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Abstract

This paper proposes a method called ``piecewise generation'' for generating conjugate shapes from sets of data points on original

cutters using cubic spline functions to ®t the points. The di�erences between conventional generation methods and piecewise generation

are presented. The main advantage of this method is that the analytical form of the cutter need not be provided. Therefore, only sets of

data points on the cutter either derived from analytical form or measured with coordinate measuring machines (CMMs) are necessary

for the conjugate shape to be derived using this method. It provides a practical and useful tool for conjugate-pair design veri®cation

and reverse engineering applications. Ó 2000 Elsevier Science S.A. All rights reserved.

1. Introduction

Mechanisms are said to have conjugate shapes if they transform motions using prescribed functions [1±
3]. Conjugate kinematic pairs are important transmission mechanisms used in gearing pairs, cams and
followers, or screw compressor rotors, etc. However, most conjugate machine parts are designed using
elementary geometric ®gures such as points, straight lines, involute curves, arcs and curves combined in
appropriate ways. Simple shapes are always chosen as long as more complicated shapes are not required for
production reasons [4]. Whereas, when produced pro®les greatly in¯uence performance, and more com-
plicated shapes are required for functional reasons, changes in shape parameters always entail geometric
constraints, including those on properties of curves, and those on the mathematical continuities of adjacent
curves and their points of tangency [5±7].

Cubic spline is one of the geometric curve descriptions with ®rst- and second-derivative continuities. It
gives a curve-®tting solution as an approximate model. However, many papers have discussed various
numerical methods about curve ®tting to reduce the ®tting errors. Furthermore, for reverse engineering
applications, the digitized data may be coupled with the machining error and system error of the used
measuring machine. Though the measured data can be exactly ®tted, the use of interpolation in the data
may result in unexpected oscillations on the derivatives. Wagner et al. [8] used spring spline for smoothing
curvature and torsion, and its piecewise parametric cubic spline functions can avoid the spurious oscilla-
tions in derivatives.

Most commonly used method for generating conjugate shapes is a conventional one that employs cutters
identical in analytical form (or parametric form) to product geometric shapes. Only after the analytical
form of the cutter is determined can the meshing equation and the coordinate-transformation equations be

Comput. Methods Appl. Mech. Engrg. 187 (2000) 245±260
www.elsevier.com/locate/cma

* Corresponding author. Tel.: +886-3-5726111 Ext. 55129; fax: +886-3-5717243.

E-mail address: chtseng@cc.nctu.edu.tw (C.-H. Tseng).

0045-7825/00/$ - see front matter Ó 2000 Elsevier Science S.A. All rights reserved.

PII: S 0 0 4 5 - 7 8 2 5 ( 9 9 ) 0 0 1 3 3 - 4



derived and solved simultaneously to obtain the conjugate shapes. If a cutter shape is changed, the equation
of meshing has to be derived again, which requires additional time to do routine procedures. Conventional
generation methods also cannot implement discrete data points on the cutters because meshing equations
cannot be derived from these discrete points.

This paper proposes a generation method based on numerical considerations. The cutters are simulated
using piecewise curves by dividing the original cutter into many small sections, and are treated as sets of
small cutters. It can apply gearing theory to generate conjugate shapes using these small cutters, and
compare the work-piece errors produced by the original cutter with those produced by the curve-®tted
ones. This method is called ``piecewise generation''. Su and Tseng [9] discussed a variation of this method
that uses piecewise linear functions to ®t the data points, but the existence of tip points among the
piecewise linear cutters leads to point generation, making the linear function approach seem not very
suitable for practical applications. The choices number of data point and its ®tting methods have a
signi®cant in¯uence on the resulting generated conjugate shapes. In this paper, the cubic spline method
was chosen and all data points either derived from the analytical form or measured with CMMs are used
for curve ®tting.

2. Conventional generation method

In order to explain the di�erence between the conventional generation method and the piecewise gen-
eration method, two fundamental examples are introduced in the present study to show procedures for
solving problems using these methods.

Case 1: Rack cutter generating involute teeth.
Consider the coordinate systems shown in Fig. 1. The shape of the rack tooth is represented in coor-

dinate system S1 by the equations

r1�h� � h sinwci1 � hcoswcj1; �1�

ÿh1 < h < h2; �2�

O1M � h: �3�

Fig. 1. Generation mechanism for case 1.
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The rack displacement and the angle of gear rotation / are related by

s
/
� r �r is constant�: �4�

The values of the shape parameters are shown in Table 1. Find the conjugate shape generated by the rack
cutter.

Solution
Equation of meshing: Using the equation of meshing

N1 � v�12�
1 � 0; �5�

it can be got (see Appendix A)

f1�h;/� � hÿ r/ sinwc � 0: �6�
Conjugate shape R2: The shape R1 represented in coordinate system S2 is

�r2� � �M21��r1� � �M2f ��Mf 1��r1�

�
cos/ sin/ 0

ÿ sin/ cos/ 0

0 0 1

264
375 1 0 ÿs

0 1 r

0 0 1

264
375 h sinwc

hcoswc

1

264
375

�
ÿr/cos/� r sin/� h sin�/� wc�
r/ sin/� r cos/� hcos�/� wc�

1

264
375: �7�

Then, the equations for shape R2 are

x2 � ÿr/cos/� r sin/� h sin�/� wc�; �8�

y2 � r/ sin/� r cos/� hcos�/� wc�; �9�

hÿ r/ sinwc � 0 �10�
and the shape is as plotted in Fig. 2.

Case 2: Involute pinion generating an involute gear.
Consider the coordinate systems shown in Fig. 3. The shape of the involute tooth is represented in

coordinate system S2 by the equations

x1 � rb� sinhÿ hcosh�; �11�

y1 � rb�cosh� h sinh�; �12�

ÿh1 < h < h2; �13�
where rb is the radius of the base circle. The shape parameter values are shown in Table 2. Find the
conjugate shape generated by the involute teeth of the pinion.

Table 1

Parameter values in case 1 used for the conventional generation method

Parameters Values

r 7.2 mm

wc 20�

h ÿ16 h6 1

n 5
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Solution
Equation of meshing: The equation of meshing is

N1 � v�12�
1 � 0 �14�

and that yields (see Appendix B)

Fig. 2. Theoretical conjugate shape for case 1.

Fig. 3. Generation mechanism for case 2.
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f2�h;/1� � cosh

�
ÿ y1

m12 � 1

m12

� �
ÿ C cos/1

m12

�
ÿ sinh x1

m12 � 1

m12

� ��
ÿ C sin/1

m12

�
� 0: �15�

Conjugate shape R2: The shape R1 represented in coordinate system S2 is

�r2� � �M21��r1� � �M2f ��Mf 1��r1�

�
cos/2 ÿ sin/2 C sin/2

sin/2 cos/2 ÿC cos/2

0 0 1

264
375 cos/1 ÿ sin/1 0

sin/1 cos/1 0

0 0 1

264
375 rb� sinhÿ hcosh�

rb�cosh� h sinh�
1

264
375

�
C sin/2 � rb�ÿ sin�/1 � /2��cosh� h sinh� � cos�/1 � /2�� sinhÿ hcosh��
ÿC cos/2 � rb� sin�/1 � /2�� sinhÿ hcosh� � cos�/1 � /2��cosh� h sinh��

1

264
375: �16�

Fig. 4. Involute theoretical results for case 2.

Table 2

Parameter values in case 2 used for the conventional generation method

Parameters Values

rb 6.766 (mm)

rp1 7.2 (mm)

rp2 18 (mm)

N1 16 (teeth)

N2 40 (teeth)

h 0�6 h6 50�

n 5
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The equations for shape R2 are

x2 � C sin/2 � rb�ÿ sin�/1 � /2��cosh� h sinh� � cos�/1 � /2�� sinhÿ hcosh��; �17�

y2 � ÿC cos/2 � rb� sin�/1 � /2�� sinhÿ hcosh� � cos�/1 � /2��cosh� h sinh��; �18�

f2�h;/1� � 0 �19�
and the shape is as plotted in Fig. 4.

3. Piecewise generation method

3.1. Cubic spline interpolation

Consider the cases in the preceding section, but with only discrete points on the cutter being given. Cubic
spline functions are used to connect the discrete points located on the original cutter, after which they can
be treated as a set of small cutters, no matter what type of original cutter is considered.

Assume that the data point coordinates are

f�xi; yi�ji � 1; 2; . . . ; n� 1g; �20�
where n means the total number of piecewise cubic spline curves. The parametric form of cubic spline
functions that pass through these data points in coordinate system S1 can then be represented as

ri � �Xi�u� Yi�u��; i � 1; 2; . . . ; n; �21�
where

Xi�u� � ai � biu� ciu2 � diu3; �22�

Yi�u� � ei � fiu� giu2 � hiu3; �23�

06 u6 1: �24�
In general, the x-coordinates X �u� of points on a curve are determined solely by the x-coordinates

x0; . . . ; xn�1 of the data points, and similarly Y �u� coordinates are determined solely by the y-coordinates of
the data points. Each Xi�u� is a cubic polynomial in the parameter u. Their coef®cients ai; bi; . . . ; hi can be
determined by Hermite interpolation, and can be generalized to higher-order polynomials [7].

Notice that the natural cubic spline is chosen here, that is, the second-order derivatives at the endpoints
are both required being zero

X �2�1 �0� � 0; X �2�n�1�1� � 0; �25�

Y �2�1 �0� � 0; Y �2�n�1�1� � 0: �26�
Since the parametric form of ri has been determined, its tangent

Ti1 � ori

ou
� �bi � 2ciu� 3diu2�i1 � �fi � 2giu� 3hiu2�j1

� xti�u�i1 � yti�u�j1 �27�
and its normal

Ni1 � dri

du
� k1

� �fi � 2giu� 3hiu2�i1 ÿ �bi � 2ciu� 3diu2�j1

� yti�u�i1 ÿ xti�u�j1 �28�
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can also be derived (i � 1; 2; . . . ; n). These information will be used for determining the corresponding
conjugate shapes.

3.2. Procedures of piecewise generation method

Piecewise generation method can be achieved by the following steps:
Step 1: Data point sampling.
Data points can be got either by evaluating theoretical curves or the measuring results from coordinate

measuring machines. Suitable sampling of data points will improve the accuracy of the curve-®tting results.
Data points evaluated from theoretical curves for both examples mentioned in previous section are listed in
Table 3.

Step 2: Curve ®tting.
Various curve-®tting methods can be applied to ®t the data points obtained from step 1. If the data

points contain machining error or system error of the used measuring machine, it is suitable to apply
approaches in the form of least squares to approximated measured points. The spring spline [8] can be
applied to avoid the spurious oscillation in derivatives. Su and Tseng [9] used linear functions to ®t the data
points. However, the piecewise cubic spline function is used in this study since the data points are evaluated
from the theoretical curves in the previous two examples.

Step 3: Applying generation method.
The problems given above are solved using the piecewise generation method as follows:
Case 1: Rack cutter generating involute teeth. The number of piecewise cubic spline functions is set at 5,

that is to say, n � 5.
Relative velocity v

�12�
i : As shown in Fig. 1, the velocity of the rack cutter is

v
�1�
i � ÿxri1; �29�

where x is the angular velocity of the gear, and r the radius of the pitch circle.
The linear velocity of the gear contact point is

v
�2�
i � �x� ri� � �O1O2 � x�

�
i1 j1 k1

0 0 x

Xi�u� Yi�u� 0

264
375� i1 j1 k1

r/i ÿr 0

0 0 x

264
375

� x�ÿ�Yi�u� � r�i1 � �Xi�u� ÿ r/i�j1�: �30�
The relative linear velocity is

v
�12�
i � v

�1�
i ÿ v

�2�
i � x�Yi�u�i1 � �ÿXi�u� � r/i�j1�: �31�

Equation of meshing. Using the equation of meshing

Ni1 � v�12�
i � 0; �32�

we get

f3i�Xi;/� � xti�u�Xi�u� � yti�u�Yi�u� ÿ r/ixti�u� � 0: �33�

Table 3

The sampling data points for case 1 and case 2

No. 1 2 3 4 5 6

Case 1 x ÿ0.342 ÿ0.205 ÿ0.068 0.068 0.205 0.342

y 6.260 6.636 7.012 7.388 7.764 8.139

Case 2 x 0.000 0.012 0.095 0.315 0.731 1.388

y 6.766 6.868 7.166 7.631 8.219 8.872

S.-H. Su, C.-H. Tseng / Comput. Methods Appl. Mech. Engrg. 187 (2000) 245±260 251



Conjugate shape R2: The shape R1 represented in coordinate system S2 is

�r2i� � �M21��ri� � �M2f ��Mf 1��ri�

�
cos/i sin/i 0

ÿ sin/i cos/i 0

0 0 1

264
375 1 0 ÿs

0 1 r

0 0 1

264
375 Xi�u�

Yi�u�
1

264
375

�
Xi�u�cos/i � Yi�u� sin/i � r� sin/i ÿ /i cos/i�
ÿXi�u� sin/i � Yi�u�cos/i � r�/i sin/i � cos/i�

1

264
375: �34�

The equations for shape R2 are:

x2 � Xi�u�cos/i � Yi�u� sin/i � r� sin/i ÿ /i cos/i�; �35�

y2 � ÿXi�u� sin/i � Yi�u�cos/i � r�/i sin/i � cos/i�; �36�

xti�u�Xi�u� � yti�u�Yi�u� ÿ r/ixti�u� � 0; �37�
where

/lower;i6/i6/upper;i; �38�
and the generated shape is as plotted in Fig. 5.

In fact, the cubic spline ®tting result for the straight line is identical with the original one, and there will
not exist errors between generated curves derived from conventional generation and piecewise generation.

Case 2: Consider an involute cutter generating tooth, as shown in Fig. 3.
Relative velocity v

�12�
1 : From Eqs. (B.3) and (B.4), the ratio of angular velocity changes can be represented

by

Fig. 5. Piecewise generation results for case 1.
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m12 � x�1�

x�2�
� /1i

/2i
� N2

N1

�i � 1; 2; . . . ; n�; �39�

where N1 and N2 are respectively, pinion 1 and gear 2 tooth numbers.
The relative linear velocity is

v
�12�
i � v

�1�
i ÿ v

�2�
i � �x�12�

1 � ri� ÿ �O1O2 � x�2�1 �

�
i1 j1 k1

0 0 x�1�1 � x�2�1

Xi�u� Yi�u� 0

�������
�������ÿ

i1 j1 k1

C sin/1i C cos/1i 0

0 0 ÿx�2�1

�������
�������

� ÿ��x�1�1 � x�2�1 �Yi�u� ÿ x�2�1 C cos/1i�i1 � ��x�1�1 � x�2�1 �Xi�u� ÿ x�2�1 C sin/1i�j1: �40�
Equation of meshing. The equation of meshing is thus

f4i�Xi�u�;/1i� � Ni � v�12�
i � 0: �41�

Conjugate shape R2. The shape R1 represented in coordinate system S2 is

�r2i� � �M21��ri� � �M2f ��Mf 1��ri�

�
cos/2i ÿ sin/2i C sin/2i

sin/2i cos/2i ÿC cos/2i

0 0 1

2664
3775

cos/1i ÿ sin/1i 0

sin/1i cos/1i 0

0 0 1

2664
3775

Xi�u�
Yi�u�

1

2664
3775

�
C sin/2i ÿ Yi�u� � sin�/1i � /2i� � Xi�u� � cos�/1i � /2i�
ÿC cos/2i � Xi�u� � sin�/1i � /2i� � Yi�u� � cos�/1i � /2i�

1

2664
3775: �42�

Fig. 6. Piecewise generation results for case 2.
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The equations for shape R2 are:

x2 � C sin/2i ÿ Yi�u� � sin�/1i � /2i� � Xi�u� � cos�/1i � /2i�; �43�

y2 � ÿC cos/2i � Xi�u� � sin�/1i � /2i� � Yi�u� � cos�/1i � /2i�; �44�

f4i�Xi�u�;/1i� � 0; f4i�Xi�u�;/1i� � Ni � v�12�
i � 0: �45�

where

/lower;i6/1i6/upper;i; �46�
and the shape is as plotted in Fig. 6.

4. Working ranges of kinematic parameters /0is

Since the original cutter has been divided into small piecewise cutters, the determination of kinematic
parameters /i working ranges is very important for every small cubic spline cutter, where /i is the working
range of the ith cutter that does the actual generation.

The limiting values �/upper;/lower�i on the ith piecewise cubic spline function can be determined by letting
u � 1 or u � 0 ®nd the /is using the equations of meshing f3i�Xi�u�;/i� � 0 and f4i�Xi�u�;/1i� � 0 for cases
1 and 2, respectively. Tables 4 and 5 show the working ranges �/upper;/lower�i for cases 1 and 2.

The results in Tables 4 and 5 show that the working ranges of each pair of adjacent small cutters are
connective and continuous. As discussed in [9], if linear functions are chosen for the piecewise generation
method, the phenomenon called ``secondary generation'' will occur because of tip points on ®tted cutter
pro®les. However, since cubic spline functions with ®rst- and second-order derivative continuity were used
in this study, the phenomenon should not occur. But checking of undercutting conditions is necessary.

5. Conditions of nonundercutting

Mathematically, the problem of tooth nonundercutting involves avoiding the appearance of singular
points on the generated shape R2. At such points on R2, tangent T does not exist, and the necessary
condition for existence of singular points on R2 may be represented as

Table 4

The working ranges of /i for case 1

i /lower;i (rad) /upper;i (rad)

1 ÿ0.40608 ÿ0.24365

2 ÿ0.24365 ÿ0.08121

3 ÿ0.08121 0.08121

4 0.08121 0.24365

5 0.24365 0.40608

Table 5

The working ranges of /1i for case 2

i /lower;i (rad) /upper;i (rad)

1 ÿ0.34493 ÿ0.16809

2 ÿ0.16809 0.00008

3 0.00008 0.17782

4 0.17782 0.33251

5 0.33251 0.63015
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v�2�r � v�1�r � v�12� � 0; �47�
where v�1�r and v�2�r are the velocities of points in motion along pro®les R1 and R2 respectively, and v�12� is the
sliding velocity.

Vector equation (47) may be represented in coordinate system S1 as follows:

dxi

du
du
dt
� ÿv�12�

xi ;
dyi

du
du
dt
� ÿv�12�

yi : �48�

Di�erentiating the equation of meshing

fi�u;/i� � 0 �49�
gives

ofi

ou
du
dt
� ÿ ofi

o/i

d/i

dt
: �50�

Consider system Eqs. (48) and (50) as a system of three linear equations involving one unknown. The
unique solution for unknown du=dt exists, if the rank of the augmented matrix is equal to one, and the
following second-order determinants are equal to zero:

dxi

du
ÿ v�12�

xi

dfi

du
ÿ ofi

o/i

d/i

dt

��������
�������� � 0; �51�

dyi

du
ÿ v�12�

yi

dfi

du
ÿ ofi

o/i

d/i

dt

��������
�������� � 0: �52�

Eq. (47) demonstrates that

dxi=du
dyi=du

� v�12�
xi

v�12�
yi

; �53�

it can be observed that only one of the two equations, (51) or (52), yields the relationship

F �u;/i� � 0: �54�
Eqs. (54) and (49) determine the limiting value of u, which corresponds to the singular point on the

generated shape R2. To avoid undercutting shape R2, it is suf®cient to exclude from meshing the limiting
value of u on shape R1.

Our investigation shows that there is no singularity occurring on the working parts of pro®les R2 in cases
1 and 2 of both conventional generation and piecewise cubic-spline generation methods. However, because
the second-order derivatives at every end-point of natural cubic spline are required zero, the errors in the
®tted curves near the end points will be relatively larger than those at interior points when compared with
the original theoretical curves. These errors sometimes result in undercutting. If one or two more data
points extended from the original theoretical curves are included for ®tting, but still choose the original
region to generate conjugate teeth, the undercutting will disappear. Thus, the generated curves from
piecewise generation will be more accurate to approach the results from conventional generation.

6. Application examples

Two engineering examples are presented in this paper to show the applications of piecewise generation
method.
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Fig. 7. Piecewise generation result for screw compressors.

Fig. 8. RootÕs blower.
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Example 1: Screw compressors. The rotors of a screw compressor are a kind of typical conjugate ki-
nematic pair. The pro®les of the rotors usually consist of various original curves, such as arcs, straight lines,
ellipse, . . ., and so on. The original curves of rotor pro®le used in this example are based on [10]. There are
one ellipse curve and three circular arcs distributed on the rotor pro®les. Totally 1355 data points are
sampled from their analytical forms of the male rotor. The derivation of conjugate female-rotor pro®le is a
very complicated work by the conventional generation method [11] because every part of the generated
curves and meshing equations should be derived symbolically from the original curves, respectively.
However, piecewise generation method samples the data points from male-rotor pro®le and the full female
rotor can be determined once by using the numerical method. It simpli®es the derivative procedure and
makes systematic simulation on computer possible. Fig. 7 shows the results of this conjugate pro®les.

Example 2: Roots blower. The data points for roots blower are measured from CMMs, and the original
theoretical curves on the rotor are unknown. Conventional generation method cannot deal with this
problem because the meshing equations cannot be derived from discrete points. However, piecewise gen-
eration method can do this well.

Table 6

Speci®cation of ZEISS UPMC-580

3-D Accuracy 1:7� l=300 �lm�
Linear resolution 0.2 �lm�
Angular resolution 0.5 arcsec

Table 7

Data point coordinates from CMM (unit: mm)

No. x y No. x y No. x y

1 0.197 ÿ21.232 31 49.415 21.905 61 ÿ56.712 18.050

2 3.987 ÿ21.771 32 46.125 23.956 62 ÿ58.876 15.348

3 7.558 ÿ22.828 33 43.083 25.492 63 ÿ60.782 12.084

4 10.942 ÿ24.391 34 39.480 26.920 64 ÿ61.937 9.275

5 14.092 ÿ26.443 35 35.756 27.986 65 ÿ62.724 6.463

6 17.332 ÿ28.433 36 31.932 28.716 66 ÿ63.241 3.413

7 20.822 ÿ29.836 37 28.126 29.050 67 ÿ63.376 0.733

8 24.172 ÿ30.597 38 24.612 28.805 68 ÿ63.013 ÿ2.685

9 27.942 ÿ30.841 39 21.018 27.950 69 ÿ62.161 ÿ6.225

10 31.802 ÿ30.544 40 17.534 26.476 70 ÿ60.730 ÿ9.746

11 35.645 ÿ29.907 41 14.469 24.639 71 ÿ58.787 ÿ13.019

12 39.159 ÿ28.987 42 10.614 22.809 72 ÿ56.360 ÿ15.960

13 42.807 ÿ27.65 43 6.823 21.710 73 ÿ53.551 ÿ18.678

14 46.318 ÿ25.969 44 2.633 21.183 74 ÿ50.754 ÿ20.958

15 49.654 ÿ23.958 45 ÿ1.639 21.351 75 ÿ47.471 ÿ23.184

16 52.805 ÿ21.646 46 ÿ5.555 22.148 76 ÿ44.074 ÿ25.043

17 55.397 ÿ19.387 47 ÿ9.213 23.499 77 ÿ42.594 ÿ25.727

18 57.979 ÿ16.572 48 ÿ12.443 25.273 78 ÿ40.137 ÿ26.701

19 60.051 ÿ13.486 49 ÿ15.609 27.449 79 ÿ36.434 ÿ27.835

20 61.630 ÿ10.134 50 ÿ18.932 29.144 80 ÿ32.622 ÿ28.617

21 62.615 ÿ6.913 51 ÿ22.527 30.276 81 ÿ28.811 ÿ29.044

22 63.148 ÿ3.836 52 ÿ25.857 30.768 82 ÿ25.032 ÿ28.879

23 63.385 ÿ1.132 53 ÿ29.367 30.763 83 ÿ21.704 ÿ28.174

24 63.141 1.779 54 ÿ33.245 30.333 84 ÿ18.212 ÿ26.826

25 62.459 5.182 55 ÿ37.054 29.565 85 ÿ15.155 ÿ25.060

26 61.187 8.761 56 ÿ40.764 28.438 86 ÿ11.702 ÿ23.257

27 59.504 11.925 57 ÿ44.356 26.947 87 ÿ8.108 ÿ22.025

28 57.686 14.447 58 ÿ47.573 25.251 88 ÿ3.904 ÿ21.280

29 55.284 17.037 59 ÿ50.839 23.127 89 ÿ0.224 ÿ21.205

30 52.378 19.666 60 ÿ53.906 20.717
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Fig. 8 shows the rotor shapes of the Roots blower. Both rotors 1 and 2 are measured from the coordinate
measuring machine: ZEISS UPMC-850, its speci®cation shown in Table 6. There are 89 data points (as
listed at Table 7) in rotor 1 and 81 data points in rotor 2, respectively. Use rotor 1 as the original rotor and
the conjugate results, rotor 2, by using piecewise generation can then be presented with thin lines in Fig. 8.
They match the data points of rotor 2 very well, and are useful in verifying the conjugate properties.

7. Discussion

The concept of the piecewise generation method is similar to the calculus. It reduces the generation
method from a large domain to a tiny domain. For any speci®c generation mechanism, the equation of
meshing

N � v�12� � 0 �55�
must be derived again symbolically every time by using conventional generation methods when the cutter
pro®le is changed. The piecewise generation method using cubic spline functions to ®t original cutters need
only derive the equation of meshing once, because of the ®xed form of ri � �Xi�u� Yi�u� �, then the ana-
lytical-form meshing equation can be determined for this generation mechanism. What we need to do is to
substitute data points on the cutter into the form and then the piecewise conjugate shapes can be deter-
mined. This method makes systematic simulation possible for computer programmers. This approach can
also be used to verify the results from the conventional generation method.

From an optimization standpoint, more design variables make systems more ¯exible in satisfying re-
quired functions. The piecewise generation method makes all data points on the cutter design variables. But
they are much more than just variables in the original parametric form. If the design optimization tools are
applied, this method can contribute more to conjugate-pair design.

Form a reverse-engineering standpoint, the piecewise generation method can deal with cutter data points
measured using CMMs no matter what the original pro®le is. It is more practical and powerful than
conventional generation methods used for reverse engineering.

8. Conclusions

This paper proposes a method called ``piecewise generation'' for generating conjugate shapes from cutters
by ®tting points on the cutters using cubic spline functions. Cutter data points derived from analytical forms or
measured using CMMs can also be ®tted with cubic spline functions. This method requires that the meshing
equation be derived only once for the cubic spline functions, then the conjugate shapes can be determined for
this generation mechanism. When a cutter shape is changed, the equation of meshing need not be derived again.
It is quite useful and practical in conjugate-pair design veri®cation and reverse engineering applications.
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Appendix A

Equation of Shape R1: The normal of shape R1 in case 1 is

N1 � dr1

dh
� k1 � coswci1 ÿ sinwcj1: �A:1�

Relative velocity v
�12�
1 : The velocity of the rack cutter is

v
�1�
1 � ÿxri1; �A:2�
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where x is the angular velocity of the gear, and r the radius of the pitch circle.
The linear velocity of the gear contact point is

v
�2�
1 � �x� r1� � �R1 � x�; �A:3�

where the position vector R1 is represented by

R1 � O1O2 � r/i1 ÿ rj1: �A:4�
Eq. (A.3) yields

v
�2�
1 � �x� r1� � �O1O2 � x�

�
i1 j1 k1

0 0 x

h sinwc hcoswc 0

2664
3775�

i1 j1 k1

r/ ÿr 0

0 0 x

2664
3775

� x��ÿhcoswc ÿ r�i1 � �ÿr/� h sinwc�j1�: �A:5�
The relative linear velocity is

v
�12�
1 � v

�1�
1 ÿ v

�2�
1 � x�hcoswci1 � �r/ÿ h sinwc�j1�: �A:6�

Appendix B

Equation of Shape R1: In case 2, shape of R1 is represented in coordinate system S1 by

r1�h� � rb� sinhÿ hcosh�i1 � rb�cosh� h sinh�j1: �B:1�
Its normal is

N1 � dr1

dh
� k1 � rbhcoshi1 ÿ rbh sinhj1: �B:2�

Relative velocity v
�12�
1 : As shown in Fig. 3, gears 1 and 2 rotate about z1 and z2 (they are not shown in Fig.

3) with angular velocities

x�1� � x�1�k1; �B:3�

x�2� � ÿx�2�k2; �B:4�
where k1 and k2 are unit vectors of axes z1 and z2. The ratio of angular velocity m12 can be represented by

m12 � x�1�

x�2�
� /1

/2

� N2

N1

; �B:5�

where N1 and N2 are tooth numbers of pinion 1 and gear 2.
The relative linear velocity is

v
�12�
1 � v

�1�
1 ÿ v

�2�
1 � �x�12�

1 � r1� ÿ �O1O2 � x�2�1 �

�
i1 j1 k1

0 0 x�1�1 � x�2�1

x1 y1 0

���������

���������ÿ
i1 j1 k1

C sin/1 C cos/1 0

0 0 ÿx�2�1

���������

���������
� ÿ��x�1�1 � x�2�1 �y1 ÿ x�2�1 C cos/1�i1 � ��x�1�1 � x�2�1 �x1 ÿ x�2�1 C sin/1�j1: �B:6�
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