at the centroid of the
end cross section as shown in Fig. 10. The geometry and material properties are: L � 240 mm, b � 0:6 mm,
h � 30 mm, cross-sectional area A � 18 mm2, moment of inertia about xS

2 axis Iy � 0:54 mm4, moment of
inertia about xS

3 axis Iz � 1350 mm4, torsional constant J � 2:16 mm4, KI � 1:823� 105 mm6, Young's
modulus E � 71240 N=mm2, and shear modulus G � 27190 N=mm2.

Fig. 15. Load±displacement for simply supported angle subjected to uniform moment.

Fig. 16. Load±displacement for simply supported angle subjected to uniform moment.
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The results of the present study are obtained by using 48 elements. The buckling load of the present
study is 1.0879 N for NF� 1±4. The linear buckling load given by Argyris et al. [5,6] and Hsiao et al. [17] is
1.880 N. Because the prebuckling displacement is negligible, the linear and nonlinear buckling loads are
nearly identical. The load±de¯ection curves are shown in Figs. 11±13. Very good agreement between the
results of NF� 2 and the results given in [5,6] is observed. The discrepancy among the results of NF� 1, 2,
and 3 is not negligible when the displacements are not small. The results of NF� 3 and 4 are identical. It
seems that �1=2�EKI

R
N0dh

3
1;s ds is the dominant third-order term.

4.4. Example 4. Simply supported right-angle frame subjected to uniform moment

The example considered here is a simply supported angle frame subjected to uniform moment M as
shown in Fig. 14. The ends of the beam are free to rotate about the X G

3 axis, but rotation about X G
1 and

Fig. 17. Load±displacement for simply supported angle subjected to uniform moment.

Fig. 18. Simply supported beam subjected to a central concentrated load.
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X G
2 axes is prevented. The translation of end point A is restrained, and end point B is free to move in

the direction of X G
1 axis. Because of the rotational boundary conditions used here, the ways of gener-

ating end moments are rendered irrelevant here. The geometry and material properties are identical with
those of Example 3. The theoretical linear buckling moment is Mcr � �p=L� �������������

EIyGJ
p � 622:21 N mm [11].

The linear buckling moments given by [3,4,6] and [17] are 624.77 and 624.76 N mm, respectively.
The results of the present study are obtained by using 80 elements. The buckling loads of the present

study are 622.37 N mm for NF� 1±4. Because the prebuckling displacement is negligible, the agreement
between the linear and nonlinear buckling loads is very good. The load±de¯ection curves are shown in
Figs. 15±17. The agreement between the results of NF� 2 and the results given in [6,22,23] is good when the

Table 1

Buckling loads for simply supported beam with central concentrated load

Load applied at L (m) Pcr (N) PNB=Pcr
a

Upper face 1 2460.03 1.014

2 740.37 1.456

3 529.85 1.152

4 354.51 1.105

5 248.57 1.095

Centroid 1 8382.96 1.130

2 2095.74 1.130

3 931.44 1.129

4 523.94 1.129

5 335.32 1.129

Lower face 1 19225.96 1.030

2 3451.12 1.189

3 1333.03 1.206

4 693.36 1.200

5 422.06 1.191

a PNB� buckling load of the present study.

Fig. 19. Load±displacement for simply supported beam (load applied at upper face).
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displacements are moderately large. The discrepancy among the results of NF� 1, 2, and 3 is remarked.
The results of NF� 3 and 4 are identical. It shows again that �1=2�EKI

R
N0dh

3
1;s ds is the dominant third-

order term and may not be negligible for very narrow cross sections.

4.5. Example 5. Simply supported beam subjected to a central concentrated load

The example considered here is a simply supported beam subjected to a concentrated load P at the
middle as shown in Fig. 18. Here three cases are considered for the application point of P: (1) upper face,
(2) centroid, and (3) lower face. The ends of the beam are free to rotate about the X G

2 and X G
3 axes, but

rotation about the X G
1 axis is restrained. The translation is restrained at end point A, and is free only in the

direction of X G
1 axis at point B. The geometry and material properties are: L � 1; 2; 3; 4; 5 m, b � 0:06 m,

Fig. 20. Load±displacement for simply supported beam (load applied at upper face).

Fig. 21. Load±displacement for simply supported beam (load applied at upper face).
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h � 0:1 m, t� 0.002 m, Young's modulus E � 2:04� 1011 N=m2, and shear modulus G � 7:9� 1010 N=m2.
The classical buckling load is quoted in [11] as

Pcr �
16:94

�������������
EIyGJ

p
L2

1

 
ÿ 1:74a

L

�������
EIy

GJ

r !
; a �

0:5h for upper face;
0 for centroid;
ÿ0:5h for lower face:

8<:
The present results are obtained by using 40 elements. The buckling loads for NF� 1±4 are nearly

identical. The present buckling loads for NF� 3 are shown in Table 1 together with the linear buckling
loads of [11]. As can be seen, when the load is applied at the centroid, the ratios of the present results and

Fig. 22. Load±displacement for simply supported beam (load applied at centroid).

Fig. 23. Load±displacement for simply supported beam (load applied at lower face).
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the linear buckling loads are about 1.129 for all lengths of the beam studied. When the load is applied at the
upper face, the maximum discrepancy (45.6%) between these two results occurs at L � 2 m. The load±
de¯ection curves for di�erent cases are shown in Figs. 19±23. As can be seen the results for NF� 3 and 4 are
identical for all cases. The discrepancy among the results for NF� 1, 2, and 3 are remarked especially for
the cases of L � 2 m. It indicates again that the third-order term �1=2�EKI

R
N0dh

3
1;s ds may not be negligible

for postbuckling analysis of beams with thin walled open cross section.

4.6. Example 6. Buckling of a cantilever beam subjected to end torsion

The example considered here is a cantilever beam subjected to end torsion T. The quasitangential and
semitangential moments are considered. The corresponding load base coordinates are shown in Fig. 24.

Table 2

Buckling moment for a cantilever beam subjected to end torsiona

Type of moment Number of

elements

TNB �103 kP cm�

NF� 1 NF� 2 NF� 3 NF� 4

QT1 50 2.887 3.213 3.463 3.464

100 2.921 3.259 3.518 3.519

150 2.928 3.268 3.529 3.529

200 2.929 3.271 3.532 3.532

QT2 50 1.450 1.468 1.481 1.481

100 1.463 1.480 1.494 1.494

150 1.465 1.483 1.496 1.496

200 1.466 1.484 1.497 1.497

ST 50 2.605 2.839 3.032 3.032

100 2.675 2.932 3.146 3.146

150 2.689 2.951 3.169 3.169

200 2.694 2.958 3.177 3.178

a Classical linear buckling moment [41]

Tcr �
pE
2L

�������
Iy Iz

p � 1:375� 104 kP cm for QT;
pE
L

�������
Iy Iz

p � 2:749� 104 kP cm for ST:

�

Fig. 24. Cantilever beam subjected to end torsion.
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Except L � 250 cm, the geometry and material properties are identical with those of Example 1. The
classical buckling moment is quoted in [41] as

Tcr �
pE
2L

�������
IyIz

p
for QT;

pE
L

�������
IyIz

p
for ST:

8<:
The present buckling moments are shown in Table 2 together with classical buckling moment [41]. As

can be seen, the discrepancy among the buckling moments corresponding to NF� 1±3 is not negligible, and
the discrepancy between the present buckling moments and the classical linear buckling moments are re-
marked. Note that the prebuckling rotations for this example are quite large. The load±de¯ection curves for
di�erent types of moments are shown in Figs. 25±27. As can be seen the results for NF� 3 and 4 are
identical for all cases.

Fig. 25. Load±tip displacement for cantilever beam subjected to end torsion (QT1).

Fig. 26. Load±tip displacements for cantilever beam subjected to end torsion (QT2).
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5. Conclusions

This paper has proposed a consistent co-rotational ®nite element formulation and numerical proce-
dure for the buckling and postbuckling analyses of three-dimensional elastic Euler beam. The formu-
lation of beam element proposed in [27] is modi®ed and employed here. All coupling among bending,
twisting, and stretching deformations for the beam element is considered by consistent second-order
linearization of the fully geometrically nonlinear beam theory. The third-order terms, which are relevant
to the twist rate and curvature of the beam axis are also considered. An incremental±iterative method
based on the Newton±Raphson method combined with constant arc length of incremental displacement
vector is employed for the solution of nonlinear equilibrium equations. The zero value of the tangent
sti�ness matrix determinant of the structure is used as the criterion of the buckling state. A bisection
method of the arc length is proposed to ®nd the buckling load. From the numerical examples studied, it
is found that the agreement between the nonlinear buckling loads of the present study and the linear
buckling loads given in the literature is very good when the prebuckling displacements are small.
However, for cases with large prebuckling displacements, the discrepancy between the nonlinear
buckling loads of the present study and the linear buckling loads given in the literature is remarked.
Thus when the prebuckling displacements are not negligible, a nonlinear buckling analysis may be re-
quired for reliable solutions. The discrepancy among buckling loads for NF� 1±4 is negligible for most
examples studied. However, it is observed from the last example that when the prebuckling twist is not
small, the e�ect of third-order terms on the buckling load is not negligible. From the numerical ex-
amples studied, it shows that �1=2�EKI

R
N0dh

3
1;s ds is the domainant third-order term. The e�ect of the

third-order term �1=2�EKI

R
N0dh

3
1;s ds may not be negligible for postbuckling analysis of 3-D beams with

thin walled open cross section (e.g., rectangular cross section with very small aspect ratio), if the
postbuckling behavior is to be determined with accuracy.
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